CN108330455A - 一种Cr2AlC相纯度可调控的涂层制备方法 - Google Patents
一种Cr2AlC相纯度可调控的涂层制备方法 Download PDFInfo
- Publication number
- CN108330455A CN108330455A CN201810077319.2A CN201810077319A CN108330455A CN 108330455 A CN108330455 A CN 108330455A CN 201810077319 A CN201810077319 A CN 201810077319A CN 108330455 A CN108330455 A CN 108330455A
- Authority
- CN
- China
- Prior art keywords
- alc
- targets
- coating
- regulatable
- phase purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
- C23C14/0057—Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/548—Controlling the composition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明提供一种Cr2AlC相纯度可调控的涂层制备方法,采用磁控溅射技术,在真空腔体中通入氩气和碳氢气体,使用Cr2Al靶和纯Al靶共同溅射,在经过清洗处理的基体表面沉积包含Cr、Al、C三种元素成分的涂层;然后,将所沉积涂层进行真空热处理生成Cr2AlC相;通过控制Cr2Al靶与Al靶的溅射电流调控涂层中Cr2AlC相的质量含量。当Cr2Al靶的溅射电流为2.0A~3.0A,Al靶电流为0.5A~3.0A,Cr2AlC相纯度能够高于65%,有利于Cr2AlC相优异性能的发挥。
Description
技术领域
本发明涉及表面涂层技术领域,尤其涉及一种Cr2AlC相纯度可调控的涂层制备方法。
背景技术
MAX相是一类新型具有层状结构的三元化合物,化学式为Mn+1AXn,其中M代表早期过渡族金属元素;A指IIIA和IVA族元素;X为C或N元素;n为1~6的整数。MAX相材料独特的三元层状结构使其兼具金属和陶瓷的优异性能,如金属材料的导热、导电、机械加工特性以及陶瓷材料的低密度、高弹性模量、耐高温氧化性等,此外MAX相材料还具有良好的高损伤容限、良好的抗热震性等,因而在航空航天、核工业、海洋和电子信息等高新技术领域都有着潜在的广泛应用前景。
Cr2AlC是一种MAX相,Cr2AlC涂层在高温服役过程中,由于Al-Cr原子之间的金属键较Cr-C之间的共价键弱,Al-Cr之间的金属键先断裂,Al原子扩散到表面发生选择性氧化,在表面形成一层致密的Al2O3保护膜,阻止O2等氧化性的原子和离子向内扩散,对基体起到较好的保护作用。同时Cr2AlC相与几种工业应用广泛的金属(如Zr合金、316L不锈钢、Ti合金等)热膨胀系数较匹配,因此Cr2AlC涂层作为金属表面抗高温腐蚀防护涂层材料具有很大的应用前景。此外,Cr2AlC涂层作为抗强酸碱腐蚀、高温摩擦、电接触材料以及特殊介质抗磨蚀等方面也有着极大的应用潜力。
制备高纯度Cr2AlC涂层是获得并使用其优异特性的前提。现阶段,Cr2AlC涂层的制备方法主要分为两种,一种是直接在高温下采用PVD方法沉积Cr2AlC涂层,但这种沉积方法所需温度较高,对PVD设备要求苛刻。另一种是采用PVD低温沉积非晶涂层,之后对涂层进行高温热处理生成Cr2AlC相,这种方法对PVD沉积设备的要求降低,应用价值更广泛。但是目前采用上述两种制备方法所获得的涂层中Cr2AlC相纯度未知,从而制约了Cr2AlC相优异性能的发挥。
发明内容
本发明人采用磁控溅射技术,选用Cr2Al靶为溅射靶,向真空腔体中通入氩气和碳氢气体作为反应气体沉积Cr、Al、C三种元素成分的复合涂层,然后进行高温热处理制备Cr2AlC相,发现制得的涂层中不仅包含Cr2AlC相,而且包含Al8Cr5杂相和Cr7C3杂相,并且Cr2AlC相的质量含量较低,即在涂层中Cr2AlC相纯度较低。究其原因可能是因为磁控溅射过程中Cr元素和Al元素的溅射特性以及粒子在气相中的运输特性存在差异而引起涂层和靶材成分偏离。
为此,经过大量实验探索,本发明人发现,当在反应气体中采用Cr2Al靶和纯Al靶共同溅射,为涂层补充Al元素,并且通过控制Cr2Al靶的溅射电流以及纯Al靶的溅射电流能够有效调控涂层中Cr2AlC相纯度。
即,本发明的技术方案为:一种Cr2AlC相纯度可调控的涂层制备方法,采用磁控溅射技术,其特征是:在真空腔体中通入氩气和碳氢气体,使用Cr2Al靶和纯Al靶共同溅射,在经过清洗处理的基体表面沉积包含Cr、Al、C三种元素成分的涂层;然后,将所沉积涂层进行真空热处理生成Cr2AlC相;通过控制Cr2Al靶与Al靶的溅射电流调控涂层中Cr2AlC相的质量含量,即Cr2AlC相纯度。
作为优选,热处理温度为650℃~850℃。
作为优选,热处理时间为1h~5h。
作为优选,所述基体的负偏压为-250V~-1000V。
作为优选,所述碳氢气体为甲烷或乙炔,流量占总气体流量的16%~20%。
作为优选,所述真空腔体的真空度为1.0×10-3Pa~3.0×10-2Pa。
作为优选,将清洗处理后的基体放入真空镀膜腔体中,在沉积之前,首先向真空腔体中通入氩气,对基体施加负偏压产生辉光,利用辉光对基体进行刻蚀。
经过大量实验探索研究,本发明人发现,当Cr2Al靶的溅射电流为2.0A~3.0A,Al靶电流为0.5A~3.0A时,Cr2AlC相纯度较高,能够高于65%;尤其是当Cr2Al靶的溅射电流为2.5A,Al靶电流为0.5A~3.0A时,Cr2AlC相的质量百分含量高于70%;作为进一步优选,Cr2Al靶的溅射电流为2.5A,Al靶电流为0.5A~2.0A;作为最优选,Cr2Al靶的溅射电流为2.5A,Al靶电流为1.0A~1.5A时,Cr2AlC相的质量百分含量高于80%。
与现有技术相比,本发明具有如下有益效果:
(1)采用在反应气体中共溅射Cr2Al靶和纯Al靶,可以有效解决磁控溅射过程中由于Cr元素和Al元素溅射特性差异,以及粒子在气相中的运输特性差异而引起的涂层和靶材成分偏离,为涂层补充Al元素;
(2)通过调节Cr2Al靶与Al靶的溅射电流,能够轻松实现对涂层成分的控制和Cr2AlC相纯度的调控;通过进一步优化Cr2Al靶与Al靶的溅射电流能够得到Cr2AlC相纯度高于70%,甚至高于80%的涂层,有利于Cr2AlC相优异性能的发挥;
(3)采用低温沉积加后续热处理工艺,与高温沉积相比,改善了对PVD设备温度依赖的限制。
附图说明
图1是实施例1-4制得的涂层中Cr元素与Al元素原子百分比;
图2是实施例1-4制得的涂层的XRD图谱;
图3是对比实施例1制得的涂层的XRD图谱;
图4是对比实施例2制得的涂层的XRD图谱。
具体实施方式
下面结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施例中,基体表面涂层的制备过程如下:
(1)将基体清洗干燥后放入真空镀膜室,向真空腔体中通入流量100sccm的氩气,对基体施加-350V负偏压产生辉光,利用辉光对基体进行刻蚀40min;
(2)使用Cr2Al靶和纯Al靶共同溅射,基底置于Cr2Al靶正前方自转,向腔体中通入氩气和碳氢气体作为反应气体,CH4流量为200sccm,Ar流量为80sccm,气压为4.0mTorr,Cr2Al靶溅射电流为2.5A,Al靶溅射电流为0.5A,在基体表面沉积包含Cr、Al、C三种元素成分的涂层,厚度为5um;
(3)将所沉积的涂层进行真空热退火,真空度为1.0×10-2Pa,退火温度为750℃,退火时间为1.5h。
采用EDS能谱测量上述制得的涂层中铬、铝元素含量,得到该涂层中Cr/Al比为2.81,如图1所示。
测量上述制得的涂层的XRD图谱,如图2所示,对XRD图谱进行多相全谱拟合无标样定量相分析得到涂层的相组成和各相含量,其中Cr2AlC相的质量百分比为73.85%,另外含有15.5%质量百分比的Al8Cr5杂相和10.66%质量百分比的Cr7C3杂相,即Cr2AlC相纯度为73.85%。
实施例2:
本实施例中,基体与实施例1中的基体相同。基体表面涂层的制备过程与实施例1中的制备过程基本相同,所不同的是在步骤(2)中,Cr2Al靶溅射电流为2.5A,Al靶溅射电流为1A。
采用EDS能谱测量上述制得的涂层中铬、铝元素含量,得到该涂层中Cr/Al比为2.09,如图1所示。
测量上述制得的涂层的XRD图谱,如图2所示,对XRD图谱进行多相全谱拟合无标样定量相分析得到涂层的相组成和各相含量,其中Cr2AlC相的质量百分比为86.62%,另外含有6.31%质量百分比的Al8Cr5杂相和7.07%质量百分比的Cr7C3杂相,即Cr2AlC相纯度为86.62%。
实施例3:
本实施例中,基体与实施例1中的基体相同。基体表面涂层的制备过程与实施例1中的制备过程基本相同,所不同的是在步骤(2)中,Cr2Al靶溅射电流为2.5A,Al靶溅射电流为2A。
采用EDS能谱测量上述制得的涂层中铬、铝元素含量,得到该涂层中Cr/Al比为1.56,如图1所示。
测量上述制得的涂层的XRD图谱,如图2所示,对XRD图谱进行多相全谱拟合无标样定量相分析得到涂层的相组成和各相含量,其中Cr2AlC相的质量百分比为74.11%,另外含有22.31%质量百分比的Al8Cr5杂相和3.58%质量百分比的Cr7C3杂相,即Cr2AlC相纯度为74.11%。
实施例4:
本实施例中,基体与实施例1中的基体相同。基体表面涂层的制备过程与实施例1中的制备过程基本相同,所不同的是在步骤(2)中,Cr2Al靶溅射电流为2.5A,Al靶溅射电流为3A。
采用EDS能谱测量上述制得的涂层中铬、铝元素含量,得到该涂层中Cr/Al比为1.16,如图1所示。
测量上述制得的涂层的XRD图谱,如图2所示,对XRD图谱进行多相全谱拟合无标样定量相分析得到涂层的相组成和各相含量,其中Cr2AlC相的质量百分比为70.04%,另外含有28.28%质量百分比的Al8Cr5杂相和1.68%质量百分比的Cr7C3杂相,即Cr2AlC相纯度为70.04%。
对比实施例1:
本实施例中,基体与实施例1中的基体相同。基体表面涂层的制备过程如下:
(1)将基体清洗干燥后放入真空镀膜室,向真空腔体中通入流量100sccm的氩气,对基体施加-350V负偏压产生辉光,利用辉光对基体进行刻蚀40min;
(2)使用Cr2Al靶溅射,基底置于Cr2Al靶正前方自转,向腔体中通入氩气和碳氢气体作为反应气体,CH4流量为200sccm,Ar流量为80sccm,气压为4.0mTorr,Cr2Al靶溅射电流为2.5A,在基体表面沉积包含Cr、Al、C三种元素成分的涂层,厚度为5um;
(3)将所沉积涂层进行真空热退火,真空度为1.0×10-2Pa,退火温度为750℃,退火时间为1.5h。
采用EDS能谱测量上述制得的涂层中铬、铝元素含量,得到该Cr2AlC涂层中Cr/Al比为3.07。
测量上述制得的涂层的XRD图谱,如图3所示,对XRD图谱进行多相全谱拟合无标样定量相分析得到该涂层的相组成和各相含量,其中Cr2AlC相的质量百分比为61.14%,另外含有0.6%质量百分比的Al8Cr5杂相和38.26%质量百分比的Cr7C3杂相,即Cr2AlC相纯度为61.14%。
对比实施例2:
本实施例中,基体与实施例1中的基体相同。基体表面涂层的制备过程与实施例1中的制备过程基本相同,所不同的是在步骤(2)中,Cr2Al靶溅射电流为2.5A,Al靶溅射电流为5A。
采用EDS能谱测量上述制得的涂层中铬、铝元素含量,得到该Cr2AlC涂层中Cr/Al比为0.63。
测量上述制得的涂层的XRD图谱,如图4所示,对XRD图谱进行多相全谱拟合无标样定量相分析得到涂层的相组成和各相含量,其中Cr2AlC相的质量百分比为42.74%,另外含有52.47%质量百分比的Al8Cr5杂相和4.79%质量百分比的Cr7C3杂相,即Cr2AlC相纯度为42.74%。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种Cr2AlC相纯度可调控的涂层制备方法,采用磁控溅射技术,其特征是:在真空腔体中通入氩气和碳氢气体,使用Cr2Al靶和纯Al靶共同溅射,在经过清洗处理的基体表面沉积包含Cr、Al、C三种元素成分的涂层;然后,将所沉积涂层进行真空热处理生成Cr2AlC相;通过控制Cr2Al靶与Al靶的溅射电流调控涂层中Cr2AlC相的质量含量,即Cr2AlC相纯度。
2.如权利要求1所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:热处理温度为650℃~850℃。
3.如权利要求1所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:热处理时间为1h~5h。
4.如权利要求1所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:沉积过程中,基体负偏压为-250V~-1000V。
5.如权利要求1所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:所述碳氢气体为甲烷或乙炔,流量占总气体流量的16%-20%。
6.如权利要求1所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:所述真空腔体的真空度为1.0×10-3Pa~3.0×10-2Pa。
7.如权利要求1所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:将清洗处理后的基体放入真空腔体中,在沉积之前,首先向真空腔体中通入氩气,对基体施加负偏压产生辉光,利用辉光对基体进行刻蚀。
8.如权利要求1至7中任一权利要求所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:Cr2Al靶的溅射电流为2.0A~3.0A,Al靶的溅射电流为0.5A~3.0A,Cr2AlC相纯度高于65%。
9.如权利要求8所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:Cr2Al靶的溅射电流为2.5A,Al靶电流为0.5A~3.0A,Cr2AlC相的质量百分含量高于70%。
10.如权利要求9所述的Cr2AlC相纯度可调控的涂层制备方法,其特征是:Cr2Al靶的溅射电流为2.5A,Al靶电流为0.5A~2.0A;
作为优选,Cr2Al靶的溅射电流为2.5A,Al靶电流为1.0A~1.5A。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810077319.2A CN108330455B (zh) | 2018-01-26 | 2018-01-26 | 一种Cr2AlC相纯度可调控的涂层制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810077319.2A CN108330455B (zh) | 2018-01-26 | 2018-01-26 | 一种Cr2AlC相纯度可调控的涂层制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108330455A true CN108330455A (zh) | 2018-07-27 |
CN108330455B CN108330455B (zh) | 2020-05-08 |
Family
ID=62926521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810077319.2A Active CN108330455B (zh) | 2018-01-26 | 2018-01-26 | 一种Cr2AlC相纯度可调控的涂层制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108330455B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109957757A (zh) * | 2019-04-04 | 2019-07-02 | 中国核动力研究设计院 | 一种两步法PVD技术制备超厚Ti-Al-C三元涂层的方法 |
CN113388811A (zh) * | 2021-05-10 | 2021-09-14 | 中国科学院金属研究所 | 一种事故容错燃料包壳用双层Cr/Cr2AlC涂层及其制备方法 |
CN114481048A (zh) * | 2022-04-15 | 2022-05-13 | 中国科学院宁波材料技术与工程研究所 | 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012000742A1 (de) * | 2010-07-02 | 2012-01-05 | Brandenburgische Technische Universität Cottbus | Verfahren zur herstellung einer haft- und kratzfesten schutzschicht auf einem metallischen werkstück |
CN102899612A (zh) * | 2012-09-21 | 2013-01-30 | 中国科学院金属研究所 | 采用多弧离子镀制备以Cr2 AlC为主相的高温防护涂层的方法 |
CN104532185A (zh) * | 2014-12-22 | 2015-04-22 | 四川大学 | 一种非晶结构的CrAl(C,N)硬质涂层及其制备方法 |
CN107620033A (zh) * | 2016-07-14 | 2018-01-23 | 中国科学院宁波材料技术与工程研究所 | 一种高纯强致密max相涂层的制备方法 |
-
2018
- 2018-01-26 CN CN201810077319.2A patent/CN108330455B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012000742A1 (de) * | 2010-07-02 | 2012-01-05 | Brandenburgische Technische Universität Cottbus | Verfahren zur herstellung einer haft- und kratzfesten schutzschicht auf einem metallischen werkstück |
CN102899612A (zh) * | 2012-09-21 | 2013-01-30 | 中国科学院金属研究所 | 采用多弧离子镀制备以Cr2 AlC为主相的高温防护涂层的方法 |
CN104532185A (zh) * | 2014-12-22 | 2015-04-22 | 四川大学 | 一种非晶结构的CrAl(C,N)硬质涂层及其制备方法 |
CN107620033A (zh) * | 2016-07-14 | 2018-01-23 | 中国科学院宁波材料技术与工程研究所 | 一种高纯强致密max相涂层的制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109957757A (zh) * | 2019-04-04 | 2019-07-02 | 中国核动力研究设计院 | 一种两步法PVD技术制备超厚Ti-Al-C三元涂层的方法 |
CN113388811A (zh) * | 2021-05-10 | 2021-09-14 | 中国科学院金属研究所 | 一种事故容错燃料包壳用双层Cr/Cr2AlC涂层及其制备方法 |
CN114481048A (zh) * | 2022-04-15 | 2022-05-13 | 中国科学院宁波材料技术与工程研究所 | 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN108330455B (zh) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107620033B (zh) | 一种高纯强致密max相涂层的制备方法 | |
Vargas et al. | Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering | |
CN105908131B (zh) | 一种可热生长氧化铝膜的TiAl涂层及其制备方法 | |
CN108330455A (zh) | 一种Cr2AlC相纯度可调控的涂层制备方法 | |
CN109402564A (zh) | 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法 | |
CN108796453B (zh) | 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法 | |
US8372524B2 (en) | Coated article | |
CN114196914B (zh) | 一种碳化物高熵陶瓷材料、碳化物陶瓷层及其制备方法和应用 | |
JPH09510500A (ja) | 立方晶窒化硼素より成る層を形成する方法 | |
EP2201154A1 (en) | Method of producing a layer by arc-evaporation from ceramic cathodes | |
CN105349944A (zh) | 氮化钛铬涂层及其双层辉光等离子渗制备方法 | |
CN113652644B (zh) | 一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法 | |
Yuan et al. | MAX phase forming mechanism of M–Al–C (M= Ti, V, Cr) coatings: In-situ X-ray diffraction and first-principle calculations | |
CN111910161A (zh) | 一种高功率单极脉冲磁控溅射CrSiCN膜的制备工艺 | |
CN101994077A (zh) | 一种耐高温氧化金属间化合物涂层及其制备方法 | |
Wang et al. | Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700℃ | |
CN112391592A (zh) | 一种高温抗氧化钽铪碳三元陶瓷碳化物涂层及其制备方法 | |
Liu et al. | Microstructure and mechanical properties of alumina coatings prepared by double glow plasma technique | |
CN108330452A (zh) | Max相涂层的制备方法 | |
CN107287547A (zh) | 硼化钽复合涂层的制备方法 | |
CN104593737A (zh) | 高硅超硬pvd涂层制备工艺 | |
Khechba et al. | Study of structural and mechanical properties of tungsten carbides coatings | |
Gong et al. | Effect of N2 Flow Rate on Structure and Corrosion Resistance of AlCrN Coatings Prepared by Multi-Arc Ion Plating | |
Zhang et al. | Structure and oxidation behavior of compositionally gradient CrNx coatings prepared using arc ion plating | |
CN108149198A (zh) | 一种wc硬质合金薄膜及其梯度层技术室温制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |