CN108328622A - 层状硅酸铜的扩孔方法 - Google Patents

层状硅酸铜的扩孔方法 Download PDF

Info

Publication number
CN108328622A
CN108328622A CN201810165326.8A CN201810165326A CN108328622A CN 108328622 A CN108328622 A CN 108328622A CN 201810165326 A CN201810165326 A CN 201810165326A CN 108328622 A CN108328622 A CN 108328622A
Authority
CN
China
Prior art keywords
copper
expanding method
silicic acid
solution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810165326.8A
Other languages
English (en)
Other versions
CN108328622B (zh
Inventor
孟祥祺
施岩
赵悦
陈世安
黎胜可
赵晓龙
赵志航
张霜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Shihua University
Original Assignee
Liaoning Shihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Shihua University filed Critical Liaoning Shihua University
Priority to CN201810165326.8A priority Critical patent/CN108328622B/zh
Publication of CN108328622A publication Critical patent/CN108328622A/zh
Application granted granted Critical
Publication of CN108328622B publication Critical patent/CN108328622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属固体催化剂扩孔方法领域,尤其涉及一种利用磷酸二氢氨作为扩孔剂的层状硅酸铜的扩孔方法,包括如下步骤:(1)将一定量的铜源溶于去离子水中;向溶液中加入将一定量的磷酸氢二铵,使其完全溶解;(2)向步骤(1)所得溶液中加入一定量氨水,使其形成铜氨络合物;(3)加入一定量质量浓度为25%~30%的硅溶胶溶液,搅拌老化;加热,蒸出氨气得到沉淀物;(4)将步骤(3)所得沉淀物过滤,洗涤,煅烧,即得目的产物。本发明工艺简单,目的产品质量稳定,重复性好,不影响铜物种的分布及原有催化特性。

Description

层状硅酸铜的扩孔方法
技术领域
本发明属固体催化剂扩孔方法领域,尤其涉及一种利用磷酸二氢氨作为扩孔剂的层状硅酸铜的扩孔方法。
背景技术
固体催化剂通常是多孔的,反应物必须进入孔中与催化剂表面活性中心接触,反应才能迅速发生,而反应物也要及时的扩散出去才能维持反应的正常进行。因此孔结构对催化剂的性能如活性,强度,选择性,表面利用率和中毒难易都有影响,因此,一个催化反应在活性组分确定后,选择适当的载体并使制备成的催化剂具有最佳的孔结构是非常重要的。在活性及强度允许的情况下,适当的增大孔径,有利于减小扩散阻力,增加孔的热稳定性,防止增容反应,结碳等对催化剂骨架的影响(如涨裂、粉化、失去强度等),从而增加对非化学性中毒的抵抗能力。当催化剂具有双峰空结构或多峰孔结构时,该催化剂的利用率可以明显提高。
近年来,由于铜基催化剂具有来源广泛,价格低廉,催化活性显著等优势,越来越广泛的应用于油品及脂肪族的反应当中,Cu/SiO2系催化剂基于较大的比表面积和催化稳定性被广泛应用。由于较大比表面积的层状硅酸铜孔径均集中在3nm左右,很难与较大分子形成有效的催化反应。
发明内容
本发明旨在克服现有技术的不足之处而提供一种工艺简单,目的产品质量稳定,重复性好,不影响铜物种的分布及原有催化特性的层状硅酸铜的扩孔方法。
为解决上述技术问题,本发明是这样实现的。
层状硅酸铜的扩孔方法,依次按如下步骤实施。
(1)将一定量的铜盐溶于去离子水中;向溶液中加入将一定量的磷酸氢二铵,使其完全溶解。
(2)向步骤(1)所得溶液中加入一定量氨水,使其形成铜氨络合物。
(3)加入一定量质量浓度为25%~30%的硅溶胶溶液,搅拌老化;加热,蒸出氨气得到沉淀物。
(4)将步骤(3)所得沉淀物过滤,洗涤,煅烧,即得目的产物。
作为一种优选方案,本发明步骤(1)所述铜盐包括硝酸铜、硫酸铜、醋酸铜、卤化铜、碱式卤化铜、碱式碳酸铜、葡萄糖酸铜、碱式硫酸铜、溴化铜或柠檬酸铜中的一种或两种以上的混合物。
进一步地,本发明步骤(1)所述铜盐溶液中铜离子浓度为0.1~0.2 mol/kg。
进一步地,本发明步骤(1)中向溶液中加入磷酸氢二铵同时,对溶液进行加热搅拌、微波加热或超声震动处理,使其完全溶解。
进一步地,本发明步骤(1)中所述铜盐与磷酸二氢氨的摩尔比为:5~30:1。
进一步地,本发明步骤(3)中所述搅拌老化时间为0~14h。
进一步地,本发明步骤(3)中所述加热温度为20~100℃。
进一步地,本发明步骤(4)中采用去离子水洗涤1~5次。
进一步地,本发明步骤(3)所得溶液pH值在4~8。
本发明通过在硅酸铜的制备过程中加入一定量磷酸二氢铵,改变了原有的硅酸铜孔径分布,N2物理吸附表征得出在无磷酸二氢铵加入的试验中硅酸铜的孔分布集中在3nm左右,通过对孔径分布的分析计算得出2~4nm孔体积(BJH法)占总体积56.95%,比表面积(BET法)占总体77.80%,而实验较佳的加入摩尔比(硝酸铜:磷酸二氢铵)为8:1的磷酸二氢铵后,2~4nm孔体积占总体19.15%,比表面积占总体44.06%,8~10nm的孔体积占总体23.37%,比表面积占总体18.17%。实验结果表明磷酸二氢氨的加入可以明显改变硅酸铜物种的孔径分布,使9nm左右形成更多的大孔结构。
在无磷酸二氢铵加入的制备方法中,得到的产物比表面积为543.7 m²/g,平均孔径为 50.95 Å,孔容为0.62 cm³/g。加入一定量的磷酸二氢铵后得到的本发明产物比表面积为488.7 m²/g,平均孔径为84.54 Å,孔容为1.15 cm³/g。磷酸二氢氨的加入使反应产物存在了磷酸形式的铜物种,对于形成的微观结构为层状的硅酸铜起到了空间结构的支持作用,因此改变了硅酸铜二次孔的分布情况,增大了平均孔径,而随着孔径的增大,比表面积也略有下降。研究表明在催化剂的制备及催化反应之中,适当增大孔径及孔容适当的增大孔径,有利于减小扩散阻力、增加孔的热稳定性、防止增容反映、结碳等对催化剂骨架的涨裂、粉化从而失去强度,增加对非化学性中毒的抵抗能力。因此本发明对催化剂的制备及应用有着现实的指导意义。本发明工艺简单,成本低廉,对环境友好。
附图说明
下面结合说明书附图和具体实施方式对本发明作进一步说明。本发明的保护范围不仅局限于下列内容的表述。
图1为硅酸铜的孔径分布图。
图2为硅酸铜的吸附曲线。
具体实施方式
实施例1。
一种层状硅酸铜的扩孔方法,其步骤如下:将50g硝酸铜铜溶于700g去离子水中;向溶液中加入1g磷酸氢二铵,加热搅拌使其完全溶解;然后向溶液中加入170g,质量浓度为25%的氨水,使溶液形成铜氨络合物;加入80g,质量浓度为25%的硅溶胶溶液;搅拌老化12h;加热80℃,蒸出氨气得到沉淀物,直到溶液pH值为5;真空泵抽滤,去离子水洗涤3次得到滤饼,400℃煅烧滤饼即得目的产物。
实施例2。
一种层状硅酸铜的扩孔方法,其步骤如下:将1g的磷酸二氢铵溶于700g去离子水;向溶液中加入50g硝酸铜,微波加热使溶液完全溶解分散;向溶液中加入170g ,质量浓度为25%氨水,使溶液形成铜氨络合物,搅拌均匀;加入80g ,质量浓度为30%的硅溶胶溶液;搅拌老化12h;加热80℃,蒸出氨气得到沉淀物,直到溶液pH值为5;真空泵抽滤,去离子水洗涤3次得到滤饼,400℃煅烧滤饼即得目的产物。
实施例3。
一种层状硅酸铜的扩孔方法,其步骤如下:将5g的磷酸二氢铵溶于700g去离子水中;向溶液中加入50g硝酸铜,超声震动使溶液完全溶解分散;向溶液中加入170g,质量浓度为25%氨水,使溶液形成铜氨络合物,搅拌均匀;加入80g ,质量浓度为30%的硅溶胶溶液;搅拌老化12h;加热80℃,蒸出氨气得到沉淀物,直到溶液pH值为5;离心泵抽滤,去离子水洗涤3次得到滤饼,400℃煅烧滤饼即得目的产物。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.层状硅酸铜的扩孔方法,其特征在于,依次按如下步骤实施:
(1)将一定量的铜源溶于去离子水中;向溶液中加入将一定量的磷酸氢二铵,使其完全溶解;
(2)向步骤(1)所得溶液中加入一定量氨水,使其形成铜氨络合物;
(3)加入一定量质量浓度为25%~30%的硅溶胶溶液,搅拌老化;加热,蒸出氨气得到沉淀物;
(4)将步骤(3)所得沉淀物过滤,洗涤,煅烧,即得目的产物。
2.根据权利要求1所述层状硅酸铜的扩孔方法,其特征在于:步骤(1)所述铜源包括硝酸铜、硫酸铜、醋酸铜、卤化铜、碱式卤化铜、碱式碳酸铜、葡萄糖酸铜、氢氧化铜、溴化铜或柠檬酸铜中的一种或两种以上的混合物。
3.根据权利要求2所述层状硅酸铜的扩孔方法,其特征在于:步骤(1)所述铜离子浓度为0.1~0.2mol/Kg。
4.根据权利要求3所述层状硅酸铜的扩孔方法,其特征在于:步骤(1)中向溶液中加入磷酸二氢铵同时,对溶液进行加热搅拌、微波加热或超声震动处理,使其完全溶解。
5.根据权利要求4所述层状硅酸铜的扩孔方法,其特征在于:步骤(1)中所述铜源与磷酸二氢氨的摩尔比为:5~30:1。
6.根据权利要求5所述层状硅酸铜的扩孔方法,其特征在于:步骤(3)中所述搅拌老化时间为0~14h。
7.根据权利要求6所述层状硅酸铜的扩孔方法,其特征在于:步骤(3)中所述加热温度为20~100℃。
8.根据权利要求7所述层状硅酸铜的扩孔方法,其特征在于:步骤(4)中采用去离子水洗涤1~5次。
9.根据权利要求1~8任一所述层状硅酸铜的扩孔方法,其特征在于:步骤(3)所得溶液pH值在4~8。
CN201810165326.8A 2018-02-28 2018-02-28 层状硅酸铜的扩孔方法 Active CN108328622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810165326.8A CN108328622B (zh) 2018-02-28 2018-02-28 层状硅酸铜的扩孔方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810165326.8A CN108328622B (zh) 2018-02-28 2018-02-28 层状硅酸铜的扩孔方法

Publications (2)

Publication Number Publication Date
CN108328622A true CN108328622A (zh) 2018-07-27
CN108328622B CN108328622B (zh) 2021-07-13

Family

ID=62930017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810165326.8A Active CN108328622B (zh) 2018-02-28 2018-02-28 层状硅酸铜的扩孔方法

Country Status (1)

Country Link
CN (1) CN108328622B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813290A (zh) * 2018-08-08 2020-02-21 中国石油天然气股份有限公司 层状硅酸铜复合物的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199034A (zh) * 1998-05-16 1998-11-18 冯守华 天然珊瑚羟基磷灰石多孔生物材料的化学扩孔技术
CN102586811A (zh) * 2012-03-23 2012-07-18 国家钽铌特种金属材料工程技术研究中心 一种熔盐电解氧化物制取电容器级粉末的阴极块的制备方法
CN102861588A (zh) * 2011-07-07 2013-01-09 中国石油化工股份有限公司 一种渣油加氢脱金属催化剂及其制备方法
CN105521793A (zh) * 2014-10-22 2016-04-27 中国石油化工股份有限公司 一种加氢脱金属催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199034A (zh) * 1998-05-16 1998-11-18 冯守华 天然珊瑚羟基磷灰石多孔生物材料的化学扩孔技术
CN102861588A (zh) * 2011-07-07 2013-01-09 中国石油化工股份有限公司 一种渣油加氢脱金属催化剂及其制备方法
CN102586811A (zh) * 2012-03-23 2012-07-18 国家钽铌特种金属材料工程技术研究中心 一种熔盐电解氧化物制取电容器级粉末的阴极块的制备方法
CN105521793A (zh) * 2014-10-22 2016-04-27 中国石油化工股份有限公司 一种加氢脱金属催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI-MIN WANG ET AL.: "Preparation of Hierarchical CuO Nanoparticles and Their Photocatalytic Activity", 《ADVANCED MATERIALS RESEARCH》 *
刘铁斌等: "不同含磷物种对氧化铝性质的影响", 《当代化工》 *
杨文龙等: "铜硅催化剂中层状硅酸铜的形成过程", 《化学工业与工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813290A (zh) * 2018-08-08 2020-02-21 中国石油天然气股份有限公司 层状硅酸铜复合物的制备方法

Also Published As

Publication number Publication date
CN108328622B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN104226360B (zh) 全结晶zsm-5分子筛催化剂及其制备方法和用途
US11590480B2 (en) Molecular sieve and its preparation method
CN102921456B (zh) 一种非均相催化剂及其制备方法和应用
CN105478161A (zh) 一种基于钛渣的scr脱硝催化剂及其制备方法
CN105312080B (zh) 一种用于氧化亚氮催化分解的分子筛催化剂改性的方法
CN110407223A (zh) Ssz-13分子筛及制备、scr催化剂及制备
CN105253895A (zh) 一种骨架中高含量Fe的Beta分子筛及其制备方法
CN108097304A (zh) Cu-SAPO-34分子筛催化剂的制备方法
CN107344720A (zh) 一种y型分子筛及其制备方法
CN105080549B (zh) 一种辛烯醛气相加氢制2‑乙基己醇催化剂及其制备方法
CN102050462B (zh) 一种提高水热稳定性的双组元改性分子筛及制备方法
CN108328622A (zh) 层状硅酸铜的扩孔方法
CN104415765A (zh) 一种Ru-Ni双金属基有序介孔碳催化剂的制备方法
CN112138631B (zh) 一种氧化石墨烯/活性炭复合材料的制备方法
CN104437474A (zh) 有序介孔碳材料负载铂催化剂及其在芳香硝基化合物催化氢化中的应用
CN103272630A (zh) 一种以钇掺杂sba-15为载体的镍基催化剂及其制备方法与应用
CN105712370A (zh) 一种具有双介孔结构的usy分子筛及其制备方法
CN104741140A (zh) 一种胺基功能化介孔二氧化硅微球负载型非均相催化剂及制备方法与应用
CN108686712A (zh) 改性α-氧化铝载体及其制备方法和银催化剂及应用
CN116814084A (zh) 一种缓释肌氨酸钠及其制备方法
CN103803573A (zh) 一种介孔二氧化硅分子筛的制备方法
CN106698461A (zh) 一种原位晶化制备纳米NaY分子筛的方法
CN100512960C (zh) 一种改性mcm-41/氧化铝复合载体材料的制备方法
CN106824296A (zh) 一种多孔石墨烯‑沸石分子筛催化剂载体及其制备方法
CN106927480A (zh) 一种y型分子筛的改性方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant