CN108264339A - 高性能旋磁镁锰铁氧体材料、制备方法及其应用 - Google Patents

高性能旋磁镁锰铁氧体材料、制备方法及其应用 Download PDF

Info

Publication number
CN108264339A
CN108264339A CN201711423703.5A CN201711423703A CN108264339A CN 108264339 A CN108264339 A CN 108264339A CN 201711423703 A CN201711423703 A CN 201711423703A CN 108264339 A CN108264339 A CN 108264339A
Authority
CN
China
Prior art keywords
performance
gyromagnet
ball milling
raw material
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711423703.5A
Other languages
English (en)
Inventor
王孚亮
张妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIZHAO YIXIN ELECTRONIC MATERIAL CO Ltd
Original Assignee
RIZHAO YIXIN ELECTRONIC MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIZHAO YIXIN ELECTRONIC MATERIAL CO Ltd filed Critical RIZHAO YIXIN ELECTRONIC MATERIAL CO Ltd
Priority to CN201711423703.5A priority Critical patent/CN108264339A/zh
Publication of CN108264339A publication Critical patent/CN108264339A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2625Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing magnesium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明属于磁芯材料技术领域,具体涉及一种高性能旋磁铁氧体材料,还涉及上述材料的制备方法,以及上述的材料其应用。高性能旋磁锰锌铁氧体材料,其特征在于,各原料的摩尔百分比如下:Fe2O3 59.33%;ZnO 17.89%;CuO 5.01%;MnO 4.86%;MgO 8.63%,TiO2 1.97%;ZrO2 1.49%;SiC 0.82%,μi=300‑400。本发明的有益效果在于,利用本发明的方法制备所得到的高性能的旋磁镁锰铁氧体材料,其性能显著的提高,其矫顽力Hc:20A·m‑1,比损耗系数tanδ/μi:32×10‑6,密度d:4.0g·cm‑3,ρ:106Ω·m。

Description

高性能旋磁镁锰铁氧体材料、制备方法及其应用
技术领域
本发明属于磁芯材料技术领域,具体涉及一种高性能旋磁铁氧体材料,还涉及上述材料的制备方法,以及上述的材料其应用。
背景技术
磁性材料近年来应用广泛,例如发动机、发电机、变压器、驱动器,医学仪器,小的元件例如传感器、存储器、天线,都需要应用到磁性材料。
旋磁铁氧体器件的特点是,在高频环境下具有优良的性能,非常适应当前科技发展对器件小型化、高性能、高集成度、低损耗的要求。
关于旋磁铁氧体的研究,目前有以下的专利披露:
CN104496448A提供了一种LiZnTi旋磁铁氧体材料及其制备方法,属于磁性材料制备领域。所述LiZnTi旋磁铁氧体材料由主料和玻璃相助烧剂构成,其中主料的重量百分比为98.8%~99.9%,玻璃相助烧剂的重量百分比为0.1%~1.2%,所述主料为Li0.43Zn0.27Ti0.12Fe2.18O4,所述玻璃相助烧剂由原料按照质量比BaO:Bi2O3:B2O3:Li2O:SiO2=2:2:2:3:1配制。本发明实现了LiZnTi铁氧体在低温(900~940℃)下的烧结和制备,且得到的LiZnTi旋磁铁氧体材料具有低烧结温度、低铁磁共振线宽和高饱和磁化强度。
CN104402427A提供了一种低矫顽力LiZnTi旋磁铁氧体材料及其制备方法,属于磁性材料技术领域。所述低矫顽力LiZnTi旋磁铁氧体材料由主料、玻璃相助烧剂和助熔剂构成,其中主料的重量百分比为99.5%~99.8%,玻璃相助烧剂的重量百分比为0.1%~0.4%,助熔剂重量百分比为0.1%,所述主料为Li0.42Zn0.28Ti0.13Fe2.17O4,所述玻璃相助烧剂由原料按照质量比ZnO:Bi2O3:SiO2,:Li2CO3=5:3:1:1配制,所述助熔剂为粒径小于100nm的Al2O3纳米粉。本发明实现了LiZnTi铁氧体在低温(900~940℃)下的烧结和制备,并得到矫顽力低的铁氧体材料。
关于旋磁镁锰铁氧体材料。因此需要发明一种高性能的旋磁镁锰铁氧体材料。
发明内容
为了解决上述的技术问题,本发明提供了一种高性能旋磁镁锰铁氧体材料,还涉及上述的铁氧体材料的制备方法以应用。
高性能旋磁锰锌铁氧体材料,各原料的摩尔百分比如下:
Fe2O3 59.33 %; ZnO 17.89 %;
CuO 5.01% MnO 4.86%;
MgO 8.63%, TiO2 1.97%
ZrO2 1.49% SiC 0.82%
μi=300-400。
各原料经过二次球磨后的比表面积在2.5~5.0m2/g 的范围内。
高性能旋磁镁锰铁氧体材料的制备方法,包括下述的步骤:
配料、一次球磨、预烧,二次球磨,造粒,压制成型,烧结;
具体步骤如下:
(1)配料:将原料Fe2O3、 ZnO 、 CuO 、 MnO 、 MgO按质量百分比称重,在搅拌机中混合均匀,各原料的重量百分比为: Fe2O3 56.3 %; ZnO 17.8 %; CuO 5.01% ;MnO 4.86%; MgO7.63%,
(2)一次球磨:将步骤(1)所得的搅拌均匀的物料置于球磨机,再加入ZrO2,ZrO2 的质量百分比为1.49%,研磨;研磨的功率为30-50z,一次球磨后的物料颗粒粒径小于或等于0.6μm占30%,大于0.6μm且小于0.8μm的占70%;
(3)预烧:将步骤(2)中所得的物料于700-800℃下预烧20-40min;
(4)一次烧结:再对步骤(3)中预烧后的物料烧结,烧结温度为900-1100℃,时间为0.5-4h;
(5)二次球磨:再将对步骤(4)中的原料进行球磨,加入SiC和TiO2 ,其加入量为 :TiO2 1.97%,SiC 0.82%;时间为4-6小时;
(6)成型:将步骤(5)所得的原料干燥后,加入粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件;
(7)二次烧结:将步骤(6)所得坯件置于烧结炉内烧结,在1200~1300℃下保温2~6 小时。粘合剂的用量为步骤(5)中所得原料重量的10%。
粘合剂为有机硅粘合剂。
二次球磨之后的物料粒径小于0.6μm的占80%。
二次烧结时,真空淬火,真空度为0.1mmHg,抽真空2小时。
本发明所提供的高性能旋磁铁氧体材料在隔离器、振荡器、滤波器、移相器、环形器中的应用,也是本发明所要保护的范围。
在采用普通方法研磨时,会遇到以下的技术问题:
磨不细:是传统超细研磨设备难以解决的问题之一,因为在介质磨设备中,要将物料研磨至微米或纳米级,必须使极小的研磨介质,而小尺寸介质的质量小,要提高介质的破碎功能,必须提高运动速度,而介质很难在密闭容器中获得更大的运动速度;
分不离,是传统研磨设备需要解决的另一个难题,一般所研磨的产品颗粒尺寸约为所用介质尺寸的1/1000,如果研磨的产品细度为100纳米,应该使用介质的尺寸为0.1mm,如此小尺寸介质与物料的机械分离(通过缝隙网)是十分困难;
本发明通过在二次球磨时加入SiC和TiO2,解决了上述的技术问题。
电阻率和晶粒状态在高频下影响功率铁氧体的功率损耗,提高电阻率,控制铁氧体的晶粒在最佳状态范围内(晶粒过小,P会变小,但是Ph会增大),都具能降低其功率损耗,粒径还会影响铁氧体的矫顽力,若粒径为一定值,通过加入晶界掺杂物改变锰锌铁氧体的微观结构,掺杂物的量对其起始磁导率和磁导率增量都有影响。随着掺杂量的增加,其起始磁导率降低,但是磁导率增量却大大增加。随着锌含量的增加,粒径减小,团聚现象加重。随着焙烧时最高温度的升高,颗粒的异常生长现象加重,有不规则的超大颗粒生成,并且孔状结构更加明显,这些结构上的变化会导致磁导率的降低和功率损耗的增大。
本发明的各原料的配比及方法,解决了上述的“随着焙烧时最高温度的升高,颗粒的异常生长现象加重,有不规则的超大颗粒生成,并且孔状结构更加明显,这些结构上的变化会导致磁导率的降低和功率损耗的增大”的问题。
本发明的有益效果在于,利用本发明的方法制备所得到的高性能的旋磁镁锰铁氧体材料,首先解决了其存在的磨不细、分不离、纯不够的技术难题,而且进一步的使其性能显著的提高,其矫顽力Hc:20A·m-1,比损耗系数tanδ/μi:32×10-6,密度d:4.0g·cm-3,ρ:106Ω·m。
附图说明
图1为本发明产品的衍射图;
图2为第一批次的样品磁导率和温度关系图;
图3为第一批次的样品磁导率和温度关系图。
具体实施方式
下面结合具体实施例对本发明作更进一步的说明,以便本领域的技术人员更了解本发明,但并不因此限制本发明。
实施例1
高性能旋磁镁锰铁氧体材料的制备方法,包括下述的步骤:
配料、一次球磨、预烧,二次球磨,造粒,压制成型,烧结;
按以下的摩尔百分比准备各原料:
Fe2O3 59.33 %; ZnO 17.89 %;
CuO 5.01% MnO 4.86%;
MgO 8.63%, TiO2 1.97%
ZrO2 1.49% SiC 0.82%
μi=300-400。
具体步骤如下:
(1)配料:将原料Fe2O3、 ZnO 、 CuO 、 MnO 、 MgO按质量百分比称重,在搅拌机中混合均匀,各原料的重量百分比为: Fe2O3 56.3 %; ZnO 17.8 %; CuO 5.01% ;MnO 4.86%; MgO7.63%,
(2)一次球磨:将步骤(1)所得的搅拌均匀的物料置于球磨机,再加入ZrO2,ZrO2 的质量百分比为1.49%,研磨;研磨的功率为30-50z,一次球磨后的物料颗粒粒径小于或等于0.6μm占30%,大于0.6μm且小于0.8μm的占70%;
(3)预烧:将步骤(2)中所得的物料于700-800℃下预烧20-40min;
(4)一次烧结:再对步骤(3)中预烧后的物料烧结,烧结温度为900-1100℃,时间为0.5-4h;
(5)二次球磨:再将对步骤(4)中的原料进行球磨,加入SiC和TiO2 ,其加入量为 :TiO2 1.97%,SiC 0.82%;时间为4小时;各原料经过二次球磨后的比表面积在2.5~5.0m2/g的范围内;二次球磨之后的物料粒径小于0.6μm的占80%;
(6)成型:将步骤(5)所得的原料干燥后,加入有机硅粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件;粘合剂的用量为步骤(5)中所得原料重量的10%;
(7)二次烧结:将步骤(6)所得坯件置于烧结炉内烧结,在1300℃下保温4 小时,二次烧结时,真空淬火,真空度为0.1mmHg,抽真空2小时。
顽力Hc用Magnet-Physik B-H测试系 统测试,电阻率用LCR2810测试,密度用阿基米德原理测试,其性能指标如下:
起始磁导率μi:1300±20%
饱和磁感应强度Bs:360mT(25℃)
居里温度Tc:160℃
剩余磁感应强度Br:170mT(25℃)
矫顽力Hc:20A·m-1
比损耗系数tanδ/μi:32×10-6
密度d:4.0g·cm-3
电阻率ρ:106Ω·m。
对比例
二次烧结中,不同的灼烧温度影响了产品的组成和晶粒尺寸,本实验中取T=400℃,600℃,800℃,1300℃,进行研究,以确定最佳的热处理条件。
从图1中可以看出,提高热处理温度出现单相铁氧体到产生杂质相,同时铁氧体相和杂质相的衍射峰逐渐变得狭窄尖锐,说明两相的晶粒尺寸增加,400℃时衍射峰不平滑,说明铁氧体结晶不完整,通过分析最终确定了热处理的温度为1300℃。
从图2中可以看出,本发明的材料,可以和具有负温系数的电容在很宽的温度范围内进行温度补偿。而含钛材料的加入,由于四价钛离子占据八面体位置,它阻碍了电子在八面体中的二价铁离子和三价铁离子之间迁移,使材料的电阻率提高。另一个原料是加入了氮化硅,使氮化硅集中在晶粒边界上形成高电阻层,从而提高了电阻率,降低了涡流损耗。
实施例2
高性能旋磁镁锰铁氧体材料的制备方法,包括下述的步骤:
配料、一次球磨、预烧,二次球磨,造粒,压制成型,烧结;
按以下的摩尔百分比准备各原料:
Fe2O3 59.33 %; ZnO 17.89 %;
CuO 5.01% MnO 4.86%;
MgO 8.63%, TiO2 1.97%
ZrO2 1.49% SiC 0.82%
μi=300-400。
具体步骤如下:
(1)配料:将原料Fe2O3、 ZnO 、 CuO 、 MnO 、 MgO按质量百分比称重,在搅拌机中混合均匀,各原料的重量百分比为: Fe2O3 56.3 %; ZnO 17.8 %; CuO 5.01% ;MnO 4.86%; MgO7.63%,
(2)一次球磨:将步骤(1)所得的搅拌均匀的物料置于球磨机,再加入ZrO2,ZrO2 的质量百分比为1.49%,研磨;研磨的功率为30-50z,一次球磨后的物料颗粒粒径小于或等于0.6μm占30%,大于0.6μm且小于0.8μm的占70%;
(3)预烧:将步骤(2)中所得的物料于700-800℃下预烧20-40min;
(4)一次烧结:再对步骤(3)中预烧后的物料烧结,烧结温度为900-1100℃,时间为0.5-4h;
(5)二次球磨:再将对步骤(4)中的原料进行球磨,加入SiC和TiO2 ,其加入量为 :TiO2 1.97%,SiC 0.82%;时间为6小时;各原料经过二次球磨后的比表面积在2.5~5.0m2/g的范围内;二次球磨之后的物料粒径小于0.6μm的占80%;
(6)成型:将步骤(5)所得的原料干燥后,加入有机硅粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件;粘合剂的用量为步骤(5)中所得原料重量的10%;
(7)二次烧结:将步骤(6)所得坯件置于烧结炉内烧结,在1200~1300℃下保温6 小时,二次烧结时,真空淬火,真空度为0.1mmHg,抽真空2小时。

Claims (8)

1.高性能旋磁锰锌铁氧体材料,其特征在于,各原料的摩尔百分比如下:
Fe2O3 59.33 %; ZnO 17.89 %;
CuO 5.01% MnO 4.86%;
MgO 8.63%, TiO2 1.97%
ZrO2 1.49% SiC 0.82%
μi=300-400。
2.如权利要求1所述的高性能旋磁镁锰铁氧体材料,其特征在于,各原料经过二次球磨后的比表面积在2.5~5.0m2/g 的范围内。
3.如权利要求1所述的高性能旋磁镁锰铁氧体材料的制备方法,包括下述的步骤:
配料、一次球磨、预烧,二次球磨,造粒,压制成型,烧结;
具体步骤如下:
(1)配料:将原料Fe2O3、 ZnO 、 CuO 、 MnO 、 MgO按质量百分比称重,在搅拌机中混合均匀,各原料的重量百分比为: Fe2O3 56.3 %; ZnO 17.8 %; CuO 5.01% ;MnO 4.86%; MgO7.63%,
(2)一次球磨:将步骤(1)所得的搅拌均匀的物料置于球磨机,再加入ZrO2,ZrO2 的质量百分比为1.49%,研磨;研磨的功率为30-50z,一次球磨后的物料颗粒粒径小于或等于0.6μm占30%,大于0.6μm且小于0.8μm的占70%;
(3)预烧:将步骤(2)中所得的物料于700-800℃下预烧20-40min;
(4)一次烧结:再对步骤(3)中预烧后的物料烧结,烧结温度为900-1100℃,时间为0.5-4h;
(5)二次球磨:再将对步骤(4)中的原料进行球磨,加入SiC和TiO2 ,其加入量为 : TiO2 1.97%,SiC 0.82%;时间为4-6小时;
(6)成型:将步骤(5)所得的原料干燥后,加入粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件;
(7)二次烧结:将步骤(6)所得坯件置于烧结炉内烧结,在1200~1300℃下保温2~6 小时。
4.如权利要求3所述的高性能旋磁镁锰铁氧体材料的制备方法,其特征在于,粘合剂的用量为步骤(5)中所得原料重量的10%。
5.如权利要求3所述的高性能旋磁镁锰铁氧体材料的制备方法,其特征在于,粘合剂为有机硅粘合剂。
6.如权利要求3所述的高性能旋磁镁锰铁氧体材料的制备方法,其特征在于,二次球磨之后的物料粒径小于0.6μm的占80%。
7.如权利要求3所述的高性能旋磁镁锰铁氧体材料的制备方法,其特征在于,二次烧结时,真空淬火,真空度为0.1mmHg,抽真空2小时。
8.如权利要求1所述的高性能旋磁铁氧体材料在隔离器、振荡器、滤波器、移相器、环形器中的应用。
CN201711423703.5A 2017-12-25 2017-12-25 高性能旋磁镁锰铁氧体材料、制备方法及其应用 Pending CN108264339A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711423703.5A CN108264339A (zh) 2017-12-25 2017-12-25 高性能旋磁镁锰铁氧体材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711423703.5A CN108264339A (zh) 2017-12-25 2017-12-25 高性能旋磁镁锰铁氧体材料、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN108264339A true CN108264339A (zh) 2018-07-10

Family

ID=62772428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711423703.5A Pending CN108264339A (zh) 2017-12-25 2017-12-25 高性能旋磁镁锰铁氧体材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108264339A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109326406A (zh) * 2018-11-14 2019-02-12 岳西县鸿腾电子有限公司 一种开关电源变压器用电感铁氧体磁芯及其制备方法
CN109830368A (zh) * 2018-10-08 2019-05-31 柳州凯通新材料科技有限公司 一种高速电机电芯粉末造粒的工艺
CN112299836A (zh) * 2020-11-25 2021-02-02 南通冠优达磁业有限公司 一种高频低损耗软磁铁氧体材料及制备方法
CN113321497A (zh) * 2021-06-30 2021-08-31 西南科技大学 一种大晶粒尺寸的LiZnTi铁氧体及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651353A (zh) * 2004-12-15 2005-08-10 横店集团东磁有限公司 软磁Mg-Zn铁氧体材料及其低温烧结工艺
CN100589215C (zh) * 2007-12-29 2010-02-10 电子科技大学 NiZn系铁氧体材料及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651353A (zh) * 2004-12-15 2005-08-10 横店集团东磁有限公司 软磁Mg-Zn铁氧体材料及其低温烧结工艺
CN100589215C (zh) * 2007-12-29 2010-02-10 电子科技大学 NiZn系铁氧体材料及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
周静: "《近代材料科学研究技术进展》", 31 December 2012, 武汉理工大学出版社 *
王运正: "《现代锰冶金》", 30 September 2015, 冶金工业出版社 *
罗绍华: "《材料科学研究与工程技术系列丛书 功能材料》", 31 December 2014, 东北大学出版社 *
谭学谦等: "TiO2 掺杂对高频MnZn 功率铁氧体显微结构及磁性能的影响", 《磁性材料及器件》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830368A (zh) * 2018-10-08 2019-05-31 柳州凯通新材料科技有限公司 一种高速电机电芯粉末造粒的工艺
CN109326406A (zh) * 2018-11-14 2019-02-12 岳西县鸿腾电子有限公司 一种开关电源变压器用电感铁氧体磁芯及其制备方法
CN112299836A (zh) * 2020-11-25 2021-02-02 南通冠优达磁业有限公司 一种高频低损耗软磁铁氧体材料及制备方法
CN113321497A (zh) * 2021-06-30 2021-08-31 西南科技大学 一种大晶粒尺寸的LiZnTi铁氧体及其制备方法

Similar Documents

Publication Publication Date Title
CN108264339A (zh) 高性能旋磁镁锰铁氧体材料、制备方法及其应用
Liu et al. Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force
Sadhana et al. Structural and magnetic properties of Dy3+ doped Y3Fe5O12 for microwave devices
CN101152981B (zh) 纳米材料在铁氧体中的应用
CN110323027A (zh) 铁氧体烧结磁铁及铁氧体烧结磁铁的制造方法
KR101913024B1 (ko) 페라이트 소결 자석
CN108558383A (zh) NiZn铁氧体材料及制备方法
CN109311762A (zh) 铁氧体磁性材料和铁氧体烧结磁体
Nazlan et al. Indium-substitution and indium-less case effects on structural and magnetic properties of yttrium-iron garnet
JP4858941B2 (ja) 磁性体材料の製造方法
JP4647731B2 (ja) 磁石粉末、焼結磁石、それらの製造方法、ボンディッド磁石および磁気記録媒体
JP3108804B2 (ja) Mn−Znフェライト
JP2005330126A (ja) MnZnフェライト及びその製造方法
JP3506174B2 (ja) フェライト磁石及びその粉末の製造方法
JP4301539B2 (ja) 乾式成形焼結磁石の製造方法
JP2610445B2 (ja) 軟磁性六方晶フェライトの製造方法
WO2022070634A1 (ja) MnZn系フェライト、及びその製造方法
JP2717815B2 (ja) 軟磁性六方晶フェライト焼結体の製造方法
JPH0766027A (ja) ストロンチウムフェライト磁石の製造方法
JPH01112705A (ja) 酸化物永久磁石の製造方法
JP3115466B2 (ja) 六方晶フェライト粒子の製造方法
JPH11307331A (ja) フェライト磁石
CN106373696A (zh) 铁基纳米颗粒掺杂磁耦合粉末材料制备方法
JPH11251126A (ja) 酸化物永久磁石およびその製造方法
KR102156117B1 (ko) 상온 다강성 물질, 그의 제조방법 및 그를 포함하는 전자장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180710

RJ01 Rejection of invention patent application after publication