CN108249927A - 一种fcm芯块无压致密化烧结方法 - Google Patents

一种fcm芯块无压致密化烧结方法 Download PDF

Info

Publication number
CN108249927A
CN108249927A CN201711392439.3A CN201711392439A CN108249927A CN 108249927 A CN108249927 A CN 108249927A CN 201711392439 A CN201711392439 A CN 201711392439A CN 108249927 A CN108249927 A CN 108249927A
Authority
CN
China
Prior art keywords
fcm
pellets
sintering
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711392439.3A
Other languages
English (en)
Inventor
刘文涛
周续
董秋实
李宗书
孟莹
郝若彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China North Nuclear Fuel Co Ltd
Original Assignee
China North Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China North Nuclear Fuel Co Ltd filed Critical China North Nuclear Fuel Co Ltd
Priority to CN201711392439.3A priority Critical patent/CN108249927A/zh
Publication of CN108249927A publication Critical patent/CN108249927A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/64Ceramic dispersion fuel, e.g. cermet
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及核燃料芯块制备技术领域,具体公开了一种FCM芯块无压致密化烧结方法,包括步骤1,助烧剂添加;步骤2,FCM芯块生坯成型;步骤3,FCM芯块无压烧结。本发明与现有常规FCM烧结工艺相比,通过助烧剂的添加,实现了FCM芯块的无压致密化烧结,进而大大降低了FCM芯块的制备难度以及生产成本。同时,采用本发明方法能够大批量地进行FCM芯块的无压致密化烧结,且烧结完的芯块内部的TRISO颗粒结构保持完整,均匀分布于SiC基体内。

Description

一种FCM芯块无压致密化烧结方法
技术领域
本发明属于核燃料芯块制备技术领域,具体涉及一种FCM芯块无压致密化烧结方法。
背景技术
FCM(Fully Ceramic Microencapsulated,全陶瓷微封装)燃料芯块作为一种重要的容错燃料,其概念由美国橡树岭国家实验室在2012年首先提出,是基于一种将三维结构同性TRISO(tri-structural isotropic)带涂层的颗粒嵌入SiC基体的燃料芯块。FCM芯块将TRISO颗粒封装在SiC基体中,TRISO颗粒为由内到外依次包覆疏松碳层、内致密碳层、SiC层和外致密碳层的UO2燃料颗粒。由于SiC基体兼具高稳定性和高热导率,同时与冷却剂有很好的兼容性,因此可很好地包容UO2燃料芯块释放出的裂变气体和腐蚀性裂变产物,加之TRISO颗粒本身即具有对裂解产物的多层防护,从而使整个核燃料元件适用于高燃耗反应堆,并在发生事故时容错性高,安全有保证。因而该燃料即是为轻水堆中使用的高燃耗铀所设计,优化反应堆通常及瞬时的操作性。
目前FCM芯块的烧结工艺一般为热压烧结,热压烧结只适用于小批量的实验室研究,不能进行大批量的应用,且烧结完的芯块表面会有石墨残留,不容易去除。
发明内容
本发明的目的在于提供一种FCM芯块无压致密化烧结方法,实现FCM芯块的无压致密化烧结。
本发明的技术方案如下:
一种FCM芯块无压致密化烧结方法,包括以下步骤:
步骤1,助烧剂添加;
步骤1.1,在SiC基体中添加助烧剂,添加量为6±0.5wt%,所述的助烧剂由几种稀土氧化物混合组成;
步骤1.2,进行湿法球磨,采用无水乙醇作为分散剂,不锈钢球作为研磨球,球料比为3~3.5:1,进行球磨2~3h,球磨后的粉末进行干燥处理,并对干燥后的粉末进行破碎、筛分,制得成型原料;
步骤2,FCM芯块生坯成型;
采用钢质模具进行双向成型,或者采用橡胶模具进行冷等静压成型;
步骤3,FCM芯块无压烧结;
通过高温烧结实现SiC收缩形成陶瓷,进而制备出全陶瓷封装芯块,烧结气氛为真空。
步骤3中,FCM芯块无压烧结的烧结制度如下:
(1)1~2小时由室温升至300~350℃,保温1~1.5小时;
(2)0.5~1小时升温至600~650℃,保温1~1.5小时;
(3)1.5~2小时升温至1400~1450℃,保温1~1.5小时;
(4)0.5~1小时升温至1700~1750℃,保温1~1.5小时;
(5)0.5~1小时升温至1950~2000℃,保温2~3小时;
(6)随炉冷却。
步骤2,采用钢质模具成型压力为2.0~3.0kN,升压速率为0.8~1.0KN/s,保压时间为10~15s。
步骤2,采用橡胶模具成型压强为160~250MPa,保压时间为10~15s。
步骤1.1中所述的助烧剂在高温下形成液相,从而促进碳化硅的烧结并实现材料的致密化。
步骤1.1,所述的助烧剂由Al2O3和Y2O3组成,其中Al2O3:Y2O3=1:1.5~4。
所得FCM芯块密度≥3.0g/cm3,FCM芯块内部的TRISO颗粒结构保持完整,均匀分布于SiC基体内。
本发明的显著效果在于:
(1)本发明与现有常规FCM烧结工艺相比,通过助烧剂的添加,实现了FCM芯块的无压致密化烧结,进而大大降低了FCM芯块的制备难度以及生产成本。
(2)采用本发明方法能够大批量地进行FCM芯块的无压致密化烧结,且烧结完的芯块内部的TRISO颗粒结构保持完整,均匀分布于SiC基体内。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
一种FCM芯块无压致密化烧结方法,包括以下步骤:
步骤1,助烧剂添加。
步骤1.1,在SiC基体中添加助烧剂,添加量为6±0.5wt%,所述的助烧剂由几种稀土氧化物混合组成,例如由Al2O3和Y2O3组成,其中Al2O3:Y2O3=1:1.5~4。助烧剂在高温下很容易形成液相,从而促进碳化硅的烧结并实现材料的致密化。
步骤1.2,进行湿法球磨,采用无水乙醇作为分散剂,不锈钢球作为研磨球,球料比为3~3.5:1,进行球磨2~3h,球磨后的粉末进行干燥处理,并对干燥后的粉末进行破碎、筛分,制得成型原料。
步骤2,FCM芯块生坯成型
采用钢质模具进行双向成型,或者采用橡胶模具进行冷等静压成型。其中,采用钢质模具成型压力为2.0~3.0kN,升压速率为0.8~1.0KN/s,保压时间为10~15s;采用橡胶模具成型压强为160~250MPa,保压时间为10~15s。
步骤3,FCM芯块无压烧结
通过高温烧结实现SiC收缩形成陶瓷,进而制备出全陶瓷封装芯块,烧结气氛为真空,烧结制度如下:
(1)1~2小时由室温升至300~350℃,保温1~1.5小时;
(2)0.5~1小时升温至600~650℃,保温1~1.5小时;
(3)1.5~2小时升温至1400~1450℃,保温1~1.5小时;
(4)0.5~1小时升温至1700~1750℃,保温1~1.5小时;
(5)0.5~1小时升温至1950~2000℃,保温2~3小时;
(6)随炉冷却。
所得FCM芯块密度≥3.0g/cm3,FCM芯块内部的TRISO颗粒结构保持完整,均匀分布于SiC基体内。
实施例一
一种FCM芯块无压致密化烧结方法,包括以下步骤:
步骤1,助烧剂添加
步骤1.1,在SiC基体中添加Y2O3-Al2O3助烧剂,Y2O3与Al2O3的质量比为7:3,添加量为6±0.5wt%;
步骤1.2,进行湿法球磨,采用无水乙醇作为分散剂,不锈钢球作为研磨球,球料比为3:1,进行球磨2h,对球磨后的粉末进行干燥处理,并对干燥后的粉末进行破碎、筛分,制得成型原料;
步骤2,FCM生坯成型
采用钢质模具进行双向成型,成型压力为2.0kN,升压速率为0.8KN/s,保压时间为10s。
步骤3,FCM芯块的无压烧结
通过高温烧结实现SiC收缩形成陶瓷,进而制备出全陶瓷封装芯块,烧结气氛为真空,烧结制度如下所示:
(1)1小时由室温升至300℃,保温1小时;
(2)0.5小时升温至600℃,保温1小时;
(3)2小时升温至1400℃,保温1小时;
(4)0.5小时升温至1700℃,保温1小时;
(5)0.5小时升温至1950℃,保温2小时;
(6)随炉冷却。
所得FCM芯块密度≥3.0g/cm3,FCM芯块内部的TRISO颗粒结构保持完整,均匀分布于SiC基体内。
实施例二
一种FCM芯块无压致密化烧结方法,包括以下步骤:
步骤1,助烧剂添加
步骤1.1,在SiC基体中添加Y2O3-Al2O3助烧剂,Y2O3与Al2O3的质量比为4:1,添加量为6±0.5wt%;
步骤1.2,进行湿法球磨,采用无水乙醇作为分散剂,不锈钢球作为研磨球,球料比为3.5:1,进行球磨2.5h,对球磨后的粉末进行干燥处理,并对干燥后的粉末进行破碎、筛分,制得成型原料;
步骤2,FCM生坯成型
采用钢质模具进行双向成型,成型压力为2.6kN,升压速率为1.0KN/s,保压时间为13s。
步骤3,FCM芯块的无压烧结
通过高温烧结实现SiC收缩形成陶瓷,进而制备出全陶瓷封装芯块,烧结气氛为真空,烧结制度如下所示:
(1)1小时由室温升至320℃,保温1.5小时;
(2)1小时升温至650℃,保温1.5小时;
(3)1.5小时升温至1450℃,保温1小时;
(4)1小时升温至1750℃,保温1小时;
(5)1小时升温至2000℃,保温2.5小时;
(6)随炉冷却。
所得FCM芯块密度≥3.0g/cm3,FCM芯块内部的TRISO颗粒结构保持完整,均匀分布于SiC基体内。
实施例三
一种FCM芯块无压致密化烧结方法,包括以下步骤:
步骤1,助烧剂添加
步骤1.1,在SiC基体中添加Y2O3-Al2O3助烧剂,Y2O3与Al2O3的质量比为3:2,添加量为6±0.5wt%;
步骤1.2,进行湿法球磨,采用无水乙醇作为分散剂,不锈钢球作为研磨球,球料比为3:1,进行球磨3h,对球磨后的粉末进行干燥处理,并对干燥后的粉末进行破碎、筛分,制得成型原料;
步骤2,FCM生坯成型
采用橡胶模具进行冷等静压成型,成型压强为200MPa,保压时间为15s。
步骤3,FCM芯块的无压烧结
通过高温烧结实现SiC收缩形成陶瓷,进而制备出全陶瓷封装芯块,烧结气氛为真空,烧结制度如下所示:
(1)2小时由室温升至350℃,保温1.5小时;
(2)1小时升温至620℃,保温1.5小时;
(3)1.5小时升温至1400℃,保温1.5小时;
(4)1小时升温至1750℃,保温1小时;
(5)0.5小时升温至1950℃,保温3小时;
(6)随炉冷却。
所得FCM芯块密度≥3.0g/cm3,FCM芯块内部的TRISO颗粒结构保持完整,均匀分布于SiC基体内。上面对本发明的实施例作了详细说明,上述实施方式仅为本发明的最优实施例,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (7)

1.一种FCM芯块无压致密化烧结方法,其特征在于:包括以下步骤:
步骤1,助烧剂添加;
步骤1.1,在SiC基体中添加助烧剂,添加量为6±0.5wt%,所述的助烧剂由几种稀土氧化物混合组成;
步骤1.2,进行湿法球磨,采用无水乙醇作为分散剂,不锈钢球作为研磨球,球料比为3~3.5:1,进行球磨2~3h,球磨后的粉末进行干燥处理,并对干燥后的粉末进行破碎、筛分,制得成型原料;
步骤2,FCM芯块生坯成型;
采用钢质模具进行双向成型,或者采用橡胶模具进行冷等静压成型;
步骤3,FCM芯块无压烧结;
通过高温烧结实现SiC收缩形成陶瓷,进而制备出全陶瓷封装芯块,烧结气氛为真空。
2.如权利要求1所述的一种FCM芯块无压致密化烧结方法,其特征在于:步骤3中,FCM芯块无压烧结的烧结制度如下:
(1)1~2小时由室温升至300~350℃,保温1~1.5小时;
(2)0.5~1小时升温至600~650℃,保温1~1.5小时;
(3)1.5~2小时升温至1400~1450℃,保温1~1.5小时;
(4)0.5~1小时升温至1700~1750℃,保温1~1.5小时;
(5)0.5~1小时升温至1950~2000℃,保温2~3小时;
(6)随炉冷却。
3.如权利要求2所述的一种FCM芯块无压致密化烧结方法,其特征在于:步骤2,采用钢质模具成型压力为2.0~3.0kN,升压速率为0.8~1.0KN/s,保压时间为10~15s。
4.如权利要求2所述的一种FCM芯块无压致密化烧结方法,其特征在于:步骤2,采用橡胶模具成型压强为160~250MPa,保压时间为10~15s。
5.如权利要求1~4任一项所述的一种FCM芯块无压致密化烧结方法,其特征在于:步骤1.1中所述的助烧剂在高温下形成液相,从而促进碳化硅的烧结并实现材料的致密化。
6.如权利要求5所述的一种FCM芯块无压致密化烧结方法,其特征在于:步骤1.1,所述的助烧剂由Al2O3和Y2O3组成,其中Al2O3:Y2O3=1:1.5~4。
7.如权利要求6所述的一种FCM芯块无压致密化烧结方法,其特征在于:所得FCM芯块密度≥3.0g/cm3,FCM芯块内部的TRISO颗粒结构保持完整,均匀分布于SiC基体内。
CN201711392439.3A 2017-12-21 2017-12-21 一种fcm芯块无压致密化烧结方法 Pending CN108249927A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711392439.3A CN108249927A (zh) 2017-12-21 2017-12-21 一种fcm芯块无压致密化烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711392439.3A CN108249927A (zh) 2017-12-21 2017-12-21 一种fcm芯块无压致密化烧结方法

Publications (1)

Publication Number Publication Date
CN108249927A true CN108249927A (zh) 2018-07-06

Family

ID=62723663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711392439.3A Pending CN108249927A (zh) 2017-12-21 2017-12-21 一种fcm芯块无压致密化烧结方法

Country Status (1)

Country Link
CN (1) CN108249927A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112735618A (zh) * 2020-12-30 2021-04-30 中核北方核燃料元件有限公司 一种SiC基UCO核芯燃料芯块制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981318A (zh) * 2017-04-13 2017-07-25 中国工程物理研究院材料研究所 一种惰性基弥散芯块燃料及其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981318A (zh) * 2017-04-13 2017-07-25 中国工程物理研究院材料研究所 一种惰性基弥散芯块燃料及其制备方法和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112735618A (zh) * 2020-12-30 2021-04-30 中核北方核燃料元件有限公司 一种SiC基UCO核芯燃料芯块制备方法
CN112735618B (zh) * 2020-12-30 2022-06-28 中核北方核燃料元件有限公司 一种SiC基UCO核芯燃料芯块制备方法

Similar Documents

Publication Publication Date Title
CN106518089B (zh) 一种高性能大尺寸氮化硅陶瓷材料的制备方法
CN108335760B (zh) 一种高铀装载量弥散燃料芯块的制备方法
JP4559534B2 (ja) ガス冷却式高温ペブルベッド原子炉(htr)用の球状燃料要素及びその製造方法
CN103466568B (zh) 氮化铀燃料粉末和芯块的制备方法
CN105130438B (zh) 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN108249925A (zh) 一种全陶瓷微封装燃料芯块的制备方法
CN103601473B (zh) 一种高纯度、高致密度氧化镁陶瓷
CN106630985B (zh) 一种氚增殖用纳米结构正硅酸锂陶瓷小球及其制备方法
CN110157934B (zh) 一种钨或钼基二氧化铀燃料芯块的制造方法
CN101734918B (zh) 一种致密富10b碳化硼陶瓷及其制备方法
CN110156475A (zh) 一种碳氮化铀锆粉末的微波合成方法
GB2581903A (en) Uranium carbide pellet, preparation method thereof, and fuel rod
CN102786304B (zh) 一种热压碳化硼陶瓷的制备方法
CN115650728A (zh) 一种单晶热场用石墨的制备方法
CN105499582A (zh) 一种高硼含量的硼不锈钢的制备方法
CN108417278B (zh) 一种高辐照稳定性的金属型燃料芯块的制备方法
CN108249927A (zh) 一种fcm芯块无压致密化烧结方法
CN108461162B (zh) 一种二氧化铀/钼金属陶瓷复合燃料及其制备方法
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
KR20170101083A (ko) 큰 결정립을 갖는 우라늄산화물 핵연료 소결체 조성물 및 제조 방법
CN105924169A (zh) 一种以废旧uo2粉料为原料的高密度uo2芯块制备方法
CN103113108B (zh) 一种碳化硼陶瓷的制备方法
CN107879735B (zh) 一种中高温低膨胀系数镁橄榄石-锂辉石复合陶瓷材料的制备方法
CN110085338B (zh) UO2/Cr复合燃料芯块的制备方法以及制备装置
CN113213936B (zh) 一种陶瓷粉掺杂改性自烧结石墨复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180706