CN108231589A - 纳米线半导体器件中内间隔的形成 - Google Patents

纳米线半导体器件中内间隔的形成 Download PDF

Info

Publication number
CN108231589A
CN108231589A CN201711190421.5A CN201711190421A CN108231589A CN 108231589 A CN108231589 A CN 108231589A CN 201711190421 A CN201711190421 A CN 201711190421A CN 108231589 A CN108231589 A CN 108231589A
Authority
CN
China
Prior art keywords
oxide
nano
sige
nano wire
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711190421.5A
Other languages
English (en)
Other versions
CN108231589B (zh
Inventor
K·沃斯汀
L·维特斯
H·梅尔腾斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interuniversitair Microelektronica Centrum vzw IMEC
Original Assignee
Interuniversitair Microelektronica Centrum vzw IMEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interuniversitair Microelektronica Centrum vzw IMEC filed Critical Interuniversitair Microelektronica Centrum vzw IMEC
Publication of CN108231589A publication Critical patent/CN108231589A/zh
Application granted granted Critical
Publication of CN108231589B publication Critical patent/CN108231589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66553Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)

Abstract

一种在半导体器件的纳米线之间形成内间隔的方法(100)。该方法(100)包括:‑提供(110)包含至少一个鳍片的半导体结构,所述至少一个鳍片包含交替的牺牲材料(4)层和纳米线材料(3)层的堆叠,所述半导体结构包含部分覆盖至少一个鳍片的层堆叠的伪栅极(7);‑至少除去(120)紧邻伪栅极的牺牲材料(4);‑使紧邻伪栅极的牺牲材料(4)和纳米线材料(3)氧化(130),分别产生间隔氧化物(9)和纳米线氧化物(10);‑除去(140)纳米线氧化物(10),直到纳米线氧化物(10)被完全除去,至少一部分间隔氧化物(9)被保留,其中保留的间隔氧化物(9)是内间隔。

Description

纳米线半导体器件中内间隔的形成
技术领域
本发明涉及纳米线半导体器件领域。本发明更具体涉及在半导体器件中的纳米线之间形成内间隔的方法。
背景技术
形成堆叠纳米线是降低半导体器件特征尺寸的重要步骤。
必须解决的一个重要问题是减小由于晶体管栅极和源漏区之间的重叠引起的寄生电容。
为了最大程度地减小寄生电容,形成内部间隔必须是纳米线集成方案中的一个集成部分。
但是,形成内间隔可能是耗费工艺和/或材料的。因此,形成内间隔的方法还有改善的空间。
发明内容
本发明实施方式的一个目的是提供在半导体器件的纳米线之间形成内间隔的良好方法。
上述目的是通过本发明所述的一种方法和器件实现的。
本发明的实施方式涉及在半导体器件的纳米线之间形成内间隔的方法。该方法包括:
-提供包含至少一个鳍片的半导体结构,所述至少一个鳍片包含交替的牺牲材料层和纳米线材料层的堆叠,该半导体结构包含部分覆盖至少一个鳍片的层堆叠的伪栅极,
-至少除去紧邻伪栅极的牺牲材料,
-使紧邻伪栅极的牺牲材料和纳米线材料氧化,分别产生间隔氧化物和纳米线氧化物,
-除去纳米线氧化物,直到纳米线氧化物被完全除去,至少一部分间隔氧化物被保留,其中保留的间隔氧化物是内间隔。
本发明实施方式的一个优点在于首先进行氧化步骤,产生纳米线氧化物和间隔氧化物。在本发明的实施方式中,形成具有不同材料性质的氧化物。这些实施方式的优点在于纳米线氧化物和间隔氧化物的材料性质上的差异被利用,以选择性地除去纳米线氧化物和间隔氧化物。在本发明的实施方式中,纳米线氧化物以比间隔氧化物更高的速率除去。本发明实施方式的一个优点在于保留的间隔氧化物是内间隔。有利的是无需添加额外的材料以形成内间隔。因此,内间隔存在于纳米线材料的末端。本发明实施方式的一个优点在于用于制备栅极全包围晶体管的内间隔的集成方案被简化。本发明实施方式的一个优点在于通过提供内间隔降低源极/漏极区域和栅极之间的寄生电容。例如,晶体管可以是Ge晶体管或Si晶体管。本发明实施方式的优点在于,可以在源极/漏极形成工艺过程中以及在替换金属栅极(RMG)工艺过程中进行依据本发明实施方式的内间隔的形成。在本发明的实施方式中,围绕纳米线的牺牲材料和纳米线材料被选择性氧化,其中与间隔氧化物的生长速率相比,纳米线氧化物的生长速率是有限的。这些实施方式的优点在于,由于选择性氧化,所得纳米线氧化物的厚度小于间隔氧化物的厚度。这意味着在除去纳米线氧化物的过程中,必须除去的纳米线氧化物较少,因此要除去的间隔氧化物也较少。本发明实施方式的优点在于,通过在纳米线释放之前形成内间隔,内间隔实际上可用作线释放蚀刻(wire release etch)的侧向终止层,因此提供控制与通道材料接触的最终替换金属栅极临界尺寸的方法。
在本发明的实施方式中,该方法包括除去紧邻伪栅极的纳米线材料的步骤,由此形成沟槽,并且该步骤在氧化牺牲材料和纳米线材料之前。
在本发明的实施方式中,提供一种半导体结构包括提供一种纳米线材料是Ge且牺牲层材料是SiGe的半导体结构。
在本发明的实施方式中,SiGe的氧化产生与SiGe牺牲层相比富含Si的SiGe氧化物,或者产生纯SiO2,具体取决于SiGe的Ge浓度和氧化条件。本发明实施方式的一个优点在于该氧化物不溶于水或HCl。在本发明的实施方式中,Ge纳米线材料氧化为Ge氧化物。本发明实施方式的优点在于该氧化物溶于水或HCl。因此,选择性氧化物去除是可行的。
在本发明的实施方式中,提供一种半导体结构包括提供一种其中SiGe的Ge含量低于80%的半导体结构。
本发明实施方式的一个优点在于SiGe中的Ge含量低于80%。在本发明实施方式中,Ge含量例如可以是70-75%。通过降低Ge浓度,所得间隔氧化物中锗氧化物的浓度也降低。这导致间隔氧化物更低的溶解度,因此导致选择性除去纳米线氧化物和间隔氧化物时更好的选择性。
在本发明的实施方式中,使用水性非氧化溶液作为蚀刻剂来除去纳米线氧化物。
本发明实施方式的优点在于水可用作蚀刻剂。这可以是例如去离子水(DIW)。本发明实施方式的优点在于可使用无HF的水性溶液。不仅可以形成内间隔而且避免了例如STI氧化物和间隔物的损失。在本发明的实施方式中,还可以通过HCl除去Ge氧化物。
在本发明的实施方式中,提供一种半导体结构包括提供一种纳米线材料是Si且牺牲层材料是SiGe的半导体结构。
在本发明的实施方式中,使用HF作为蚀刻剂来除去纳米线氧化物。
在本发明的实施方式中,通过在氧化牺牲材料和纳米线材料时调节氧化步骤的参数来控制间隔氧化物中的Ge含量。
本发明实施方式的一个优点在于,通过控制SiGe氧化物中的Ge含量,可以控制SiGe氧化物(在水中)的溶解度。通过降低SiGe氧化物中的Ge含量,降低SiGe氧化物(在水中)的溶解度。在本发明的实施方式中,纳米线材料是Ge,牺牲材料是SiGe。在这些实施方式中,有利的是在不存在HF的情况下可以进行基于水的选择性蚀刻。当使用水性非氧化溶液作为蚀刻材料时,氧化物去除的选择性得以改善。在本发明的实施方式中,由于Ge浓缩,SiGe氧化物中的Ge含量小于或等于SiGe层中的Ge含量。在纳米线材料是Ge且牺牲层材料是SiGe的情况中,可通过合适的氧化条件或通过在氧化后施加额外的退火步骤来降低SiGe氧化物中的Ge含量。在纳米线材料是Si且牺牲层材料是SiGe的情况中,也可通过退火来降低SiGe氧化物中的Ge含量。这样可以提高材料对基于HF的蚀刻的耐受性。
在本发明的实施方式中,该方法在牺牲材料和纳米线材料氧化后包括退火步骤。进行该退火步骤是为控制SiGe氧化物中的Ge含量。
本发明实施方式的一个优点在于,利用退火步骤,通过Ge氧化物转化为Si氧化物可进一步降低Ge含量。这主要发生在SiGe氧化物中,其中当需要附近存在Si时,GeO2转化为SiO2。本发明实施方式的一个优点在于,通过退火,可以降低SiGe氧化物在水中的溶解度,从而提高氧化物去除的选择性。
本发明特定和优选的方面在所附独立和从属权利要求中阐述。可以将从属权利要求中的特征与独立权利要求中的特征以及其它从属权利要求中的特征进行适当组合,而并不仅限于权利要求书中明确所述的情况。
本发明的这些和其它方面将参考下文所述的实施方式披露并阐明。
附图的简要说明
图1示意性地显示依据本发明实施方式的具有嵌入的S/D的Ge纳米线的内间隔的形成。
图2示意性地显示依据本发明实施方式的具有凸起的S/D的Ge纳米线的内间隔的形成。
图3示意性地显示依据本发明实施方式的具有嵌入的S/D的纳米线的内间隔的形成。
图4示意性地显示依据本发明实施方式的内间隔的形成,其中该间隔被蚀刻,只有紧邻伪栅极的牺牲材料被去除。
图5示意性地显示依据本发明实施方式的具有凹陷的S/D的内间隔的形成。
权利要求书中的任何引用符号不应理解为限制本发明的范围。
在不同的图中,相同的附图标记表示相同或类似的元件。
示例性实施方式的详细描述
将就具体实施方式并参照某些附图对本发明进行描述,但本发明并不受此限制,仅由权利要求书限定。描述的附图仅是说明性的且是非限制性的。在附图中,一些元素的尺寸可能被夸大且未按比例尺绘画以用于说明目的。所述尺寸和相对尺寸不与本发明实践的实际减小相对应。
在说明书和权利要求书中的术语第一、第二等用来区别类似的元件,而不一定是用来描述时间、空间、等级顺序或任何其它方式的顺序。应理解,如此使用的术语在合适情况下可互换使用,本发明所述的实施方式能够按照本文所述或说明的顺序以外的其它顺序进行操作。
此外,在说明书和权利要求书中,术语顶、之下等用于描述目的,而不一定用于描述相对位置。应理解,如此使用的术语在合适情况下可互换使用,本发明所述的实施方式能够按照本文所述或说明的取向以外的其它取向进行操作。
应注意,权利要求中使用的术语“包含”不应解释为被限制为其后列出的部分,其不排除其它元件或步骤。因此,其应被理解为指出所述特征、集成、步骤或组分的存在,但这并不排除一种或多种其它特征、集成、步骤或组分或其组合的存在或添加。因此,表述“包括部件A和B的装置”的范围不应被限制为所述装置仅由组件A和B构成。其表示对于本发明,所述装置的相关组件仅为A和B。
说明书中提及的“一个实施方式”或“一种实施方式”是指连同实施方式描述的具体特征、结构或特性包括在本发明的至少一个实施方式中。因此,在说明书中各处出现的短语“在一个实施方式中”或“在一种实施方式中”不一定全部指同一个实施方式,但可能全部都指同一个实施方式。此外,具体特征、结构或特性可以任何合适方式在一个或多个实施方式中组合,这对于本领域普通技术人员而言是显而易见的。
类似地,应理解,在本发明的示例性实施方式的描述中,本发明的不同特征有时组合成一个单一实施方式、特征或其描述,这是为了简化公开内容并帮助理解本发明的一个或多个不同方面。然而,本公开内容中的方法不应被理解为反映一项发明,请求保护的本发明需要比各权利要求中明确引用的具有更多的特征。并且,如同所附权利要求所反映的那样,发明方面包括的特征可能会少于前述公开的一个单一实施方式的全部特征。因此,具体说明之后的权利要求将被明确地纳入该具体说明,并且各权利要求本身基于本发明独立的实施方式。
此外,当本文所述的一些实施方式包括一些但不包括其它实施方式中所包括的其它特征时,不同实施方式的特征的组合应意在包括在本发明范围内,并且形成不同的实施方式,这应被本领域技术人员所理解。例如,在之后的权利要求中,所请求保护的任何实施方式可以任何组合形式使用。
本文的描述中阐述了众多的具体细节。然而应理解,本发明的实施方式可不用这些具体细节进行实施。在其它情况中,为了不混淆对该说明书的理解,没有详细描述众所周知的方法、步骤和技术。
在本发明的实施方式中,提及选择性氧化,就是提及牺牲材料和纳米线材料的氧化速率之间有差别的氧化。
在本发明的实施方式中,提及选择性去除,就是提及间隔氧化物和纳米线氧化物之间的去除速率有差别的氧化物去除。
在本发明的实施方式中,提及纳米线材料,就是提及制成纳米线的材料。
本发明的实施方式涉及在半导体器件的纳米线之间形成内间隔的方法100。该方法100包括提供(110)包含至少一个鳍片的半导体结构,所述至少一个鳍片包含交替的牺牲材料(4)层和纳米线材料(3)层的堆叠,该半导体结构包含部分覆盖至少一个鳍片的层堆叠的伪栅极(7)。方法100还包括除去紧邻伪栅极的牺牲材料4。该方法还包括使紧邻伪栅极的牺牲材料4和纳米线材料3氧化(130),分别产生间隔氧化物9和纳米线氧化物10。方法100还包括除去(140)纳米线氧化物10,直到纳米线氧化物10被完全除去,至少一部分的间隔氧化物保留。间隔氧化物9可以部分除去,或完全不除去。保留的间隔氧化物9是内间隔。在本发明的实施方式中,在形成内间隔后,可继续标准水平栅极全包围集成方案。
在本发明的实施方式中,牺牲材料4的氧化在与纳米线材料3的氧化不同的速率下进行,以及/或者间隔氧化物9的去除在与纳米线氧化物10的去除不同的速率下进行。例如,纳米线材料3的氧化速率可以慢于牺牲材料4的氧化速率。例如,纳米线氧化物10的去除速率可以快于间隔氧化物9的去除速率。本发明实施方式的优点在于,通过氧化,产生去除(例如蚀刻)的选择性。在本发明的实施方式中,氧化速率和去除速率使得当去除氧化物时,纳米线氧化物10在间隔氧化物9之前被完全除去。在完全除去纳米线氧化物后,部分间隔氧化物被保留。该部分是内间隔9。在一些实施方式中,间隔氧化物甚至可以完全保留。本发明实施方式的优点在于,通过牺牲材料和纳米线材料的氧化以及选择性去除纳米线氧化物和间隔氧化物,形成内间隔。本发明实施方式的一个优点在于,对于内间隔形成,仅仅需要少数几个额外的工艺步骤。因此,本发明实施方式的一个优点在于,对于形成内间隔,无需添加额外的材料。本发明实施方式的一个优点在于,该方法可以在S/D(源极/漏极)模块或RMG模块(替代金属栅极)中实施。
在本发明的一个示例性实施方式中,SiGe–Ge多层堆叠用于制造Ge纳米线。在牺牲材料4是SiGe的情况中,纳米线材料3是Ge。在SiGe–Ge多层堆叠的氧化(130)过程中,在Ge上形成Ge氧化物,在SiGe上形成SiGe氧化物。与Si氧化物相反,Ge氧化物可溶于水性溶液,可以针对SiGe氧化物选择性除去。本发明的该示例性实施方式的优点在于,间隔氧化物在水(或HCl)中的溶解度与纳米线氧化物在水(或HCl)中的溶解度的差异使得能够形成内间隔。由于溶解度方面的差异,可以建立比间隔氧化物更快的纳米线氧化物去除速率。本发明的该示例性实施方式的优点在于。对于GeO2,可使用不含HF的水性溶液。因此,防止了蚀刻剂对SiGe氧化物的去除。本发明该示例性实施方式的优点在于,SiGe和Ge之间的氧化速率也可以调节为倾向SiGe。因此,对牺牲材料得到比纳米线材料更高的氧化速率。
因此,依据本发明的方法可用于通过以下方式形成Ge水平栅极全包围晶体管:氧化S.D或RMG模块中的SiGe-Ge堆叠,然后使用水性非氧化溶液选择性去除Ge氧化物。
在本发明的示例性实施方式中,牺牲材料4是SiGe,纳米线材料3是Si。本发明该示例性实施方式的优点在于,由于SiGe和Si之间氧化速率的差异,可以在去除纳米线氧化物后形成内间隔。SiGe的氧化最多可比Si的氧化快几个数量级,使得与Si上薄氧化物相比在SiGe上生长厚氧化物。因为在Si上仅形成极薄的氧化物(与SiGe氧化物的厚度相比),可以选择性地完全除去Si氧化物,而不完全除去SiGe上的氧化物。例如,可以使用基于HF的水性溶液进行该去除操作。
在本发明的实施方式中,其中牺牲材料是SiGe,可以通过调节氧化步骤的参数(例如氧化速率,氧化温度)来控制间隔氧化物中的Ge含量。SiGe氧化形成富含Si的SiGe氧化物或纯SiO2,具体取决于SiGe的Ge%和氧化条件。对于最佳的选择性氧化物去除,SiGe氧化物的Ge含量优选较低(例如低于80%)。可通过一开始就控制SiGe中的低Ge浓度来降低上述Ge含量。通过适当选择氧化条件,由于Ge浓缩,SiGe氧化物的Ge含量小于SiGe层中的Ge含量。任选地,通过在氧化后进行退火,Ge氧化物转化为Si氧化物,由此可进一步降低Ge含量。这(主要)发生在SiGe氧化物中,其中当需要附近存在Si时,GeO2转化为SiO2
图1-5显示了根据本发明实施方式的不同方法步骤。在步骤110中,提供半导体堆叠。图1示意性地显示依据本发明实施方式的具有嵌入的S/D的Ge纳米线的内间隔的形成。在图1的示例性实施方式中,鳍片包含交替的牺牲材料4和纳米线材料3的层的堆叠。在该示例性实施方式中,牺牲材料4是SiGe,纳米线材料3是Ge。伪栅极7部分地覆盖鳍片的层堆叠。紧邻伪栅极7,存在伪间隔物1。在伪栅极7和鳍片的层堆叠之间,存在伪电介质8。在步骤120中,除去紧邻伪栅极的牺牲材料4和纳米线材料。例如,可进行该操作以获得嵌入的S/D。例如,可通过凹陷蚀刻来进行该操作(参见例如图1,其中可进行干蚀刻)。在步骤130中,使紧邻伪栅极的牺牲材料4和纳米线材料3分别氧化为间隔氧化物9(Si(Ge)Ox-Ge))和纳米线氧化物10(GeOx)。图1中显示了一个例子。在该例子中,所形成的氧化物的宽度Wo可以在5-10nm之间。在步骤140中,纳米线氧化物10和间隔氧化物9被选择性除去,直到纳米线氧化物10被完全除去,间隔氧化物9被部分除去(或者完全不除去),其中保留的间隔氧化物9是内间隔。在图1的例子中,例如,可使用HCl或DIW洗涤来进行。在本发明的该示例性实施方式中,使用外延生长形成(150)S/D 11。然后(例如在RMG模块中),除去牺牲材料4的层。因此,本发明实施方式的优点在于,牺牲层的去除(例如通过选择性蚀刻)可以终止在内间隔9上。
图2示意性地显示依据本发明实施方式的具有凸起的S/D的Ge纳米线的内间隔的形成。提供的半导体结构与图1中相同。在去除步骤120中,除去紧邻伪栅极的牺牲材料,同时保留纳米线材料。例如,可使用选择性干蚀刻进行该操作。例如,可使用TMAH蚀刻进行该操作。仅仅选择性蚀刻紧邻伪栅极的牺牲材料,得到具有凸起的S/D的内间隔,或形成RMG模块中的内间隔。在氧化步骤130中,纳米线材料3和牺牲材料4被氧化。由此产生纳米线氧化物10和间隔氧化物9。选择性去除步骤140与图1中相同,其中纳米线氧化物被完全去除,间隔氧化物部分或甚至完全保留。而且,S/D 11形成150与图2中相同。在本发明的该示例性实施方式中,实现环绕式S/D。
图3示意性地显示依据本发明实施方式的在半导体结构中对具有嵌入S/D的纳米线形成内间隔,所述半导体结构包括包含交替的纳米线材料3和牺牲材料4的堆叠的鳍片。伪栅极7部分地覆盖鳍片的层堆叠。在伪栅极7和鳍片的层堆叠之间,存在伪电介质8。在伪栅极上沉积间隔物1。在步骤120中,不仅紧邻伪栅极的牺牲材料被除去,而且进行间隔物蚀刻和S/D凹陷。在步骤130中,牺牲材料和纳米线材料被氧化。这可以在牺牲材料与纳米线材料不同的速率下进行。在步骤140中,完全除去纳米线氧化物。由此,也可以去除一部分间隔氧化物。保留的间隔氧化物是内间隔9。在步骤150中,通过外延生长形成S/D。
在图1-2中,层堆叠的顶层由牺牲材料构成,而在图3-5中,层堆叠的顶层由纳米线材料构成。
在本发明的实施方式中,纳米线材料10被除去的速率不同于间隔氧化物被除去的速率,以及/或者牺牲材料4的氧化速率不同于纳米线材料3的氧化速率。在本发明的实施方式中,氧化速率和去除速率使得当去除纳米线氧化物时,间隔氧化物不会被完全除去。在本发明的实施方式中,对氧化物去除(例如通过蚀刻)进行定时,使得该去除在纳米线氧化物被完全去除之后且在间隔氧化物被完全去除之前停止。在本发明的实施方式中,在氧化物去除步骤过程中未除去间隔氧化物。
图4示意性地显示依据本发明实施方式的内间隔9的形成,其中该间隔被蚀刻,只有紧邻伪栅极7的牺牲材料4被去除。这示于图4的第二张图中。在本发明的该示例性实施方式中,在间隔物蚀刻之后不进行S/D凹陷蚀刻。在步骤120中,间隔物蚀刻之后进行选择性蚀刻,从而仅蚀刻牺牲层。在步骤130中,沉积内间隔。这通过氧化(130)牺牲材料和纳米线材料来进行。在步骤140中,除去紧邻伪栅极的纳米线氧化物和纳米线材料。在该例子中,这通过S/D凹陷蚀刻来进行。在该去除步骤140中,内间隔(9)氧化物不被除去,或者不被完全除去。这通过使用选择性方法或非选择性方法来进行,但是具体取决于各向异性,因为内间隔隐藏在纳米线材料的层之间。本发明实施方式的一个优点在于,可以利用非选择性但高度各向异性的S/D凹陷蚀刻来形成内间隔。所以,挑战从选择性沉积或去除转移到蚀刻的各向异性和选择性的缺乏。接着,使用S/D外延(epi)形成S/D。
图5示意性地显示依据本发明实施方式的具有凹陷的S/D的内间隔的形成。不同的工艺步骤120,130与图4中相同。区别在于除去纳米线氧化物的步骤140。在图4中,进行S/D凹陷蚀刻,以除去纳米线氧化物,同时至少部分地保持间隔氧化物。在图5中,在除去步骤140的过程中,只有纳米线氧化物被除去。纳米线本身仍然保留。在纳米线材料是Ge且牺牲材料是SiGe的情况中,除去(120)紧邻伪栅极的牺牲材料的操作可以通过使用化学混合物选择性蚀刻S/D区域来进行。氧化(130)紧邻伪栅极的牺牲材料4(SiGe 50或70%)和纳米线材料3(Ge)的操作可以使用低温氧化来进行。完全除去纳米线氧化物且保留至少一部分间隔氧化物和至少一部分紧邻伪栅极的纳米线材料的操作可使用HCl(水溶液)洗涤来进行。

Claims (9)

1.一种在半导体器件的纳米线之间形成内间隔的方法(100),该方法(100)包括:
-提供(110)包含至少一个鳍片的半导体结构,所述至少一个鳍片包含交替的牺牲材料(4)层和纳米线材料(3)层的堆叠,所述半导体结构包含部分覆盖至少一个鳍片的层堆叠的伪栅极(7),
-至少除去(120)紧邻伪栅极的牺牲材料(4),
-使紧邻伪栅极的牺牲材料(4)和纳米线材料(3)氧化(130),分别产生间隔氧化物(9)和纳米线氧化物(10),
-除去(140)纳米线氧化物(10),直到纳米线氧化物(10)被完全除去,至少一部分间隔氧化物(9)被保留,其中保留的间隔氧化物(9)是内间隔。
2.如权利要求1所述的方法(100),其特征在于,该方法(100)包括除去紧邻伪栅极的纳米线材料(3)的步骤,由此形成沟槽(2),并且该步骤在氧化(130)牺牲材料(4)和纳米线材料之前。
3.如前述权利要求中任一项所述的方法(100),其特征在于,提供(110)半导体结构包括提供(110)纳米线材料(3)是Ge且牺牲层材如料(4)是SiGe的半导体结构。
4.如权利要求3所述的方法(100),其特征在于,提供(110)半导体结构包括提供(110)其中SiGe的Ge含量低于80%的半导体结构。
5.如权利要求3或4所述的方法(100),其特征在于,除去(140)纳米线氧化物通过使用水性非氧化溶液作为蚀刻剂来进行。
6.如权利要求1或2所述的方法(100),其特征在于,提供(110)半导体结构包括提供(110)纳米线材料(3)是Si且牺牲层材料(4)是SiGe的半导体结构。
7.如权利要求6所述的方法,其特征在于,除去(140)纳米线氧化物通过使用HF作为蚀刻剂来进行。
8.如权利要求3-7中任一项所述的方法(100),其特征在于,在氧化(130)牺牲材料(4)和纳米线材料(3)的过程中,通过调节氧化步骤的参数来控制间隔氧化物中的Ge含量。
9.如权利要求3-8中任一项所述的方法(100),其特征在于,所述方法包括在氧化(130)牺牲材料(4)和纳米线材料(3)之后的退火步骤,用于控制SiGe氧化物中的Ge含量。
CN201711190421.5A 2016-12-09 2017-11-24 纳米线半导体器件中内间隔的形成 Active CN108231589B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16203209.8 2016-12-09
EP16203209 2016-12-09

Publications (2)

Publication Number Publication Date
CN108231589A true CN108231589A (zh) 2018-06-29
CN108231589B CN108231589B (zh) 2020-06-05

Family

ID=57544268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711190421.5A Active CN108231589B (zh) 2016-12-09 2017-11-24 纳米线半导体器件中内间隔的形成

Country Status (2)

Country Link
US (1) US10269929B2 (zh)
CN (1) CN108231589B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088246B2 (en) 2019-07-18 2021-08-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a field effect transistor using carbon nanotubes and a field effect transistor
EP3876287A1 (en) 2020-03-02 2021-09-08 Imec VZW Inner spacers for nanowires or nanosheets
US11742247B2 (en) * 2020-07-17 2023-08-29 Synopsys, Inc. Epitaxial growth of source and drain materials in a complementary field effect transistor (CFET)
US11710634B2 (en) 2020-07-17 2023-07-25 Synopsys, Inc. Fabrication technique for forming ultra-high density integrated circuit components
US12080608B2 (en) 2020-07-17 2024-09-03 Synopsys, Inc. Self-limiting manufacturing techniques to prevent electrical shorts in a complementary field effect transistor (CFET)
US11915984B2 (en) 2020-07-17 2024-02-27 Synopsys, Inc. Forming a wrap-around contact to connect a source or drain epitaxial growth of a complimentary field effect transistor (CFET) to a buried power rail (BPR) of the CFET
US20220199797A1 (en) * 2020-12-22 2022-06-23 Intel Corporation Localized spacer for nanowire transistors and methods of fabrication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120138886A1 (en) * 2010-12-01 2012-06-07 Kuhn Kelin J Silicon and silicon germanium nanowire structures
CN102610529A (zh) * 2012-03-31 2012-07-25 上海华力微电子有限公司 基于体硅的三维阵列式后栅型SiNWFET制备方法
CN102623321A (zh) * 2012-03-31 2012-08-01 上海华力微电子有限公司 基于体硅的纵向堆叠式后栅型SiNWFET制备方法
US20130270512A1 (en) * 2011-12-19 2013-10-17 Marko Radosavljevic Cmos implementation of germanium and iii-v nanowires and nanoribbons in gate-all-around architecture
US20160027929A1 (en) * 2014-07-25 2016-01-28 International Business Machines Corporation Perfectly symmetric gate-all-around fet on suspended nanowire

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137237B (zh) 2011-12-23 2018-10-09 英特尔公司 具有非分立的源极区和漏极区的纳米线结构
US9349850B2 (en) * 2013-07-17 2016-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Thermally tuning strain in semiconductor devices
KR102083494B1 (ko) 2013-10-02 2020-03-02 삼성전자 주식회사 나노와이어 트랜지스터를 포함하는 반도체 소자
EP3053185A4 (en) 2013-10-03 2017-05-17 Intel Corporation Internal spacers for nanowire transistors and method of fabrication thereof
KR102168475B1 (ko) 2014-03-24 2020-10-21 인텔 코포레이션 나노와이어 디바이스들을 위한 내부 스페이서들을 제조하는 집적 방법들
US9219154B1 (en) 2014-07-15 2015-12-22 International Business Machines Corporation Method of fabricating electrostatically enhanced fins and stacked nanowire field effect transistors
US9773865B2 (en) 2014-09-22 2017-09-26 International Business Machines Corporation Self-forming spacers using oxidation
US9871099B2 (en) * 2015-11-09 2018-01-16 International Business Machines Corporation Nanosheet isolation for bulk CMOS non-planar devices
US9627540B1 (en) * 2015-11-30 2017-04-18 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US9899269B2 (en) * 2015-12-30 2018-02-20 Taiwan Semiconductor Manufacturing Company, Ltd Multi-gate device and method of fabrication thereof
US9899398B1 (en) * 2016-07-26 2018-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Non-volatile memory device having nanocrystal floating gate and method of fabricating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120138886A1 (en) * 2010-12-01 2012-06-07 Kuhn Kelin J Silicon and silicon germanium nanowire structures
US20130270512A1 (en) * 2011-12-19 2013-10-17 Marko Radosavljevic Cmos implementation of germanium and iii-v nanowires and nanoribbons in gate-all-around architecture
CN102610529A (zh) * 2012-03-31 2012-07-25 上海华力微电子有限公司 基于体硅的三维阵列式后栅型SiNWFET制备方法
CN102623321A (zh) * 2012-03-31 2012-08-01 上海华力微电子有限公司 基于体硅的纵向堆叠式后栅型SiNWFET制备方法
US20160027929A1 (en) * 2014-07-25 2016-01-28 International Business Machines Corporation Perfectly symmetric gate-all-around fet on suspended nanowire

Also Published As

Publication number Publication date
US10269929B2 (en) 2019-04-23
US20180166558A1 (en) 2018-06-14
CN108231589B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN108231589A (zh) 纳米线半导体器件中内间隔的形成
CN106057671B (zh) 制造FinFET器件的工艺
US9570580B1 (en) Replacement gate process for FinFET
CN109727916A (zh) 半导体装置的制造方法
CN108538913A (zh) 用于纳米线半导体器件的内间隔
EP3016143B1 (en) A method for forming a transistor structure comprising a fin-shaped channel structure
JP6173083B2 (ja) 電界効果半導体デバイスを製造する方法
CN105280558B (zh) 用于FinFET器件的结构和方法
US9520484B2 (en) Method for forming semiconductor nanowire transistors
WO2015192691A1 (zh) 一种半导体结构及其形成方法
CN102214676A (zh) 包含鳍片的半导体结构及其制造方法
CN105590845A (zh) 堆叠围栅纳米线制造方法
CN104253048B (zh) 堆叠纳米线制造方法
US20150349054A1 (en) Double/multiple fin structure for finfet devices
US9520469B1 (en) Fabrication of fin structures having high germanium content
CN103681274B (zh) 半导体器件制造方法
JP4848937B2 (ja) 半導体装置の製造方法
US9620589B2 (en) Integrated circuits and methods of fabrication thereof
CN102931084A (zh) 半导体器件的制造方法
CN108231591A (zh) 形成纳米线内间隔的方法
CN104392917B (zh) 一种全包围栅结构的形成方法
CN105513944B (zh) 半导体装置及其制造方法
CN108231590A (zh) 水平纳米线半导体器件
CN103346086B (zh) 嵌入式锗硅结构的制造方法
US9425060B2 (en) Method for fabricating multiple layers of ultra narrow silicon wires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant