CN108178182A - 高分散性掺杂金属锑的二氧化锡纳米材料的制备方法 - Google Patents

高分散性掺杂金属锑的二氧化锡纳米材料的制备方法 Download PDF

Info

Publication number
CN108178182A
CN108178182A CN201810065538.9A CN201810065538A CN108178182A CN 108178182 A CN108178182 A CN 108178182A CN 201810065538 A CN201810065538 A CN 201810065538A CN 108178182 A CN108178182 A CN 108178182A
Authority
CN
China
Prior art keywords
tin dioxide
polymolecularity
nanometer material
dioxide nanometer
doping metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810065538.9A
Other languages
English (en)
Inventor
张金龙
田宝柱
邢明阳
王灵芝
雷菊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU JUKANG NEW MATERIAL TECHNOLOGY Co Ltd
Original Assignee
SUZHOU JUKANG NEW MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU JUKANG NEW MATERIAL TECHNOLOGY Co Ltd filed Critical SUZHOU JUKANG NEW MATERIAL TECHNOLOGY Co Ltd
Priority to CN201810065538.9A priority Critical patent/CN108178182A/zh
Publication of CN108178182A publication Critical patent/CN108178182A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

本发明公开了高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,该工艺将二氧化锡纳米材料分散于特制的分散剂溶液中,与四苯基烯制备纳米二氧化锡‑四苯基烯固体粉末,然后进一步将纳米固体粉末产物与蒙脱石、烷基水杨酸钙、十六烷基硼酸钙、二苯二氯硅烷、磷酸三(2,3‑二氯丙基)酯进行反应,经高温高压反应、冷空气冷却,过筛分选等步骤制备得到高分散性掺杂金属锑的二氧化锡纳米材料。制备而成的高分散性掺杂金属锑的二氧化锡纳米材料,其颗粒小、比表面积大、具有隔热抗静电的功能,具有较好的应用前景。

Description

高分散性掺杂金属锑的二氧化锡纳米材料的制备方法
技术领域
本发明涉及材料这一技术领域,特别涉及到高分散性掺杂金属锑的二氧化锡纳米材料的制备方法。
背景技术
一般把分子粒径小于等于1~100nm(即10-9~10-7m)的材料称为纳米材料。膨润土的矿物学名称是蒙脱石,其分子粒径为10-11-10-9m,是纳米级的,是亿万年前天然形成的。国外把膨润土称为天然纳米材料、万用粘土。膨润土的这种万种用途取决于其矿物特性。一般膨润土都具有良好的粘结性、膨胀性、胶体分散性、悬浮性、吸附性、催化活性、触变性和阳离子交换性等。膨润土的膨胀力特强,其原因是膨润土具有物理化学性强、结合水的能力强等特性。通常在与水接触24h开始水化,膨胀4-5倍,48h水化完成,变成原来颗粒体积的10-15倍甚至30倍的凝胶体。其渗透率可减至10-11cm/s。我国的膨润土资源极为丰富,遍布26个省市,储量世界第一,但开发应用的极少。我国的膨润土品质优良,性能与美国怀俄明州的一样,我国新疆的膨润土有的性能优于美国。膨润土除可用作防水材料外,还可用于沙漠化治理、污水处理、生物给养、食品、药品、纺织、轻工、石油、冶金等各行业。用中国膨润土制成的纳米防水毯、板及附属产品已通过建设部科技发展促进中心组织的专家技术鉴定,产品可供国内外广泛应用。环境保护是当今生态环境首要课题。天然纳米材料--膨润土在环保中应用在国外已相当广泛。膨润土可作为有害物质吸附剂,浑浊水的澄清剂,放射性废料和有毒物料的密封剂,被污染水的防水剂、污水处理剂、洗涤助剂等,但我国开发研究应用的较少。本项目主要利用蒙脱石作为天然纳米材料的优势,掺杂金属锑及二氧化锡使得制备的纳米材料在性能上有了很大的改变,制备而成的纳米复合材料颗粒小、比表面积大、具有隔热抗静电的功能,具有较好的应用前景。
发明内容
为解决上述技术问题,本发明公开了高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,该工艺将二氧化锡纳米材料分散于特制的分散剂溶液中,与四苯基烯制备纳米二氧化锡-四苯基烯固体粉末,然后进一步将纳米固体粉末产物与蒙脱石、烷基水杨酸钙、十六烷基硼酸钙、二苯二氯硅烷、磷酸三(2,3-二氯丙基)酯进行反应,经高温高压反应、冷空气冷却,过筛分选等步骤制备得到高分散性掺杂金属锑的二氧化锡纳米材料。制备而成的高分散性掺杂金属锑的二氧化锡纳米材料,其颗粒小、比表面积大、具有隔热抗静电的功能,具有较好的应用前景。
本发明的目的可以通过以下技术方案实现:
高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,包括以下步骤:
(1)将二氧化锡纳米材料分散于分散剂溶液中,磁力搅拌,然后经真空过滤、洗涤、真空干燥得到亲水纳米材料;
(2)将四苯基烯和步骤(1)的亲水纳米材料,按质量配比为19∶1混合,加入15%的矿物油溶液,制备出45mmol/L的纳米二氧化锡-四苯基烯溶液;
(3)将步骤(2)的纳米二氧化锡-四苯基烯溶液经高温加热、降温、离心、洗涤、干燥得到纳米材料固体粉末;
(4)将步骤(3)所得的纳米材料固体粉末3份、蒙脱石3-6份、烷基水杨酸钙1-4份、十六烷基硼酸钙1-3份、二苯二氯硅烷3-4份、磷酸三(2,3-二氯丙基)酯2-7份一起注入高温反应炉反应,加热至350-400℃时,炉内加压至3MPa,保持温度持续反应2-4h,反应完全后降压备用;
(5)向步骤(4)高温反应物中充入低温空气,使其缓慢冷却至室温,冷却产物过筛分选颗粒,包装即得成品。
优选地,所述步骤(1)中的分散剂为N-甲基吡咯烷酮与聚异丁烯丁二酰亚胺质量比1:1混合液。
优选地,其特征在于,所述步骤(1)中的磁力搅拌的时间为3h,搅拌转速为4500转/分钟。
优选地,所述步骤(3)中的高温加热至500℃。
优选地,所述步骤(3)中的干燥温度为65℃。
优选地,所述步骤(3)中离心速率为2000转/分钟,离心10分钟。
优选地,所述步骤(5)中的低温冷空气温度为4-10℃。
优选地,所述步骤(5)中的过筛孔径为7000目。
本发明与现有技术相比,其有益效果为:
(1)本发明的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法将二氧化锡纳米材料分散于特制的分散剂溶液中,与四苯基烯制备纳米二氧化锡-四苯基烯固体粉末,然后进一步将纳米固体粉末产物与蒙脱石、烷基水杨酸钙、十六烷基硼酸钙、二苯二氯硅烷、磷酸三(2,3-二氯丙基)酯进行反应,经高温高压反应、冷空气冷却,过筛分选等步骤制备得到高分散性掺杂金属锑的二氧化锡纳米材料。制备而成的高分散性掺杂金属锑的二氧化锡纳米材料,其颗粒小、比表面积大、具有隔热抗静电的功能,具有较好的应用前景。
(2)本发明的高分散性掺杂金属锑的二氧化锡纳米材料原料易得、工艺简单,适于大规模工业化运用,实用性强。
具体实施方式
下面结合具体实施例对发明的技术方案进行详细说明。
实施例1
(1)将二氧化锡纳米材料分散于分散剂溶液中,磁力搅拌,然后经真空过滤、洗涤、真空干燥得到亲水纳米材料,其中分散剂为N-甲基吡咯烷酮与聚异丁烯丁二酰亚胺质量比1:1混合液,磁力搅拌的时间为3h,搅拌转速为4500转/分钟;
(2)将四苯基烯和步骤(1)的亲水纳米材料,按质量配比为19∶1混合,加入15%的矿物油溶液,制备出45mmol/L的纳米二氧化锡-四苯基烯溶液;
(3)将步骤(2)的纳米二氧化锡-四苯基烯溶液经高温加热、降温、离心、洗涤、干燥得到纳米材料固体粉末,其中高温加热至500℃,离心速率为2000转/分钟,离心10分钟,干燥温度为65℃;
(4)将步骤(3)所得的纳米材料固体粉末3份、蒙脱石3份、烷基水杨酸钙1份、十六烷基硼酸钙1份、二苯二氯硅烷3份、磷酸三(2,3-二氯丙基)酯2份一起注入高温反应炉反应,加热至350℃时,炉内加压至3MPa,保持温度持续反应2h,反应完全后降压备用;
(5)向步骤(4)高温反应物中充入低温空气,使其缓慢冷却至室温,冷却产物过筛分选颗粒,包装即得成品,其中低温冷空气温度为4℃,过筛孔径为7000目。
制得的高分散性掺杂金属锑的二氧化锡纳米材料的性能测试结果如表1所示。
实施例2
(1)将二氧化锡纳米材料分散于分散剂溶液中,磁力搅拌,然后经真空过滤、洗涤、真空干燥得到亲水纳米材料,其中分散剂为N-甲基吡咯烷酮与聚异丁烯丁二酰亚胺质量比1:1混合液,磁力搅拌的时间为3h,搅拌转速为4500转/分钟;
(2)将四苯基烯和步骤(1)的亲水纳米材料,按质量配比为19∶1混合,加入15%的矿物油溶液,制备出45mmol/L的纳米二氧化锡-四苯基烯溶液;
(3)将步骤(2)的纳米二氧化锡-四苯基烯溶液经高温加热、降温、离心、洗涤、干燥得到纳米材料固体粉末,其中高温加热至500℃,离心速率为2000转/分钟,离心10分钟,干燥温度为65℃;
(4)将步骤(3)所得的纳米材料固体粉末3份、蒙脱石4份、烷基水杨酸钙2份、十六烷基硼酸钙2份、二苯二氯硅烷3份、磷酸三(2,3-二氯丙基)酯4份一起注入高温反应炉反应,加热至360℃时,炉内加压至3MPa,保持温度持续反应3h,反应完全后降压备用;
(5)向步骤(4)高温反应物中充入低温空气,使其缓慢冷却至室温,冷却产物过筛分选颗粒,包装即得成品,其中低温冷空气温度为5℃,过筛孔径为7000目。
制得的高分散性掺杂金属锑的二氧化锡纳米材料的性能测试结果如表1所示。
实施例3
(1)将二氧化锡纳米材料分散于分散剂溶液中,磁力搅拌,然后经真空过滤、洗涤、真空干燥得到亲水纳米材料,其中分散剂为N-甲基吡咯烷酮与聚异丁烯丁二酰亚胺质量比1:1混合液,磁力搅拌的时间为3h,搅拌转速为4500转/分钟;
(2)将四苯基烯和步骤(1)的亲水纳米材料,按质量配比为19∶1混合,加入15%的矿物油溶液,制备出45mmol/L的纳米二氧化锡-四苯基烯溶液;
(3)将步骤(2)的纳米二氧化锡-四苯基烯溶液经高温加热、降温、离心、洗涤、干燥得到纳米材料固体粉末,其中高温加热至500℃,离心速率为2000转/分钟,离心10分钟,干燥温度为65℃;
(4)将步骤(3)所得的纳米材料固体粉末3份、蒙脱石5份、烷基水杨酸钙3份、十六烷基硼酸钙3份、二苯二氯硅烷4份、磷酸三(2,3-二氯丙基)酯6份一起注入高温反应炉反应,加热至380℃时,炉内加压至3MPa,保持温度持续反应3h,反应完全后降压备用;
(5)向步骤(4)高温反应物中充入低温空气,使其缓慢冷却至室温,冷却产物过筛分选颗粒,包装即得成品,其中低温冷空气温度为7℃,过筛孔径为7000目。
制得的高分散性掺杂金属锑的二氧化锡纳米材料的性能测试结果如表1所示。
实施例4
(1)将二氧化锡纳米材料分散于分散剂溶液中,磁力搅拌,然后经真空过滤、洗涤、真空干燥得到亲水纳米材料,其中分散剂为N-甲基吡咯烷酮与聚异丁烯丁二酰亚胺质量比1:1混合液,磁力搅拌的时间为3h,搅拌转速为4500转/分钟;
(2)将四苯基烯和步骤(1)的亲水纳米材料,按质量配比为19∶1混合,加入15%的矿物油溶液,制备出45mmol/L的纳米二氧化锡-四苯基烯溶液;
(3)将步骤(2)的纳米二氧化锡-四苯基烯溶液经高温加热、降温、离心、洗涤、干燥得到纳米材料固体粉末,其中高温加热至500℃,离心速率为2000转/分钟,离心10分钟,干燥温度为65℃;
(4)将步骤(3)所得的纳米材料固体粉末3份、蒙脱石6份、烷基水杨酸钙4份、十六烷基硼酸钙3份、二苯二氯硅烷4份、磷酸三(2,3-二氯丙基)酯7份一起注入高温反应炉反应,加热至400℃时,炉内加压至3MPa,保持温度持续反应4h,反应完全后降压备用;
(5)向步骤(4)高温反应物中充入低温空气,使其缓慢冷却至室温,冷却产物过筛分选颗粒,包装即得成品,其中低温冷空气温度为10℃,过筛孔径为7000目。
制得的高分散性掺杂金属锑的二氧化锡纳米材料的性能测试结果如表1所示。
对比例1
(1)将二氧化锡纳米材料分散于分散剂溶液中,磁力搅拌,然后经真空过滤、洗涤、真空干燥得到亲水纳米材料,其中分散剂为N-甲基吡咯烷酮与聚异丁烯丁二酰亚胺质量比1:1混合液,磁力搅拌的时间为3h,搅拌转速为4500转/分钟;
(2)将步骤(1)的纳米二氧化锡-四苯基烯溶液经高温加热、降温、离心、洗涤、干燥得到纳米材料固体粉末,其中高温加热至500℃,离心速率为2000转/分钟,离心10分钟,干燥温度为65℃;
(3)将步骤(2)所得的纳米材料固体粉末3份、蒙脱石3份、烷基水杨酸钙1份、十六烷基硼酸钙1份、二苯二氯硅烷3份、磷酸三(2,3-二氯丙基)酯2份一起注入高温反应炉反应,加热至350℃时,炉内加压至3MPa,保持温度持续反应2h,反应完全后降压备用;
(4)向步骤(3)高温反应物中充入低温空气,使其缓慢冷却至室温,冷却产物过筛分选颗粒,包装即得成品,其中低温冷空气温度为4℃,过筛孔径为7000目。
制得的高分散性掺杂金属锑的二氧化锡纳米材料的性能测试结果如表1所示。
对比例2
(1)将二氧化锡纳米材料分散于分散剂溶液中,磁力搅拌,然后经真空过滤、洗涤、真空干燥得到亲水纳米材料,其中分散剂为N-甲基吡咯烷酮与聚异丁烯丁二酰亚胺质量比1:1混合液,磁力搅拌的时间为3h,搅拌转速为4500转/分钟;
(2)将四苯基烯和步骤(1)的亲水纳米材料,按质量配比为19∶1混合,加入15%的矿物油溶液,制备出45mmol/L的纳米二氧化锡-四苯基烯溶液;
(3)将步骤(2)的纳米二氧化锡-四苯基烯溶液经高温加热、降温、离心、洗涤、干燥得到纳米材料固体粉末,其中高温加热至500℃,离心速率为2000转/分钟,离心10分钟,干燥温度为65℃;
(4)将步骤(3)所得的纳米材料固体粉末3份、蒙脱石6份、烷基水杨酸钙4份、十六烷基硼酸钙3份、二苯二氯硅烷4份、磷酸三(2,3-二氯丙基)酯7份一起注入高温反应炉反应,加热至400℃时,炉内加压至3MPa,保持温度持续反应4h,反应完全后降压备用;
(5)向步骤(4)高温反应物自然冷却至室温,冷却产物过筛分选颗粒,包装即得成品,过筛孔径为7000目。
制得的高分散性掺杂金属锑的二氧化锡纳米材料的性能测试结果如表1所示。
将实施例1-4和对比例1-2的制得的高分散性掺杂金属锑的二氧化锡纳米材料分别进行颗粒尺寸、比表面积、热膨胀系数这几项性能测试。
表1
颗粒尺寸nm 比表面积m2/g 热膨胀系数(10-6/K)
实施例1 5 95 1.71
实施例2 6 97 1.70
实施例3 5 94 1.68
实施例4 8 96 1.72
对比例1 19 70 2.31
对比例2 27 66 2.05
本发明的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法将二氧化锡纳米材料分散于特制的分散剂溶液中,与四苯基烯制备纳米二氧化锡-四苯基烯固体粉末,然后进一步将纳米固体粉末产物与蒙脱石、烷基水杨酸钙、十六烷基硼酸钙、二苯二氯硅烷、磷酸三(2,3-二氯丙基)酯进行反应,经高温高压反应、冷空气冷却,过筛分选等步骤制备得到高分散性掺杂金属锑的二氧化锡纳米材料。制备而成的高分散性掺杂金属锑的二氧化锡纳米材料,其颗粒小、比表面积大、具有隔热抗静电的功能,具有较好的应用前景。本发明的高分散性掺杂金属锑的二氧化锡纳米材料原料易得、工艺简单,适于大规模工业化运用,实用性强。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,其特征在于,包括以下步骤:
(1)将二氧化锡纳米材料分散于分散剂溶液中,磁力搅拌,然后经真空过滤、洗涤、真空干燥得到亲水纳米材料;
(2)将四苯基烯和步骤(1)的亲水纳米材料,按质量配比为19∶1混合,加入15%的矿物油溶液,制备出45mmol/L的纳米二氧化锡-四苯基烯溶液;
(3)将步骤(2)的纳米二氧化锡-四苯基烯溶液经高温加热、降温、离心、洗涤、干燥得到纳米材料固体粉末;
(4)将步骤(3)所得的纳米材料固体粉末3份、蒙脱石3-6份、烷基水杨酸钙1-4份、十六烷基硼酸钙1-3份、二苯二氯硅烷3-4份、磷酸三(2,3-二氯丙基)酯2-7份一起注入高温反应炉反应,加热至350-400℃时,炉内加压至3MPa,保持温度持续反应2-4h,反应完全后降压备用;
(5)向步骤(4)高温反应物中充入低温空气,使其缓慢冷却至室温,冷却产物过筛分选颗粒,包装即得成品。
2.根据权利要求1所述的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,其特征在于,所述步骤(1)中的分散剂为N-甲基吡咯烷酮与聚异丁烯丁二酰亚胺质量比1:1混合液。
3.根据权利要求1所述的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,其特征在于,所述步骤(1)中的磁力搅拌的时间为3h,搅拌转速为4500转/分钟。
4.根据权利要求1所述的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,其特征在于,所述步骤(3)中的高温加热至500℃。
5.根据权利要求1所述的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,其特征在于,所述步骤(3)中的干燥温度为65℃。
6.根据权利要求1所述的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,其特征在于,所述步骤(3)中离心速率为2000转/分钟,离心10分钟。
7.根据权利要求1所述的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,其特征在于,所述步骤(5)中的低温冷空气温度为4-10℃。
8.根据权利要求1所述的高分散性掺杂金属锑的二氧化锡纳米材料的制备方法,其特征在于,所述步骤(5)中的过筛孔径为7000目。
CN201810065538.9A 2018-01-23 2018-01-23 高分散性掺杂金属锑的二氧化锡纳米材料的制备方法 Pending CN108178182A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810065538.9A CN108178182A (zh) 2018-01-23 2018-01-23 高分散性掺杂金属锑的二氧化锡纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810065538.9A CN108178182A (zh) 2018-01-23 2018-01-23 高分散性掺杂金属锑的二氧化锡纳米材料的制备方法

Publications (1)

Publication Number Publication Date
CN108178182A true CN108178182A (zh) 2018-06-19

Family

ID=62551249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810065538.9A Pending CN108178182A (zh) 2018-01-23 2018-01-23 高分散性掺杂金属锑的二氧化锡纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN108178182A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528830A (zh) * 2003-10-21 2004-09-15 中国科学院上海硅酸盐研究所 一种掺锑的氧化锡无机纳米导电粉体的制备方法
CN1736877A (zh) * 2005-07-12 2006-02-22 武汉大学 一种制备高分散性掺锑氢氧化锡纳米微粉的方法
CN1880220A (zh) * 2005-06-17 2006-12-20 中南大学 一种利用层状硅酸盐质孔材料组装纳米二氧化锡的方法
CN101707134A (zh) * 2009-11-02 2010-05-12 浙江大学 耐高温超顺磁二氧化锡包覆氧化铁纳米材料的制备方法
CN107473263A (zh) * 2016-06-07 2017-12-15 杭州聚力氢能科技有限公司 超细高纯度锑掺杂氧化锡纳米粉末的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528830A (zh) * 2003-10-21 2004-09-15 中国科学院上海硅酸盐研究所 一种掺锑的氧化锡无机纳米导电粉体的制备方法
CN1880220A (zh) * 2005-06-17 2006-12-20 中南大学 一种利用层状硅酸盐质孔材料组装纳米二氧化锡的方法
CN1736877A (zh) * 2005-07-12 2006-02-22 武汉大学 一种制备高分散性掺锑氢氧化锡纳米微粉的方法
CN101707134A (zh) * 2009-11-02 2010-05-12 浙江大学 耐高温超顺磁二氧化锡包覆氧化铁纳米材料的制备方法
CN107473263A (zh) * 2016-06-07 2017-12-15 杭州聚力氢能科技有限公司 超细高纯度锑掺杂氧化锡纳米粉末的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王瑛玮等: "蒙脱石基ATO 纳米核壳结构导电粉的制备", 《矿产综合利用》 *

Similar Documents

Publication Publication Date Title
CN103157413B (zh) 一种海藻酸钠微胶囊负载纳米铁颗粒的制备方法
US10533122B1 (en) Strong plugging drilling fluid composition and preparation method thereof, and use thereof
Sun et al. Using silicagel industrial wastes to synthesize polyethylene glycol/silica-hydroxyl form-stable phase change materials for thermal energy storage applications
CN100509163C (zh) 碱性钙基膨润土及其制备方法
CN101817535B (zh) 一种改性膨润土的制备方法
CN105293511B (zh) 一种易分散钠基膨润土及其制备方法
CN104229871A (zh) 一种分级结构的花状氧化铟气敏材料的制备方法
CN102249255A (zh) 阴离子-非离子复合型有机蒙脱石及其制备方法
CN106188582A (zh) 表面具有褶皱结构的聚二甲基硅氧烷微球的制备方法
CN104984979A (zh) 一种利用化学包覆稳定焚烧飞灰的方法
CN103881144A (zh) 一种橡胶复合补强材料的制备方法
CN103896291B (zh) 一种膨润土钠化工艺及其生产设备
CN106701033A (zh) 一种多孔介质复合相变材料的制备方法及制备装置
CN107051339A (zh) 一种纤维增韧SiO 2 气凝胶及其制备方法
CN106495175A (zh) 一种有机改性蒙脱土的制备方法
CN100391846C (zh) 一种高耐热氢氧化铝的制备、改性方法
CN109368678A (zh) 一种氢氧化钙/石墨烯纳米复合材料的制备方法
CN102649573A (zh) 改善凹凸棒黏土纳米材料团聚的制备方法
Nie et al. Study on the combined dust suppression effect of sodium alginate and sodium fatty acid methyl ester sulfonate
CN108178182A (zh) 高分散性掺杂金属锑的二氧化锡纳米材料的制备方法
CN110373161A (zh) 一种定型相变储能复合材料及其制备方法
CN103554514A (zh) 一种用于修复重金属污染土壤的螯合剂及其制备和使用方法
CN104592946A (zh) 一种纳米胶囊复合相变储能材料制备方法
CN110357122A (zh) 油页岩渣改性合成x型沸石的方法
CN104874355A (zh) 一种高效吸附性能的可再生磁性碳微球简易合成方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180619