CN108172549A - 一种堆叠式围栅纳米线cmos场效应管结构及制作方法 - Google Patents

一种堆叠式围栅纳米线cmos场效应管结构及制作方法 Download PDF

Info

Publication number
CN108172549A
CN108172549A CN201711446763.9A CN201711446763A CN108172549A CN 108172549 A CN108172549 A CN 108172549A CN 201711446763 A CN201711446763 A CN 201711446763A CN 108172549 A CN108172549 A CN 108172549A
Authority
CN
China
Prior art keywords
type field
effect tube
nano line
gate
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711446763.9A
Other languages
English (en)
Other versions
CN108172549B (zh
Inventor
尚恩明
胡少坚
陈寿面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
Original Assignee
Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Integrated Circuit Research and Development Center Co Ltd filed Critical Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority to CN201711446763.9A priority Critical patent/CN108172549B/zh
Publication of CN108172549A publication Critical patent/CN108172549A/zh
Application granted granted Critical
Publication of CN108172549B publication Critical patent/CN108172549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种堆叠式围栅纳米线CMOS场效应管结构,包括:半导体衬底,上下堆叠设于所述半导体衬底上的围栅纳米线N型场效应管和围栅纳米线P型场效应管,所述围栅纳米线N型场效应管和围栅纳米线P型场效应管之间以介质层相隔离。本发明可实现独立控制CMOS中的N型场效应管和P型场效应管,能有效消除短沟道效应和量子效应产生的不利影响,避免平行CMOS器件中可能存在的闩锁效应,提高器件的性能,并可明显缩小CMOS器件的面积占比。本发明还公开了一种堆叠式围栅纳米线CMOS场效应管结构的制作方法。

Description

一种堆叠式围栅纳米线CMOS场效应管结构及制作方法
技术领域
本发明涉及半导体技术领域,更具体地,涉及一种堆叠式围栅纳米线CMOS场效应管结构及制作方法。
背景技术
按照摩尔定律,场效应管的尺寸在不断的缩小。到了40nm工艺节点后,平面器件出现了栅控能力不足,短沟道效应严重等问题,不能满足产业要求。三维器件FinFET通过三面栅控提高了栅控能力,减小了短沟道效应。半导体发展到7nm工艺节点后,沟道长度缩短到20nm以下,半导体材料输运的量子效应逐渐凸显,势必需要寻找其他途径来改善和消除量子效应带来的不利影响。纳米线场效应管采用围栅包围的方式,可最大限度提高栅控能力,改善亚阈值特性。
从平面CMOS器件到三维FinFET器件,场效应管的尺寸缩小,功耗面积比大大减小,器件性能大大提高。一般来说,CMOS场效应管中N型场效应管和P型场效应管在组成的反相器中是共用一个栅极的;但是在不同的器件应用中,并不是所有器件都需要N、P型场效应管共用一个栅极。
同时,平行式的N、P型场效应管需要占用两个场效应管的面积,面对摩尔定律的追求,芯片占用的面积需要越小越好。
此外,平行式的CMOS器件还存在闩锁效应。随着器件尺寸的缩小,其影响会更加明显。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,提供一种堆叠式围栅纳米线CMOS场效应管结构及制作方法。
为实现上述目的,本发明的技术方案如下:
本发明提供了一种堆叠式围栅纳米线CMOS场效应管结构,包括:半导体衬底,上下堆叠设于所述半导体衬底上的围栅纳米线N型场效应管和围栅纳米线P型场效应管,所述围栅纳米线N型场效应管和围栅纳米线P型场效应管之间以介质层相隔离。
优选地,所述半导体衬底为SOI衬底。
优选地,所述围栅纳米线N型场效应管和围栅纳米线P型场效应管分别包括:由纳米线形成的沟道,横跨沟道的栅极,以及位于沟道两侧纳米线端部的源漏极。
优选地,所述沟道由一至多个纳米线平行排布所构成,所述栅极为高K材料金属栅极,所述介质层为低K材料。
优选地,所述纳米线材料为Si、SiGe或III-V族材料,所述围栅纳米线N型场效应管的源漏极由设于纳米线两端的掺杂C的Si材料形成,所述围栅纳米线P型场效应管的源漏极由设于纳米线两端的SiGe材料形成。
优选地,所述高K材料为二氧化铪,所述金属栅极材料为钨,所述低K材料为SiOC。
优选地,所述栅极两侧具有侧墙。
优选地,所述围栅纳米线N型场效应管位于围栅纳米线P型场效应管的下方或上方。
本发明还提供了一种堆叠式围栅纳米线CMOS场效应管结构的制作方法,包括围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片的制作和连接;其中
所述围栅纳米线N型场效应管芯片的制作包括:
提供一第一体硅衬底,在所述第一体硅衬底上依次淀积底层SiGe层、中间Si层和上层SiGe层,构成超晶格;
刻蚀超晶格,形成一至多个Fin结构,并形成横跨Fin的赝栅极;
从Fin的两端向内刻蚀Fin的底层SiGe层和上层SiGe层材料,直至赝栅极的边缘,使Fin的中间Si层露出,形成Si纳米线;
在赝栅极两侧形成侧墙,并在侧墙两侧生长掺杂C的Si材料,将露出的Si纳米线两端包围,以形成N型场效应管的源漏极;
将赝栅极剥离,并去除赝栅极位置上Fin的底层SiGe层和上层SiGe层材料,使Fin的中间Si层露出,形成作为沟道的Si纳米线;
在沟道位置的Si纳米线表面依次形成栅氧层和高K材料层,并形成横跨Fin的金属栅极;
所述围栅纳米线P型场效应管芯片的制作包括:
提供一第二体硅衬底,在所述第一体硅衬底上依次淀积底层SiGe层、中间Si层和上层SiGe层,构成超晶格;
刻蚀超晶格,形成一至多个Fin结构,并形成横跨Fin的赝栅极;
从Fin的两端向内刻蚀Fin的底层SiGe层和上层SiGe层材料,直至赝栅极的边缘,使Fin的中间Si层露出,形成Si纳米线;
在赝栅极两侧形成侧墙,并在侧墙两侧生长SiGe材料,将露出的Si纳米线两端包围,以形成P型场效应管的源漏极;
将赝栅极剥离,并去除赝栅极位置上Fin的底层SiGe层和上层SiGe层材料,使Fin的中间Si层露出,形成作为沟道的Si纳米线;
在沟道位置的Si纳米线表面依次形成栅氧层和高K材料层,并形成横跨Fin的金属栅极;
将形成的围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片以上下堆叠方式移植到一SOI衬底上,去除第一体硅衬底和第二体硅衬底,并在围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片之间形成低K材料介质层作为隔离层;
将围栅纳米线N型场效应管芯片、围栅纳米线P型场效应管芯片和SOI衬底通过键合进行连接。
优选地,将所述围栅纳米线N型场效应管或围栅纳米线P型场效应管与SOI衬底直接相连。
从上述技术方案可以看出,本发明通过将N型场效应管和P型场效应管采用围栅纳米线场效应管结构堆叠形成上下结构,并以较厚的低K材料介质层进行隔离,从而可以独立控制CMOS中的N型场效应管和P型场效应管,能够有效消除短沟道效应和量子效应产生的不利影响,避免平行CMOS器件中可能存在的闩锁效应,提高器件的性能,并可将CMOS器件面积占比缩小到平行式CMOS器件的50%。
附图说明
图1是本发明一较佳实施例的一种堆叠式围栅纳米线CMOS场效应管结构外形示意图;
图2是图1中隐去侧墙和源漏后的器件结构示意图;
图3是图1中A-A’向的器件结构示意图;
图4是图2中B-B’向的器件结构示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
需要说明的是,在下述的具体实施方式中,在详述本发明的实施方式时,为了清楚地表示本发明的结构以便于说明,特对附图中的结构不依照一般比例绘图,并进行了局部放大、变形及简化处理,因此,应避免以此作为对本发明的限定来加以理解。
在以下本发明的具体实施方式中,请参阅图1-图4,图1是本发明一较佳实施例的一种堆叠式围栅纳米线CMOS场效应管结构外形示意图,图2是图1中隐去侧墙和源漏后的器件结构示意图,图3是图1中A-A’向的器件结构示意图,图4是图2中B-B’向的器件结构示意图。如图1-图4所示,本发明的一种堆叠式围栅纳米线CMOS场效应管结构,包括按照上下堆叠方式设置在半导体衬底10和11上的围栅纳米线N型场效应管20和围栅纳米线P型场效应管40。其中,围栅纳米线N型场效应管20可如图1-图4所示的位于围栅纳米线P型场效应管40的下方,或者也可以位于围栅纳米线P型场效应管的上方。围栅纳米线N型场效应管20和围栅纳米线P型场效应管40之间采用介质层30进行器件隔离;介质层隔离结构将围栅纳米线N型场效应管的栅极和围栅纳米线P型场效应管的栅极有效隔离,因而可以独立控制CMOS中的N型场效应管和P型场效应管。
半导体衬底10和11可以采用SOI衬底;SOI衬底可包含下层的Si衬底10和上层的埋氧层(Berried Oxide Layer)11;围栅纳米线N型场效应管20和围栅纳米线P型场效应管40即建立在SOI衬底的埋氧层11上。
围栅纳米线N型场效应管20包括:由纳米线24形成的沟道,横跨沟道的栅极22,以及位于沟道两侧的纳米线端部的源漏极21。其中,定义沟道位于纳米线24的中间位置,纳米线24的两端位置用于设置源漏极21。
同样地,围栅纳米线P型场效应管40也包括:由纳米线44形成的沟道,横跨沟道的栅极42,以及位于沟道两侧的纳米线端部的源漏极41。其中,定义沟道位于纳米线44的中间位置,纳米线44的两端位置用于设置源漏极41。
围栅纳米线N型场效应管20和围栅纳米线P型场效应管40各自的沟道可由一至多个纳米线24、44平行排布所构成。其中,当纳米线为多个时,可将纳米线平行排布,并可按照一排或者堆叠多排形式进行排列。
纳米线24、44的材料可采用Si,也可以采用高迁移率沟道材料如SiGe或III-V族材料(InGaAs GaAs等)。纳米线可采用常规方法制作。
栅极22、44可采用高K材料金属栅极(HKMG);例如,高K材料金属栅极结构中的高K材料26、46可采用二氧化铪,金属栅极材料可采用钨等。高K材料金属栅极与Si纳米线之间还设有栅氧层25、45,例如可设置二氧化硅栅氧层。栅极22、42的两侧还可具有侧墙23、43,例如可在栅极的两侧设置氮化物侧墙。
用作围栅纳米线N型场效应管和围栅纳米线P型场效应管之间隔离层的介质层30可采用厚度较厚的低K材料形成。例如,可采用SiOC(掺碳二氧化硅)来降低介电常数。
围栅纳米线N型场效应管的源漏极21可由设于例如Si纳米线24两端的掺杂C的Si材料形成。围栅纳米线P型场效应管的源漏极41可由设于例如Si纳米线44两端的SiGe材料形成。
以下通过具体实施方式及附图,对本发明的一种堆叠式围栅纳米线CMOS场效应管结构的制作方法进行详细说明。
请参阅图1-图4。本发明的一种堆叠式围栅纳米线CMOS场效应管结构的制作方法,可用于制作上述的堆叠式围栅纳米线CMOS场效应管结构。其制作方法包括围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片的制作和连接。具体可包括以下步骤:
围栅纳米线N型场效应管芯片的制作包括:
首先,在一个体硅衬底(第一体硅衬底)上依次淀积底层SiGe层、中间Si层和上层SiGe层,例如在体硅衬底上依次淀积约10nm的SiGe层、约5nm的Si层和约10nm的SiGe层,构成由底层SiGe层、中间Si层和上层SiGe层组成的超晶格层。
然后,刻蚀超晶格,形成一至多个Fin(鳍)结构,例如形成宽度约为5nm的一至多个Fin形状。接着,形成横跨Fin的赝栅极,例如,可通过在Fin的中间位置填充宽度约为20nm的多晶硅材料作为赝栅极。
接下来,可从Fin的左右两端向内方向刻蚀Fin结构上的底层SiGe层和上层SiGe层材料,直至赝栅极的边缘。这样,就使得位于Fin结构上、下层之间的中间Si层完全裸露出来,从而形成尺寸约为5nm的Si纳米线24。
接下来,可在赝栅极的两侧形成侧墙23,例如,可在赝栅极的两侧形成厚度约为5nm的氮化物侧墙。然后,在侧墙外的两侧生长掺杂少量C的Si材料(或者先在侧墙外的两侧生长Si材料,再对该Si材料进行掺杂少量的C),将露出侧墙外的Si纳米线两端包围,从而利用此掺杂少量C的Si材料形成N型场效应管的源漏极21。
之后,将多晶硅赝栅极从器件上剥离掉,并刻蚀去除赝栅极原有位置上Fin的底层SiGe层和上层SiGe层材料,只剩下位于Fin结构上、下层之间的中间Si层完全裸露出来,从而在侧墙内侧也形成尺寸约为5nm的Si纳米线24,作为N型场效应管的沟道。
接下来,可在侧墙内侧沟道位置的Si纳米线表面依次形成栅氧层25和高K材料层26,并形成横跨Fin的金属栅极22;例如,可通过氧化在Si纳米线表面生长约0.7nm的二氧化硅栅氧层,再通过ALD技术淀积约1nm的高K材料如二氧化铪,并采用填充方式在原有的赝栅极位置填充钨作为金属栅极。此时,围栅纳米线N型场效应管20结构即形成。
所述围栅纳米线P型场效应管芯片的制作包括:
首先,同样也在一个体硅衬底(第二体硅衬底)上依次淀积底层SiGe层、中间Si层和上层SiGe层,例如在该体硅衬底上依次淀积约10nm的SiGe层、约5nm的Si层和约10nm的SiGe层,构成由底层SiGe层、中间Si层和上层SiGe层组成的超晶格层。
然后,刻蚀该超晶格,形成一至多个Fin(鳍)结构,例如形成宽度约为5nm的一至多个Fin形状。接着,形成横跨Fin的赝栅极,例如,可通过在Fin的中间位置填充宽度约为20nm的多晶硅材料作为赝栅极。
接下来,可从Fin的左右两端向内方向刻蚀Fin结构上的底层SiGe层和上层SiGe层材料,直至赝栅极的边缘。这样,就使得位于Fin结构上、下层之间的中间Si层完全裸露出来,从而形成尺寸约为5nm的Si纳米线44。
接下来,可在赝栅极的两侧形成侧墙43,例如,可在赝栅极的两侧形成厚度约为5nm的氮化物侧墙。然后,可在侧墙外的两侧生长SiGe材料,将露出侧墙外的Si纳米线两端包围,从而利用此SiGe材料形成P型场效应管的源漏极41。
之后,将多晶硅赝栅极从器件上剥离掉,并刻蚀去除赝栅极原有位置上Fin的底层SiGe层和上层SiGe层材料,只剩下位于Fin结构上、下层之间的中间Si层完全裸露出来,从而在侧墙内侧也形成尺寸约为5nm的Si纳米线44,作为P型场效应管的沟道。
接下来,可在侧墙内侧沟道位置的Si纳米线表面依次形成栅氧层45和高K材料层46,并形成横跨Fin的金属栅极42;例如,可通过氧化在Si纳米线表面生长约0.7nm的二氧化硅栅氧层,再通过ALD技术淀积约1nm的高K材料如二氧化铪,并采用填充方式在原有的赝栅极位置填充钨作为金属栅极。此时,围栅纳米线P型场效应管40结构即形成。
在另一个Si衬底10上通过氧化生长一层二氧化硅埋氧层11作为SOI衬底10和11,例如,可在Si衬底上生长厚度约为10nm的二氧化硅埋氧层作为SOI衬底。进行围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片的连接时,将形成的上述围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片以上下堆叠方式移植到该SOI衬底上,可将围栅纳米线N型场效应管或围栅纳米线P型场效应管与SOI衬底直接相连,不限定其上下。例如,可将上述围栅纳米线N型场效应管芯片倒置放置在SOI衬底的埋氧层11上,使其体硅衬底(第一体硅衬底)朝上,并磨去第一体硅衬底,形成CMOS结构的第一层结构。接着,在上述第一层结构上淀积例如厚度约为30nm的低介电常数材料作为N型场效应管与上层P型场效应管之间的隔离层30。然后,将上述围栅纳米线P型场效应管芯片倒置放置在隔离层30上,使其体硅衬底(第二体硅衬底)朝上,并磨去第二体硅衬底,形成CMOS结构的第二层结构。
最后,可通过键合方式,将围栅纳米线N型场效应管芯片20、围栅纳米线P型场效应管芯片40和SOI衬底埋氧层11进行连接,并使得各部分的电路之间相连接。
综上所述,本发明通过将N型场效应管和P型场效应管采用围栅纳米线场效应管结构堆叠形成上下结构,并以较厚的低K材料介质层进行隔离,实现了CMOS中N型场效应管和P型场效应管的有效隔离,并实现了N型场效应管和P型场效应管的分栅独立控制,根据器件设计的需要,可以在中后道连线过程中决定是否需要分栅控制还是共栅控制。同时,本发明能够有效消除短沟道效应和量子效应产生的不利影响,避免平行CMOS器件中可能存在的闩锁效应,提高CMOS的工作效率和器件的性能,并可将CMOS器件面积占比缩小到平行式CMOS器件的50%。
以上所述的仅为本发明的优选实施例,所述实施例并非用以限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (10)

1.一种堆叠式围栅纳米线CMOS场效应管结构,其特征在于,包括:半导体衬底,上下堆叠设于所述半导体衬底上的围栅纳米线N型场效应管和围栅纳米线P型场效应管,所述围栅纳米线N型场效应管和围栅纳米线P型场效应管之间以介质层相隔离。
2.根据权利要求1所述的堆叠式围栅纳米线CMOS场效应管结构,其特征在于,所述半导体衬底为SOI衬底。
3.根据权利要求1所述的堆叠式围栅纳米线CMOS场效应管结构,其特征在于,所述围栅纳米线N型场效应管和围栅纳米线P型场效应管分别包括:由纳米线形成的沟道,横跨沟道的栅极,以及位于沟道两侧纳米线端部的源漏极。
4.根据权利要求3所述的堆叠式围栅纳米线CMOS场效应管结构,其特征在于,所述沟道由一至多个纳米线平行排布所构成,所述栅极为高K材料金属栅极,所述介质层为低K材料。
5.根据权利要求4所述的堆叠式围栅纳米线CMOS场效应管结构,其特征在于,所述纳米线材料为Si、SiGe或III-V族材料,所述围栅纳米线N型场效应管的源漏极由设于纳米线两端的掺杂C的Si材料形成,所述围栅纳米线P型场效应管的源漏极由设于纳米线两端的SiGe材料形成。
6.根据权利要求4所述的堆叠式围栅纳米线CMOS场效应管结构,其特征在于,所述高K材料为二氧化铪,所述金属栅极材料为钨,所述低K材料为SiOC。
7.根据权利要求1或4所述的堆叠式围栅纳米线CMOS场效应管结构,其特征在于,所述栅极两侧具有侧墙。
8.根据权利要求1所述的堆叠式围栅纳米线CMOS场效应管结构,其特征在于,所述围栅纳米线N型场效应管位于围栅纳米线P型场效应管的下方或上方。
9.一种堆叠式围栅纳米线CMOS场效应管结构的制作方法,其特征在于,包括围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片的制作和连接;其中
所述围栅纳米线N型场效应管芯片的制作包括:
提供一第一体硅衬底,在所述第一体硅衬底上依次淀积底层SiGe层、中间Si层和上层SiGe层,构成超晶格;
刻蚀超晶格,形成一至多个Fin结构,并形成横跨Fin的赝栅极;
从Fin的两端向内刻蚀Fin的底层SiGe层和上层SiGe层材料,直至赝栅极的边缘,使Fin的中间Si层露出,形成Si纳米线;
在赝栅极两侧形成侧墙,并在侧墙两侧生长掺杂C的Si材料,将露出的Si纳米线两端包围,以形成N型场效应管的源漏极;
将赝栅极剥离,并去除赝栅极位置上Fin的底层SiGe层和上层SiGe层材料,使Fin的中间Si层露出,形成作为沟道的Si纳米线;
在沟道位置的Si纳米线表面依次形成栅氧层和高K材料层,并形成横跨Fin的金属栅极;
所述围栅纳米线P型场效应管芯片的制作包括:
提供一第二体硅衬底,在所述第一体硅衬底上依次淀积底层SiGe层、中间Si层和上层SiGe层,构成超晶格;
刻蚀超晶格,形成一至多个Fin结构,并形成横跨Fin的赝栅极;
从Fin的两端向内刻蚀Fin的底层SiGe层和上层SiGe层材料,直至赝栅极的边缘,使Fin的中间Si层露出,形成Si纳米线;
在赝栅极两侧形成侧墙,并在侧墙两侧生长SiGe材料,将露出的Si纳米线两端包围,以形成P型场效应管的源漏极;
将赝栅极剥离,并去除赝栅极位置上Fin的底层SiGe层和上层SiGe层材料,使Fin的中间Si层露出,形成作为沟道的Si纳米线;
在沟道位置的Si纳米线表面依次形成栅氧层和高K材料层,并形成横跨Fin的金属栅极;
将形成的围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片以上下堆叠方式移植到一SOI衬底上,去除第一体硅衬底和第二体硅衬底,并在围栅纳米线N型场效应管芯片和围栅纳米线P型场效应管芯片之间形成低K材料介质层作为隔离层;
将围栅纳米线N型场效应管芯片、围栅纳米线P型场效应管芯片和SOI衬底通过键合进行连接。
10.根据权利要求9所述的堆叠式围栅纳米线CMOS场效应管结构,其特征在于,将所述围栅纳米线N型场效应管或围栅纳米线P型场效应管与SOI衬底直接相连。
CN201711446763.9A 2017-12-27 2017-12-27 一种堆叠式围栅纳米线cmos场效应管结构及制作方法 Active CN108172549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711446763.9A CN108172549B (zh) 2017-12-27 2017-12-27 一种堆叠式围栅纳米线cmos场效应管结构及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711446763.9A CN108172549B (zh) 2017-12-27 2017-12-27 一种堆叠式围栅纳米线cmos场效应管结构及制作方法

Publications (2)

Publication Number Publication Date
CN108172549A true CN108172549A (zh) 2018-06-15
CN108172549B CN108172549B (zh) 2020-09-04

Family

ID=62518113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711446763.9A Active CN108172549B (zh) 2017-12-27 2017-12-27 一种堆叠式围栅纳米线cmos场效应管结构及制作方法

Country Status (1)

Country Link
CN (1) CN108172549B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970369A (zh) * 2018-09-30 2020-04-07 中芯国际集成电路制造(上海)有限公司 Cmos反相器结构及其形成方法
CN112420615A (zh) * 2020-12-04 2021-02-26 南京大学 一种半导体结构制备方法及半导体器件
CN112713191A (zh) * 2020-12-23 2021-04-27 张鹤鸣 一种环栅纳米cmos结构及其制备方法
WO2021183227A1 (en) * 2020-03-07 2021-09-16 Qualcomm Incorporated Stacked-nanosheet gate-all-around fet with insulator between the nanosheets
CN113690238A (zh) * 2021-07-27 2021-11-23 西安电子科技大学重庆集成电路创新研究院 一种集成纳米片结构、sram单元及其制备方法
US11335683B2 (en) 2020-06-30 2022-05-17 Qualcomm Incorporated Device channel profile structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109762A1 (zh) * 2020-11-24 2022-06-02 中芯国际集成电路制造(上海)有限公司 半导体结构及半导体结构的形成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719500A (zh) * 2009-12-01 2010-06-02 中国科学院上海微系统与信息技术研究所 混合材料反型模式全包围栅cmos场效应晶体管
CN101719498A (zh) * 2009-12-01 2010-06-02 中国科学院上海微系统与信息技术研究所 混合材料反型模式圆柱体全包围栅cmos场效应晶体管
CN102683293A (zh) * 2012-05-03 2012-09-19 上海华力微电子有限公司 双层SOI混合晶向后栅型反型模式SiNWFET的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719500A (zh) * 2009-12-01 2010-06-02 中国科学院上海微系统与信息技术研究所 混合材料反型模式全包围栅cmos场效应晶体管
CN101719498A (zh) * 2009-12-01 2010-06-02 中国科学院上海微系统与信息技术研究所 混合材料反型模式圆柱体全包围栅cmos场效应晶体管
CN102683293A (zh) * 2012-05-03 2012-09-19 上海华力微电子有限公司 双层SOI混合晶向后栅型反型模式SiNWFET的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970369A (zh) * 2018-09-30 2020-04-07 中芯国际集成电路制造(上海)有限公司 Cmos反相器结构及其形成方法
CN110970369B (zh) * 2018-09-30 2022-08-02 中芯国际集成电路制造(上海)有限公司 Cmos反相器结构及其形成方法
WO2021183227A1 (en) * 2020-03-07 2021-09-16 Qualcomm Incorporated Stacked-nanosheet gate-all-around fet with insulator between the nanosheets
US11164952B2 (en) 2020-03-07 2021-11-02 Qualcomm Incorporated Transistor with insulator
US11335683B2 (en) 2020-06-30 2022-05-17 Qualcomm Incorporated Device channel profile structure
CN112420615A (zh) * 2020-12-04 2021-02-26 南京大学 一种半导体结构制备方法及半导体器件
CN112420615B (zh) * 2020-12-04 2022-02-08 南京大学 一种半导体结构制备方法及半导体器件
CN112713191A (zh) * 2020-12-23 2021-04-27 张鹤鸣 一种环栅纳米cmos结构及其制备方法
CN113690238A (zh) * 2021-07-27 2021-11-23 西安电子科技大学重庆集成电路创新研究院 一种集成纳米片结构、sram单元及其制备方法

Also Published As

Publication number Publication date
CN108172549B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN110556376B (zh) 包含二维半导电性材料的纳米片场效晶体管
CN108172549A (zh) 一种堆叠式围栅纳米线cmos场效应管结构及制作方法
US10541303B2 (en) Nanowire FinFET Transistor
US10236381B2 (en) IFinFET
CN107818943B (zh) 半导体装置及其制造方法
CN106024582B (zh) 使用公共释放材料形成多堆叠纳米线
CN109427905A (zh) 制造半导体器件的方法以及半导体器件
CN106449755A (zh) 全门n纳米丝器件以及该器件的制造方法
CN108122774A (zh) 用于全环栅半导体结构的阈值电压调整
US20130306935A1 (en) Double gate planar field effect transistors
CN109427775A (zh) 集成电路及其形成方法
CN109727867A (zh) 半导体器件及其制造方法
CN102623321B (zh) 基于体硅的纵向堆叠式后栅型SiNWFET制备方法
US11177254B2 (en) Stacked transistor device
CN106463410A (zh) 形成iii‑v族通道的方法
CN104347408B (zh) 半导体装置及其制造方法
CN107039514A (zh) Iii‑v族纳米线隧穿fet的方法及结构
CN106158859B (zh) 一种半导体器件及其制造方法
TW202316531A (zh) 形成底部介電隔離層的方法
US20220238521A1 (en) Semiconductor Device and Method
CN105405890B (zh) 包括带电荷体侧墙的半导体器件及其制造方法
CN108470766A (zh) 全包覆栅极晶体管及其制造方法
CN111199884A (zh) 一种半导体器件及其形成方法
EP4125117B1 (en) Self-aligned lateral contacts
CN106057900B (zh) 基于外延层的半导体器件及其制造方法及包括其的电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant