CN108140575A - 用于原子精度蚀刻的独立控制等离子体密度、自由基组成及离子能量的低电子温度蚀刻腔室 - Google Patents

用于原子精度蚀刻的独立控制等离子体密度、自由基组成及离子能量的低电子温度蚀刻腔室 Download PDF

Info

Publication number
CN108140575A
CN108140575A CN201680061298.4A CN201680061298A CN108140575A CN 108140575 A CN108140575 A CN 108140575A CN 201680061298 A CN201680061298 A CN 201680061298A CN 108140575 A CN108140575 A CN 108140575A
Authority
CN
China
Prior art keywords
plasma
power
electron
workpiece
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680061298.4A
Other languages
English (en)
Inventor
L·多尔夫
K·S·柯林斯
S·拉乌夫
K·拉马斯瓦米
J·D·卡达希
H·塔瓦索里
O·瑞吉尔曼
Y·张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN108140575A publication Critical patent/CN108140575A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32321Discharge generated by other radiation
    • H01J37/3233Discharge generated by other radiation using charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3151Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3343Problems associated with etching
    • H01J2237/3348Problems associated with etching control of ion bombardment energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本公开关于操作等离子体反应器的方法,该等离子体反应器具有电子束等离子体源以独立调整电子束密度、等离子体离子能量及自由基总数。本公开进一步关于用于等离子体反应器的电子束源,该等离子体反应器具有RF驱动电极以产生电子束。

Description

用于原子精度蚀刻的独立控制等离子体密度、自由基组成及 离子能量的低电子温度蚀刻腔室
发明人:
L·多尔夫、K·S·柯林斯、S·拉乌夫、K·拉马斯瓦米、J·D·卡达希、H·塔瓦索里、O·瑞吉尔曼、Y·张
相关申请的交叉引用
本申请案主张美国申请案第15/146,133号的优先权,该申请案的申请日为2016年5月4日,标题为“LOW ELECTORN TEMPERATURE ETCH CHAMBER WITH INDEPENDENT CONTROLOVER PLASMA DENSITY,RADICAL COMPOSITION AND ION ENERGY FOR ATOMIC PRECISIONETCHING(用于原子精度蚀刻的独立控制等离子体密度、自由基组成及离子能的低电子温度蚀刻腔室)”,作者为Leonid Dorf(L·多尔夫)等,该申请案主张美国临时申请案第62/247,949号的利益,该临时申请案的申请日为2015年10月29日,标题为“LOW ELECTRONTEMPERATURE ETCH CHAMBER WITH INDEPENDENT CONTROL OVER PLASMA DENSITY,RADICALCOMPOSITION AND ION ENERGY FOR ATOMIC PRECISION ETCHING(用于原子精度蚀刻的独立控制等离子体密度、自由基组成及离子能的低电子温度蚀刻腔室)”,作者为Leonid Dorf(L·多尔夫)等。
背景
技术领域
本公开关于用于原子精度蚀刻的独立控制等离子体密度、自由基组成及离子能量的低电子温度蚀刻腔室。
背景技术
微加工处理的缩小的尺寸及增加的复杂度使新颖的超敏感材料的使用成为必要,进而需要具有原子层精度的低损坏等离子体蚀刻。此增加了在等离子体处理期间对于精确控制离子能量及自由基组成的逐渐迫切的需求。
发明内容
一种在处理腔室中处理工件的方法,包括以下步骤:通过使用平行于该工件的表面的片状电子束在该处理腔室中产生等离子体,来限制等离子体电子温度;通过施加偏压功率至该腔室中的工件支撑件,来控制相对于该等离子体的工件电位在介于0及25伏特之间的范围;及通过控制供给该处理腔室的远程等离子体源的生产率,来独立地控制该等离子体中的自由基总数。
在一个实施例中,执行该限制该等离子体电子温度的步骤以在未施加偏压功率时,限制相对于该等离子体的工件电位不超过几个伏特。
在一个实施例中,限制电子束能量至一范围(例如,自亚于keV至几个keV),以便限制电子束的分解或自由基产生。
在一个实施例中,偏压功率控制该等离子体的离子能量至欲蚀刻的该工件中的材料的结合能量的数量级或接近该结合能量。
一种在处理腔室中处理工件的相关方法,包括以下步骤:在该处理腔室中产生等离子体,同时通过在该处理腔室中传递电子束来限制等离子体电子温度;控制耦合至工件支撑件的偏压功率的级别,以便设定等离子体离子能量至欲蚀刻的该工件上的材料的结合能量的数量级或接近该结合能量;及通过控制耦合至该处理腔室的远程等离子体源的生产率,来控制该等离子体中的自由基总数。在一个可选的实施例中,该等离子体离子能量被限制至一范围(例如,自亚于keV至几个keV),以便限制电子束的分解或自由基产生。
一种用于处理工件的等离子体反应器,包括:电子束枪封闭体,该电子束枪封闭体具有在该封闭体的一端处的射束出口开口,且在该封闭体的相对端处封闭着电子发射电极,该电子发射电极具有面对该射束出口的电子发射表面,该射束出口及该电子发射电极限定出该射束出口及该电子发射电极之间的射束传递路径;RF功率源及RF功率导体,该RF功率导体在该RF功率源及该电子发射电极之间耦合;及处理腔室,该处理腔室具有与该射束出口对齐的射束入口端口,在该处理腔室中的工件支撑件用于在与该射束传递路径平行的平面中支撑工件,及耦合至该处理腔室的气体分配器。
在一个实施例中,该RF功率源包括第一RF功率产生器及阻抗匹配,该阻抗匹配在该第一RF功率产生器及该电子发射电极之间耦合。在进一步的实施例中,该阻抗匹配包括双频阻抗匹配,该功率源进一步包括第二RF功率产生器,该第二RF功率产生器具有与该第一RF功率产生器的频率不同的频率。在一个实施例中,该第一RF功率产生器产生低频率且该第二RF功率产生器产生高频率。
在一个实施例中,等离子体反应器进一步包括气体供应,该气体供应具有供给路径至该电子束枪封闭体。在一个实施例中,等离子体反应器进一步包括在该射束出口开口中的离子阻断过滤器,该离子阻断过滤器准许电子流经该射束出口。
在一个实施例中,等离子体反应器进一步包括:背板,该背板与该电子束枪封闭体绝缘且接触该电子发射电极的背面;冷却板,该冷却板接触该背板;及该RF功率导体连接至该冷却板。在一个实施例中,等离子体反应器进一步包括绝缘器,该绝缘器环绕该电子发射电极的边缘,且设置于该电子发射电极及该电子束枪封闭体之间。
在一个实施例中,等离子体反应器进一步包括处理气体供应,该处理气体供应耦合至该气体分配器。
在一个实施例中,等离子体反应器进一步包括远程等离子体源,该远程等离子体源耦合至该处理腔室。
在一个实施例中,等离子体反应器进一步包括偏压功率产生器,该偏压功率产生器耦合至该工件支撑件。
在一个实施例中,该第一RF功率产生器、该第二RF功率产生器、该偏压功率产生器及该远程等离子体源为可独立控制的。
附图说明
因此,获得本发明上述实施例的方式且可以详细理解,可通过参考其实施例而具有本发明的更特定描述(简短总结如上),该等实施例图示于所附附图中。然而,注意所附附图仅图示本发明典型的实施例,因此不考虑限制其范围,因为本发明可允许其他等效实施例。
图1示出根据第一实施例的低损坏反应器。
图2描绘图1的反应器的操作方法。
图3示出具有电子束源的等离子体反应器,该电子束源包含RF驱动电子发射电极。
图4描绘图1的实施例的修改,其中e射束源为图3的电子束源,该电子束源包含RF驱动电子发射电极。
为了便于理解,尽可能使用相同组件符号,以标示附图中常见的相同组件。附图中的图皆为示意性且不按比例绘制。
具体实施方式
简介:
在处理腔室中使用平行于工件表面的电子片状射束(e射束)以产生等离子体提供等离子体电子温度Te上(约0.3eV)及等离子体离子能量上(未施加偏压功率时Ei小于几个eV)相较于传统等离子体技术一数量级的强度减低,因此使得电子束产生的等离子体成为针对处理特征在5nm及更低的理想选择。进一步地,因为分解仅通过高能量射束电子而非等离子体电子来执行,且因为分解横截面在约2keV的电子束能量或更低处大幅下降,可根据一个选项通过限制电子束能量而使得电子束产生的等离子体的化学组成成为缺乏自由基的。此允许外部自由基源独立控制等离子体自由基组成,从而成为使用电子束技术以产生等离子体的另一优点。
低损坏反应器:
在图1中所描绘的第一实施例中,提供低损坏反应器以允许原子精度处理(如在原子层蚀刻)及独立控制等离子体离子能量及等离子体的自由基组成。低损坏反应器包含:包含静电夹具52以维持工件54的处理腔室50、用于在处理腔室50中产生缺乏自由基、低电子温度(Te)等离子体的电子束(e射束)源56、用于在处理腔室50中经由出口58a至等离子体以产生及供应自由基的远程等离子体源58、及用于产生工件54及等离子体之间的电压下降(具有在0至50V的范围的精细控制)以加速离子超过蚀刻临界能量的偏压功率产生器60。出口58a可包含离子阻断格网90。e射束源56的射束出口56a被过滤格网170覆盖,过滤格网170准许电子形成电子束但阻断离子及其他等离子体副产物在e射束源56内产生。
偏压功率产生器60可具有提供在0至50V的范围的精细控制的偏压电压控制输入60a。在一个实施例中,该范围为0至25V。电子束源56包含控制电子束源56的电子能量的射束加速电压控制输入62。远程等离子体源58具有控制输入59,控制输入59用于控制远程等离子体源58供应自由基进入处理腔室50的速率。控制输入59独立于射束加速电压控制输入62。远程等离子体源58供应自由基进入处理腔室50的速率及电子束的能量是相互独立地控制。可以多种方式实现控制输入59。例如,控制输入59可控制在远程等离子体源58中驱动等离子体源功率施加器(未示出)的RF产生器的功率级别。如另一可能性,控制输入59可控制远程等离子体源58及处理腔室50之间的出口58a处的阀。可提供用于抽空处理腔室50的真空泵66。
因为在电子束产生的等离子体中的超低电子温度,工件相对于等离子体的电位非常低,仅为几个伏特(在没有施加偏压的情况下)。此较传统等离子体蚀刻工具中低很多,传统等离子体蚀刻工具典型地精细至约15V以上或超过约15V的范围。因此,不像传统工具,图1的低损坏反应器据此通过限制施加的偏压功率来允许0至25V的范围中的离子能量的精确控制。在此非常重要的范围中,等离子体离子能量接近(例如,10%内)或处于欲蚀刻材料的结合能量的数量级,而允许超低损坏蚀刻处理的效能。蚀刻速率在该离子能量下同样很低(仅为每分钟几个埃),而使得低损坏反应器也独特地适于原子精度蚀刻或原子层蚀刻。经由独立控制由远程等离子体源58的自由基产生速率所管理的自由基组成,达到允许蚀刻处理上的精确控制的另一关键优点。结果,在低损坏反应器中实现真实的使用超低损坏及每分钟仅一个至几个原子层的蚀刻速率的原子精度蚀刻。
在一个实施例中,提供操作低损坏反应器腔室的方法,其中独立控制等离子体离子能量及等离子体的自由基组成。在图2中描绘该方法且处理如下:
首先,限制等离子体电子温度不超过0.3eV及等离子体离子能量不超过几个eV(未施加偏压功率时)。此步骤通过在e射束源56中产生平行于工件表面的片状电子束来达成(图2的框310)。该射束产生处理腔室50中的等离子体。该限制等离子体电子温度的步骤帮助最小化工件相对于等离子体的电位(即,鞘层电压)使得该电位在没有施加偏压的情况下不多于约几个伏特。
第二,通过控制偏压功率产生器60以设定工件电位至0及25伏特之间的范围,来控制工件在处理腔室50内部相关于等离子体的电位(图2的框320)。交替地或等效地,通过控制偏压功率产生器60,来设定等离子体离子能量接近欲蚀刻材料的结合能量。
第三,作为非必要的一个选项,限制电子束能量至数百伏特及几千伏特之间的范围(图2的框330)。此具有最小化电子束的分解或自由基产生的效果。
第四,通过控制供给处理腔室的远程等离子体源的生产率,来独立控制等离子体中的自由基总数(图2的框340)。
具有RF驱动电极的e射束源
发展具工业价值的电子束等离子体源的挑战包含符合以下需求:
1.化学处理兼容性:化学侵略和/或沉积处理气体不应影响e射束源(枪)操作或使其成为不可能,如使用DC电子束源;相反地,e射束枪零件的喷溅不应不利地影响处理。
2.在宽广范围的处理气体腔室压力下操作的能力。
3.强健性,即,在涉及零件置换的预防维修事件之间操作持续长时间的能力。
4.高操作稳定性及可重现性。
5.对射束电子的密度及能量的独立控制。
所需要的是满足前述标准的电子射束源。
图3描绘具有满足上述标准的电子束(e射束)等离子体源的等离子体反应器的实施例。参考图3,装设发射电极110于背板120上。装设背板120于冷却板130上。陶瓷间隔器140及绝缘器150维持发射电极110于相对于电子枪主体160的位置。电子枪主体160可由导电性材料形成且连接至返回电位或至接地。在所示出的实施例中,电子枪主体160沿着e射束传递路径P延伸且在相对于发射电极110的远端处具有射束出口开口160a。放置过滤格网170于射束出口开口160a内。回填气体供给180自气体供应182传导适于充当电子源的气体(例如,氩)进入电子枪主体160的内部。冷却剂液体供给或管道190自冷却剂源192传导冷却剂至冷却板130。RF供给200传导RF功率经由冷却板130及经由背板120至发射电极110。绝缘器210环绕RF供给200的部分。电子枪主体160、发射电极110、背板120、冷却板130、陶瓷间隔器140、绝缘器150、及RF供给200一起形成包含于RF屏蔽件220内的e射束源组件212。RF供给200经由双频阻抗匹配230自RF功率产生器242及244接收RF功率。在一个实施例中,RF功率产生器242产生低频率RF功率且RF功率产生器244产生高频率RF功率。
在一个修改中,可将图3的实施例的e射束源组件212使用为图1的实施例的e射束源组件212。在图4中描绘该修改。
处理腔室260经由开口160a耦合至电子枪主体160,且具有耦合至处理气体供应272的顶棚气体分配器270。处理腔室260内的静电夹具280在平行于射束传递路径P的平面中支撑工件290。
在发射电极110及电子枪主体160(作为RF返回发挥作用)之间将RF等离子体放电点火。可通过RF功率产生器242、244来供应两个RF频率,包含低频率如2MHz及HF或VHF频率如60MHz。此提供对以下的独立控制:(1)等离子体密度(通过HF或VHF功率的级别来控制),决定射束电子的密度,及(2)发射电极110处的DC自偏压(通过低频率功率的级别来控制),决定射束电子的能量。一般而言,可通过控制低频率偏压功率产生器242的输出功率级别来控制射束电子的能量。对射束电子密度的独立控制也可通过新增电感耦合等离子体源至e射束源组件212来达成。
因为电子枪主体160的面积大于发射电极110的面积,RF感应DC自偏压在较小的发射电极110处会大很多,且可达到适合用于电子束技术的级别。例如,在约20mT的电子枪主体160内的内部压力下,自偏压可使用约600W的60MHz功率在约1.5kW的2MHz功率处达到1至1.5kV。在发射电极110处的鞘层中的加速离子轰击电极表面且造成离子感应的次级电子发射。这些发射的次级电子进而在它们移动远离电极表面时于相同鞘层电压下降中加速,导致电子束的形成。因此,发射电极110的发射表面的次级电子发射系数在决定射束电子的密度中扮演非常重大的角色。
将所施加RF功率的绝大部分以热的形式沉积进入发射电极110,原因在于高能量离子的常态轰击。冷却板130具有非传导性的冷却流体运行经过冷却板130,且经由背板120耦合至发射电极110。RF供给200经由冷却板130及背板120耦合至发射电极110。背板120起到RF平板的作用,均匀分配施加的RF功率遍及发射电极110。
过滤格网170具有高的高宽比的开口且防止RF等离子体离子及电子枪主体160内部产生的自由基逸漏进入处理腔室260。进一步地,处理腔室260内部的化学侵略处理气体被阻断而无法进入电子枪主体160内部。通过使用足够高的流动速率供应的惰性气体(例如,氩)回填电子枪主体160内部以产生可观的气体压力下降(例如,约30mT)跨过过滤格网170,来使用回填气体供给180达成此气体分隔。接着,高能量电子可穿过过滤格网170的高的高宽比的开口,原因在于其速度分布的高方向性。
以独立处理的气体回填电子枪主体160内部也允许发射电极110的电极发射表面的修改,以通过在表面上形成例如氮化硅来控制次级电子发射系数。由于等离子体放电的天性,实际上可使用任何材料(硅、陶瓷、石英)以形成发射电极110的发射表面,而不影响e射束源组件212的一般操作。
如果精准选择了发射表面材料,可仅通过运行HF或ICP等离子体(以低很多的自偏压)及适当的化学作用,就地清理由离开发射电极110的离子所喷溅且再次沉积于e射束源组件212的其他零件上的材料。同样地,只要涂覆层的电容足够小,可使用任何具处理兼容性且不必要为传导性的材料来涂覆电子枪主体160的接地表面。进入处理腔室260的喷溅材料的渗入也被过滤格网170可观地限制。
优点:
使用RF驱动电极(即,电极110)而非DC放电以产生电子束的优点为:电子束密度及电子束能量由施加至电极110的高频功率及低频功率个别独立控制。进一步地,在e射束源组件212的建构中可最小化金属或其他传导性材料的使用,而使得任何喷溅材料的经由过滤格网170进入处理腔室260的渗入一般对晶片处理而言较不具损坏性。
在处理腔室中使用平行于工件表面的电子片状射束(e射束)以产生等离子体提供等离子体电子温度Te上(约0.3eV)及等离子体离子能量Ei上(未施加偏压功率时小于2eV)相较于传统等离子体技术一数量级的强度减低。此允许等离子体离子能量减低至接近或低于欲蚀刻的材料(例如,硅、氧化硅、氮化硅)的结合能量。进一步地,因为分解仅由高能量射束电子而非等离子体电子来执行,且因为分解横截面在约2keV的电子束能量或更低处大幅下降,电子束产生的等离子体的化学组成可成为缺乏自由基的。此允许远程自由基源58独立控制等离子体自由基组成。
前述是本发明的实施例,可修改本发明的其他及进一步的实施例而不背离其基本范围,且该范围由随后的权利要求所决定。

Claims (15)

1.一种在处理腔室中处理工件的方法,包括以下步骤:
通过使用平行于所述工件的表面的片状电子束在所述处理腔室中产生等离子体,来限制等离子体电子温度;
通过控制耦合至工件支撑件的偏压功率的级别,来控制相对于所述等离子体的工件电位至介于0及25伏特之间的范围;及
通过控制供给所述处理腔室的远程等离子体源的生产率,来独立地控制所述等离子体中的自由基总数。
2.如权利要求1所述的方法,其中执行所述限制所述等离子体电子温度的步骤以在未施加偏压功率时,限制相对于所述等离子体的工件电位不超过几个伏特。
3.如权利要求1所述的方法,进一步包括以下步骤:限制电子束能量至自亚于keV至几个keV的范围。
4.如权利要求1所述的方法,其中所述控制偏压功率的级别的步骤包括以下步骤:设定所述等离子体的离子能量至欲蚀刻的所述工件中的材料的结合能量的数量级或接近所述结合能量。
5.一种在处理腔室中处理工件的方法,包括以下步骤:
在所述处理腔室中产生等离子体,同时通过在所述处理腔室中传递电子束来限制等离子体电子温度;
控制耦合至工件支撑件的偏压功率的级别,以便设定等离子体离子能量至欲蚀刻的所述工件上的材料的结合能量的数量级或接近所述结合能量;及
通过控制耦合至所述处理腔室的远程等离子体源的生产率,来控制所述等离子体中的自由基总数。
6.如权利要求5所述的方法,其中所述等离子体离子能量对应于在未施加偏压功率时的相对于所述等离子体的工件电位不超过几个伏特。
7.如权利要求5所述的方法,进一步包括以下步骤:限制所述电子束的电子束能量至自亚于keV至几个keV的范围。
8.如权利要求5所述的方法,其中所述控制耦合至工件支撑件的偏压的级别的步骤包括以下步骤:设定所述等离子体离子能量至欲蚀刻的所述材料的结合能量的数量级或接近所述结合能量。
9.一种用于处理工件的等离子体反应器,包括:
电子束枪封闭体,所述电子束枪封闭体具有在所述封闭体的一端处的射束出口开口,且在所述封闭体的相对端处封闭电子发射电极,所述电子发射电极具有面对所述射束出口的电子发射表面,所述射束出口及所述电子发射电极限定出所述射束出口及所述电子发射电极之间的射束传递路径;
RF功率源及RF功率导体,所述RF功率导体在所述RF功率源及所述电子发射电极之间耦合;及
处理腔室,所述处理腔室具有与所述射束出口对齐的射束入口端口,在所述处理腔室中的工件支撑件用于在与所述射束传递路径平行的平面中支撑工件,及耦合至所述处理腔室的气体分配器。
10.如权利要求9所述的等离子体反应器,其中所述RF功率源包括第一RF功率产生器及阻抗匹配,所述阻抗匹配在所述第一RF功率产生器及所述电子发射电极之间耦合。
11.如权利要求10所述的等离子体反应器,其中所述阻抗匹配包括双频阻抗匹配,所述功率源进一步包括第二RF功率产生器,所述第二RF功率产生器具有与所述第一RF功率产生器的频率不同的频率。
12.如权利要求11所述的等离子体反应器,其中所述第一RF功率产生器产生低频率且所述第二RF功率产生器产生高频率。
13.如权利要求9所述的等离子体反应器,进一步包括气体供应,所述气体供应具有供给路径进入所述电子束枪封闭体。
14.如权利要求13所述的等离子体反应器,进一步包括在所述射束出口开口中的离子阻断过滤器,所述离子阻断过滤器准许电子流经所述射束出口。
15.如权利要求9所述的等离子体反应器,进一步包括:
背板,所述背板与所述电子束枪封闭体绝缘且接触所述电子发射电极的背面;
冷却板,所述冷却板接触所述背板;及
其中所述RF功率导体连接至所述冷却板。
CN201680061298.4A 2015-10-29 2016-06-01 用于原子精度蚀刻的独立控制等离子体密度、自由基组成及离子能量的低电子温度蚀刻腔室 Pending CN108140575A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562247949P 2015-10-29 2015-10-29
US62/247,949 2015-10-29
US15/146,133 2016-05-04
US15/146,133 US9799491B2 (en) 2015-10-29 2016-05-04 Low electron temperature etch chamber with independent control over plasma density, radical composition and ion energy for atomic precision etching
PCT/US2016/035313 WO2017074514A1 (en) 2015-10-29 2016-06-01 Low electron temperature etch chamber with independent control over plasma density, radical composition and ion energy for atomic precision etching

Publications (1)

Publication Number Publication Date
CN108140575A true CN108140575A (zh) 2018-06-08

Family

ID=58631963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680061298.4A Pending CN108140575A (zh) 2015-10-29 2016-06-01 用于原子精度蚀刻的独立控制等离子体密度、自由基组成及离子能量的低电子温度蚀刻腔室

Country Status (6)

Country Link
US (2) US9799491B2 (zh)
JP (1) JP2019500741A (zh)
KR (1) KR20180063359A (zh)
CN (1) CN108140575A (zh)
TW (1) TWI689966B (zh)
WO (1) WO2017074514A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797245A (zh) * 2019-10-28 2020-02-14 北京北方华创微电子装备有限公司 一种半导体加工设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165090A (ja) * 2018-03-19 2019-09-26 東芝メモリ株式会社 半導体装置の製造方法および半導体製造装置
US10665416B2 (en) 2018-07-19 2020-05-26 Tokyo Electron Limited Substrate processing apparatus
KR20210042939A (ko) * 2018-09-05 2021-04-20 도쿄엘렉트론가부시키가이샤 전자빔 매개 플라즈마 에칭 및 증착 공정을 위한 장치 및 공정
US20200135431A1 (en) * 2018-10-25 2020-04-30 Tokyo Electron Limited Tailored Electron Energy Distribution Function by New Plasma Source: Hybrid Electron Beam and RF Plasma
US11393662B2 (en) * 2019-05-14 2022-07-19 Tokyo Electron Limited Apparatuses and methods for plasma processing
US11972943B2 (en) * 2019-09-20 2024-04-30 Applied Materials, Inc. Methods and apparatus for depositing dielectric material
KR20210042694A (ko) 2019-10-10 2021-04-20 삼성전자주식회사 전자 빔 발생기, 이를 갖는 플라즈마 처리 장치 및 이를 이용한 플라즈마 처리 방법
US20230369033A1 (en) * 2021-11-12 2023-11-16 Mks Instruments, Inc. Methods and Systems for Feedback Control in Plasma Processing Using Radical Sensing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346492A (zh) * 2005-12-21 2009-01-14 朗姆研究公司 用于优化的等离子室接地电极总成的设备
CN101499399A (zh) * 2008-02-01 2009-08-05 株式会社东芝 衬底等离子体处理设备和等离子体处理方法
CN101630624A (zh) * 2003-12-18 2010-01-20 应用材料公司 双频rf匹配
US20110240877A1 (en) * 2010-04-05 2011-10-06 Varian Semiconductor Equipment Associates, Inc. Temperature controlled ion source
CN102763198A (zh) * 2009-09-25 2012-10-31 应用材料公司 感应耦合等离子体反应器中的高效气体离解的方法和设备
US20140273538A1 (en) * 2013-03-15 2014-09-18 Tokyo Electron Limited Non-ambipolar electric pressure plasma uniformity control
US20140339980A1 (en) * 2013-05-16 2014-11-20 Applied Materials, Inc. Electron beam plasma source with remote radical source

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3803355A1 (de) * 1988-02-05 1989-08-17 Leybold Ag Teilchenquelle fuer eine reaktive ionenstrahlaetz- oder plasmadepositionsanlage
JPH0547338A (ja) * 1991-08-16 1993-02-26 Nissin Electric Co Ltd イオンビーム中性化装置
JPH10223607A (ja) * 1997-02-03 1998-08-21 Mitsubishi Electric Corp プラズマ処理装置
JP2970654B1 (ja) * 1998-05-22 1999-11-02 日新電機株式会社 薄膜形成装置
US6446572B1 (en) * 2000-08-18 2002-09-10 Tokyo Electron Limited Embedded plasma source for plasma density improvement
TWI253478B (en) * 2001-11-14 2006-04-21 Mitsubishi Heavy Ind Ltd Barrier metal film production apparatus, barrier metal film production method, metal film production method, and metal film production apparatus
JP3948378B2 (ja) * 2002-09-13 2007-07-25 三菱電機株式会社 電子発生装置
US20050040037A1 (en) 2003-08-20 2005-02-24 Walton Scott G. Electron beam enhanced large area deposition system
US7879185B2 (en) * 2003-12-18 2011-02-01 Applied Materials, Inc. Dual frequency RF match
KR100978886B1 (ko) 2007-02-13 2010-08-31 가부시키가이샤 히다치 하이테크놀로지즈 플라즈마처리방법 및 플라즈마처리장치
TW200849325A (en) * 2007-02-13 2008-12-16 Hitachi High Tech Corp Plasma processing method and plasma processing apparatus
US8992741B2 (en) * 2008-08-08 2015-03-31 Applied Materials, Inc. Method for ultra-uniform sputter deposition using simultaneous RF and DC power on target
DE102010026919A1 (de) * 2010-07-13 2012-01-19 Leopold Kostal Gmbh & Co. Kg Verfahren zur Erfassung einer Schaltstellung einer Schalteinrichtung
KR101900527B1 (ko) * 2011-04-11 2018-09-19 램 리써치 코포레이션 반도체 프로세싱을 위한 e-빔 강화된 디커플링 소스
US9111728B2 (en) * 2011-04-11 2015-08-18 Lam Research Corporation E-beam enhanced decoupled source for semiconductor processing
US9177756B2 (en) * 2011-04-11 2015-11-03 Lam Research Corporation E-beam enhanced decoupled source for semiconductor processing
US20120258607A1 (en) * 2011-04-11 2012-10-11 Lam Research Corporation E-Beam Enhanced Decoupled Source for Semiconductor Processing
US8765234B2 (en) 2011-07-29 2014-07-01 Applied Materials, Inc. Electron beam plasma chamber
US9129777B2 (en) * 2011-10-20 2015-09-08 Applied Materials, Inc. Electron beam plasma source with arrayed plasma sources for uniform plasma generation
US8951384B2 (en) * 2011-10-20 2015-02-10 Applied Materials, Inc. Electron beam plasma source with segmented beam dump for uniform plasma generation
US20130098872A1 (en) * 2011-10-20 2013-04-25 Applied Materials, Inc. Switched electron beam plasma source array for uniform plasma production
US9443700B2 (en) * 2013-03-12 2016-09-13 Applied Materials, Inc. Electron beam plasma source with segmented suppression electrode for uniform plasma generation
US9177824B2 (en) * 2013-06-12 2015-11-03 Applied Materials, Inc. Photoresist treatment method by low bombardment plasma
US9378941B2 (en) 2013-10-02 2016-06-28 Applied Materials, Inc. Interface treatment of semiconductor surfaces with high density low energy plasma
US9362131B2 (en) * 2014-08-29 2016-06-07 Applied Materials, Inc. Fast atomic layer etch process using an electron beam

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630624A (zh) * 2003-12-18 2010-01-20 应用材料公司 双频rf匹配
CN101346492A (zh) * 2005-12-21 2009-01-14 朗姆研究公司 用于优化的等离子室接地电极总成的设备
CN101499399A (zh) * 2008-02-01 2009-08-05 株式会社东芝 衬底等离子体处理设备和等离子体处理方法
CN102763198A (zh) * 2009-09-25 2012-10-31 应用材料公司 感应耦合等离子体反应器中的高效气体离解的方法和设备
US20110240877A1 (en) * 2010-04-05 2011-10-06 Varian Semiconductor Equipment Associates, Inc. Temperature controlled ion source
US20140273538A1 (en) * 2013-03-15 2014-09-18 Tokyo Electron Limited Non-ambipolar electric pressure plasma uniformity control
US20140339980A1 (en) * 2013-05-16 2014-11-20 Applied Materials, Inc. Electron beam plasma source with remote radical source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797245A (zh) * 2019-10-28 2020-02-14 北京北方华创微电子装备有限公司 一种半导体加工设备

Also Published As

Publication number Publication date
TWI689966B (zh) 2020-04-01
KR20180063359A (ko) 2018-06-11
WO2017074514A1 (en) 2017-05-04
JP2019500741A (ja) 2019-01-10
US9799491B2 (en) 2017-10-24
TW201715560A (zh) 2017-05-01
US20180053631A1 (en) 2018-02-22
US20170125217A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
CN108140575A (zh) 用于原子精度蚀刻的独立控制等离子体密度、自由基组成及离子能量的低电子温度蚀刻腔室
US20230317412A1 (en) Pulsed plasma chamber in dual chamber configuration
CN105379428B (zh) 等离子体处理装置和等离子体处理方法
KR101475546B1 (ko) 플라즈마 에칭 방법, 플라즈마 에칭 장치 및 기억 매체
KR101419975B1 (ko) 음이온 플라즈마를 생성하는 처리 시스템 및 중성빔 소스
TW201903179A (zh) 電漿反應器中類鑽石碳的沉積或處理及電漿反應器
US9564297B2 (en) Electron beam plasma source with remote radical source
KR20210038938A (ko) 플라즈마 공정을 위한 방법 및 장치
KR102311575B1 (ko) 피처리체를 처리하는 방법
US20100098882A1 (en) Plasma source for chamber cleaning and process
KR102414852B1 (ko) 에너지 중성자를 생성하기 위한 시스템들 및 방법들
JP2014057057A (ja) 増強プラズマ処理システム内でのプラズマ強化エッチング
KR20130138813A (ko) 게르마늄 및 붕소 이온 주입들을 위한 co-가스의 실행
US20180277340A1 (en) Plasma reactor with electron beam of secondary electrons
CN105489485A (zh) 处理被处理体的方法
US6909087B2 (en) Method of processing a surface of a workpiece
KR102045059B1 (ko) 고밀도 선형 유도 결합형 플라즈마 소스
KR102340365B1 (ko) 유도 결합형 플라즈마 소스용 안테나 구조
EP3719833A1 (en) Surface processing apparatus
KR20220156070A (ko) 기판 프로세싱 챔버를 위한 유전체 윈도우
WO2020031731A1 (ja) プラズマ処理方法及びプラズマ処理装置
KR101016810B1 (ko) 플라즈마 표면처리 장치
JP6801483B2 (ja) プラズマ発生装置およびプラズマ発生方法
TW202139782A (zh) 電漿處理裝置及電漿處理方法
KR20200091811A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180608

WD01 Invention patent application deemed withdrawn after publication