CN108110051B - 一种带沟槽结构的双极型晶体管及其制作方法 - Google Patents

一种带沟槽结构的双极型晶体管及其制作方法 Download PDF

Info

Publication number
CN108110051B
CN108110051B CN201711374117.6A CN201711374117A CN108110051B CN 108110051 B CN108110051 B CN 108110051B CN 201711374117 A CN201711374117 A CN 201711374117A CN 108110051 B CN108110051 B CN 108110051B
Authority
CN
China
Prior art keywords
groove
transistor
mentioned
metal silicide
bipolar junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711374117.6A
Other languages
English (en)
Other versions
CN108110051A (zh
Inventor
朱巧智
刘巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201711374117.6A priority Critical patent/CN108110051B/zh
Priority to US15/944,801 priority patent/US10347753B1/en
Publication of CN108110051A publication Critical patent/CN108110051A/zh
Priority to US16/427,356 priority patent/US10535753B2/en
Application granted granted Critical
Publication of CN108110051B publication Critical patent/CN108110051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/735Lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0808Emitter regions of bipolar transistors of lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6625Lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

本发明涉及半导体结构及其制造工艺,提供了一种带沟槽结构的双极型晶体管制造方法,具体包括:提供半导体衬底;制作浅沟槽隔离结构以定义器件有源区;在上述有源区形成N型阱和P型阱以定义上述双极型晶体管的第一区域、第二区域以及第三区域;对上述第一区域内邻接上述浅沟槽隔离结构的部分进行蚀刻以形成沟槽;执行离子注入以形成上述双极型晶体管的发射极、基极和集电极;在上述沟槽内形成金属硅化物阻挡结构;形成上述双极型晶体管的金属电极,其中上述发射极形成在上述第一区域内。本发明还提供了一种带沟槽结构的双极型晶体管。根据本发明所提供的晶体管,能够有效提高电流增益的增幅并保证电流增益的稳定性。

Description

一种带沟槽结构的双极型晶体管及其制作方法
技术领域
本发明涉及一种双极型晶体管结构及其制造方法,尤其涉及一种带沟槽结构的双极型晶体管结构及其制造方法。
背景技术
自从早年德州仪器的Jack Kilby博士发明了集成电路之时起,科学家们和工程师们已经在半导体器件和工艺方面作出了众多发明和改进。近50年来,半导体尺寸已经有了明显的降低,这转化成不断增长的处理速度和不断降低的功耗。迄今为止,半导体的发展大致遵循着摩尔定律,摩尔定律大致是说密集集成电路中晶体管的数量约每两年翻倍。现在,半导体工艺正在朝着20nm以下发展,其中一些公司正在着手14nm工艺。这里仅提供一个参考,一个硅原子约为0.2nm,这意味着通过20nm工艺制造出的两个独立组件之间的距离仅仅约为一百个硅原子。
半导体器件制造因此变得越来越具有挑战性,并且朝着物理上可能的极限推进。半导体技术的近期发展之一已经是硅锗(SiGe)在半导体制造中的利用。在集成电路发展的演进上,随着几何尺寸(也即使用一工艺可以生产的最小元件或线)缩减的同时,机能密度(例如每一芯片面积的内连线元件数目)通常也在增加。这种尺寸缩减的工艺通常可增加生产效能并降低相关成本而提供好处,然而,尺寸缩减也会产生相对较高的功率耗损值,关于这点,可以利用低功率耗损元件,例如互补式金属氧化物半导体晶体管(CMOS)来解决。目前常用的集成电路大多数是基于CMOS工艺实现的。
带隙基准电压源作为一种常用的集成电路,广泛应用于模拟、数字和数模混合电路中,为IC芯片提供高精度的基准电压。当前CMOS集成电路工艺中,带隙基准电压源通常基于寄生双极型晶体管进行设计。为了增加CMOS集成工艺中寄生双极型晶体管的电流增益,传统工艺技术通常会在晶体管发射极留下一定宽度的金属硅化物阻挡区域(SAB,salicideblock layer),使得该区域不能形成金属硅化物和电极。图1A示出了现有技术中寄生双极型晶体管NPN管的结构示意图。如图1A所示,现有技术中的半导体结构具有半导体衬底101,浅沟槽隔离结构102(STI,Shallow Trench Isolation)、P型阱103、N型阱104,被浅沟槽隔离结构102以及P、N型阱隔开的第一有源区105A、第二有源区105B和第三有源区105C,其中第一有源区上方形成有发射极106A以及发射极电极106B、第二有源区上方形成有基极107A以及基极电极107B、第三有源区上方形成有集电极108A以及集电极电极108B。发射极106A上表面邻接STI结构102的部分留有SAB区域109,使得该区域不能形成金属硅化物和电极。通过上述现有技术,能够一定程度地增加双极型晶体管的电流增益。但由于发射极区域面积有限,留给SAB区域109的面积有限,因此寄生双极型晶体管电流增益增加幅度一直也受到很大限制。
同时,如图1B所示,由于前层多步清洗和蚀刻工艺会在第一有源区105A发射极区域106A与STI结构102的边角区域形成形貌不平整区域110,该区域会影响SAB区域109的面积以及晶体管的电场分布,导致双极型晶体管电流增益的稳定性较差。
基于上述理由,需要一种新型的晶体管结构及其制造方法,使得用于带隙基准电压源的双极型晶体管具有范围更大的电流增益幅度以及稳定性更佳的电流增益。
发明内容
以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在指认出所有方面的关键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一的目的是要以简化形式给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之序。
为了使用于带隙基准电压源的双极型晶体管具有范围更大的电流增益幅度以及稳定性更佳的电流增益,本发明提供了一种带沟槽结构的双极型晶体管制造方法,具体包括:提供半导体衬底;制作浅沟槽隔离结构以定义器件有源区;在上述有源区形成N型阱和P型阱以定义上述双极型晶体管的第一区域、第二区域以及第三区域;对上述第一区域内邻接上述浅沟槽隔离结构的部分进行蚀刻以形成沟槽;执行离子注入以形成上述双极型晶体管的发射极、基极和集电极;在上述沟槽内形成金属硅化物阻挡结构;形成上述双极型晶体管的金属电极,其中上述发射极形成在上述第一区域内。
在上述方法的一实施例中,上述沟槽的一端为上述浅沟槽隔离结构,另一端的形状根据上述晶体管要求达到的电流增益调节。
在上述方法的一实施例中,上述沟槽的另一端具有直角结构。
在上述方法的一实施例中,上述沟槽的体积与上述晶体管要求达到的电流增益成正比。
在上述方法的一实施例中,形成上述金属硅化物阻挡结构包括:在上述沟槽内以及上述晶体管表面沉积金属硅化物阻挡介质;对沉积后的上述晶体管刻蚀处理,去除上述发射极、上述基极和上述集电极表面的上述金属硅化物阻挡介质,保留上述沟槽内的上述金属硅化物阻挡介质。
在上述方法的一实施例中,上述沉积金属硅化物阻挡介质采用化学汽相沉积工艺。
在上述方法的一实施例中,上述金属硅化物阻挡介质为二氧化硅、氮化硅中的一者或多者。
在上述方法的一实施例中,采用干法蚀刻、湿法蚀刻或干湿法结合中的一种工艺对沉积后的上述晶体管进行平坦化处理。
本发明还提供了一种带沟槽结构的双极型晶体管,具体包括:半导体衬底;第一有源区、第二有源区和第三有源区,上述有源区之间通过浅沟槽隔离结构隔离;上述第一有源区上部区域内邻接上述浅沟槽隔离结构的部分具有沟槽结构;上述第一有源区上部具有发射极、上述第二有源区上部具有基极以及上述第三有源区上部具有集电极;上述沟槽结构内具有金属硅化物阻挡结构;上述发射极、上述基极、上述集电极表面具有金属电极。
在上述晶体管的一实施例中,上述沟槽的一端为上述浅沟槽隔离结构,另一端的形状根据上述晶体管要求达到的电流增益调节。
在上述晶体管的一实施例中,上述沟槽的另一端具有直角结构。
在上述晶体管的一实施例中,上述沟槽的体积与上述晶体管要求达到的电流增益成正比。
在上述晶体管的一实施例中,上述金属硅化物阻挡结构为在上述沟槽内以及上述晶体管表面沉积的金属硅化物阻挡介质;以及刻蚀处理沉积后的上述晶体管,去除上述发射极、上述基极和上述集电极表面的上述金属硅化物阻挡介质,保留在上述沟槽内的上述金属硅化物阻挡介质。
在上述晶体管的一实施例中,上述金属硅化物阻挡介质为二氧化硅、氮化硅中的一者或多者。
根据本发明所提供的带沟槽结构的双极型晶体管,通过在执行离子注入以形成晶体管集电极、基极、发射极之前在发射极邻接STI区域蚀刻形成沟槽结构,消除了前层工艺导致的有源区与浅沟道隔离结构接触角形貌的不平整。并且在沟槽结构内沉积金属硅化物阻挡介质,提升了晶体管电流增益稳定性的同时,阻止沟槽区域在后续工艺中形成金属硅化物和电极,并且由于是沟槽结构的SAB结构,电流增益的提高幅度范围较现有技术而言大幅提高。在保证电流增益稳定性的同时有效提高电流增益的增幅,克服了现有技术中存在的不足。
附图说明
图1A示出了现有技术中双极型晶体管NPN管的结构示意图。
图1B示出了现有技术中双极型晶体管NPN管的结构缺陷的示意图。
图2A-2H示出了根据本发明提供的一实施例制造过程的晶体管结构示意图。
图3A-3C示出了双极型晶体管电子电流分布对比示意图,其中图3A为无SAB结构的双极型晶体管,图3B为平面型SAB双极型晶体管,图3C为沟槽型SAB双极型晶体管。
图4A-4C示出了双极型晶体管空穴电流分布对比示意图,其中图4A为无SAB结构的双极型晶体管,图4B为平面型SAB双极型晶体管,图4C为沟槽型SAB双极型晶体管。
图5示出了无SAB结构、平面型SAB、沟槽型SAB双极型晶体管的电流增益对比示意图。
图6示出了沟槽型SAB双极型晶体管在沟槽宽、深不同情况下的电流增益对比示意图。
具体实施方式
本发明涉及半导体工艺与器件。更具体地,本发明的实施例提供一种半导体器件,该半导体器件包括沟槽结构,该沟槽结构内填充有SAB金属硅化物阻挡结构。还提供了其他实施例。
给出以下描述以使得本领域技术人员能够实施和使用本发明并将其结合到具体应用背景中。各种变型、以及在不同应用中的各种使用对于本领域技术人员将是容易显见的,并且本文定义的一般性原理可适用于较宽范围的实施例。由此,本发明并不限于本文中给出的实施例,而是应被授予与本文中公开的原理和新颖性特征相一致的最广义的范围。
在以下详细描述中,阐述了许多特定细节以提供对本发明的更透彻理解。然而,对于本领域技术人员显而易见的是,本发明的实践可不必局限于这些具体细节。换言之,公知的结构和器件以框图形式示出而没有详细显示,以避免模糊本发明。
请读者注意与本说明书同时提交的且对公众查阅本说明书开放的所有文件及文献,且所有这样的文件及文献的内容以参考方式并入本文。除非另有直接说明,否则本说明书(包含任何所附权利要求、摘要和附图)中所揭示的所有特征皆可由用于达到相同、等效或类似目的的可替代特征来替换。因此,除非另有明确说明,否则所公开的每一个特征仅是一组等效或类似特征的一个示例。
而且,权利要求中未明确表示用于执行特定功能的装置、或用于执行特定功能的步骤的任意组件皆不应被理解为如35USC第112章节第6段中所规定的装置或步骤条款。特别地,在此处的权利要求中使用“….的步骤”或“….的动作”并不表示涉及35USC§112第6段的规定。
注意,在使用到的情况下,标志左、右、前、后、顶、底、正、反、顺时针和逆时针仅仅是出于方便的目的所使用的,而并不暗示任何具体的固定方向。事实上,它们被用于反映对象的各个部分之间的相对位置和/或方向。
如本文使用的术语“在...上方(over)”、“在...下方(under)”、“在...之间(between)”和“在...上(on)”指的是这一层相对于其它层的相对位置。同样地,例如,被沉积或被放置于另一层的上方或下方的一层可以直接与另一层接触或者可以具有一个或多个中间层。此外,被沉积或被放置于层之间的一层可以直接与这些层接触或者可以具有一个或多个中间层。相比之下,在第二层“上”的第一层与该第二层接触。此外,提供了一层相对于其它层的相对位置(假设相对于起始基底进行沉积、修改和去除薄膜操作而不考虑基底的绝对定向)。
如上所提及的,半导体器件制造变得越来越具有挑战性,并且朝着物理上可能的极限推进。半导体技术的近期发展之一已经是硅锗(SiGe)在半导体制造中的利用。在集成电路发展的演进上,随着几何尺寸(也即使用一工艺可以生产的最小元件或线)缩减的同时,机能密度(例如每一芯片面积的内连线元件数目)通常也在增加。这种尺寸缩减的工艺通常可增加生产效能并降低相关成本而提供好处,然而,尺寸缩减也会产生相对较高的功率耗损值,关于这点,可以利用低功率耗损元件,例如互补式金属氧化物半导体晶体管(CMOS)来解决。
带隙基准电压源广泛应用于模拟、数字和数模混合电路中,为IC芯片提供高精度的基准电压。当前CMOS集成电路工艺中,带隙基准电压源通常基于寄生双极型晶体管进行设计。为了增加CMOS集成工艺中寄生双极型晶体管的电流增益,传统工艺技术通常会在晶体管发射极留下一定宽度的金属硅化物阻挡区域(SAB,salicide block layer),使得该区域不能形成金属硅化物和电极。
图1A示出了现有技术中寄生双极型晶体管NPN管的结构示意图。如图1A所示,现有技术中的半导体结构具有半导体衬底101,浅沟槽隔离结构102(STI,Shallow TrenchIsolation)、P型阱103、N型阱104,被浅沟槽隔离结构102以及P、N型阱隔开的第一有源区105A、第二有源区105B和第三有源区105C,其中第一有源区上方形成有发射极106A以及发射极电极106B、第二有源区上方形成有基极107A以及基极电极107B、第三有源区上方形成有集电极108A以及集电极电极108B。发射极106A上表面邻接STI结构102的部分留有SAB区域109,使得该区域不能形成金属硅化物和电极。通过上述现有技术,能够一定程度地增加双极型晶体管的电流增益。但由于发射极区域面积有限,留给SAB区域109的面积有限,因此寄生双极型晶体管电流增益增加幅度一直也受到很大限制。
同时,图1B示出了现有技术中双极型晶体管NPN管结构缺陷的示意图。如图1B所示,由于前层多步清洗和蚀刻工艺会在第一有源区105A发射极区域106A与STI结构102的边角区域形成形貌不平整区域110,该区域会影响SAB区域109的面积以及晶体管的电场分布,导致双极型晶体管电流增益的稳定性较差。
本发明提供了一种带沟槽结构的双极型晶体管制造方法,使得用于带隙基准电压源的双极型晶体管具有范围更大的电流增益幅度以及稳定性更佳的电流增益。
图2A-2H示出了图解根据本发明实施例的用于提供带沟槽结构的双极型晶体管NPN管工艺流程的简化示图。这些示图仅提供示例,不应不当地限制权利要求的范围。本领域技术人员将领会到有许多变体、替换方案、以及变型。取决于实现,可以添加、移除、重复、重新排列、修改、替换、和/或交迭一个或更多个步骤,并且这不影响权利要求的保护范围。本领域技术人员应当明白,双极型晶体管PNP管的制造工艺流程与NPN管的制造工艺流程类似。
如图2A所示,先提供本发明所使用的半导体衬底201,衬底201可以是诸如硅晶圆的半导体晶圆。可选地或额外地,衬底201可以包括元素半导体材料、化合物半导体材料和/或合金半导体材料。元素半导体材料的实例可以是但不限于晶体硅、多晶硅、非晶硅、锗和/或金刚石。化合物半导体材料的实例可以是但不限于碳化硅、砷化镓、磷化镓、磷化铟、砷化铟和/或锑化铟。合金半导体材料的实例可以是但不限于SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP和/或GaInAsP。
图2B示出了在衬底201中形成隔离部件202A、202B,在本实施例中,本发明所采用的隔离部件通过浅沟槽隔离工艺(STI,Shallow Trench Isolation),浅沟槽隔离工艺STI包括但不限于浅沟槽刻蚀、氧化物填充和氧化物平坦化。其中浅沟槽刻蚀包括但不限于隔离氧化层、氮化物沉淀、采用掩膜版进行浅槽隔离以及进行STI浅槽刻蚀。其中STI氧化物填充包括但不限于沟槽衬垫氧化硅、沟槽CVD(化学气相沉积)氧化物填充或PVD(物理气相沉积)氧化物填充。其中硅片表面的平坦化可以通过多种方法实现。可以通过使用SOG(spin-on-glass)填充间隙实现硅片的平坦化,SOG可以由80%的溶剂与20%的二氧化硅构成,淀积之后烘焙SOG,蒸发掉溶剂,将二氧化硅留在间隙当中,也可以进行全部表面的反刻,以减少整个硅片的厚度。亦可以通过CMP工艺(也称为抛光工艺)有效地进行平坦化处理,包括但不限于对沟槽氧化物进行抛光(可以采用化学机械抛光)以及氮化物去除。
图2C示出了在衬底201中进行离子注入,以形成晶体管的N型阱和P型阱。由于是形成本发明提供的双极型晶体管的NPN晶体管,P型阱203与N型阱204之间通过浅沟槽202B隔开,第一有源区205A和第二有源区形成在P型阱部分,通过浅沟槽202A隔开,第三有源区205C形成在N型阱204部分。其中每个阱的形成都至少包括三到五个步骤来完成制作,包括但不限于外延生长、原氧化生长、采用掩膜版进行离子注入,并再次高能的离子注入以及退火工序。
图2D示出了在第一有源区205A上部与STI沟槽202A邻接处具有沟槽结构的示意图。在所述第一有源区205A上部形成沟槽结构可以采用干法刻蚀或湿法腐蚀的工艺和/或其他蚀刻方法(例如,反应离子蚀刻)。沟槽210的一端与浅沟槽隔离结构202A邻接,沟槽210的另一端的形状可以根据晶体管要求达到的电流增益调节,在本实施例中,沟槽210的另一端具有直角结构。沟槽210的深度以及宽度可以根据实际晶体管要求达到的电流增益进行调节。沟槽210的体积与晶体管所要求达到的电流增益成正比,沟槽210的体积越大,则晶体管能够达到的电流增益越大。通过形成沟槽结构210的工艺,能够将现有技术中由于前层多步清洗和蚀刻工艺造成的边角样貌不平整区域110去除,改善了现有技术中器件存在的缺陷。
图2E示出了在第一有源区205A、第二有源区205B以及第三有源区205C上部执行离子注入,并形成晶体管发射极206A、基极207A、集电极208A的示意图。在本实施例中,发射极206A为N型掺杂,可具有掺杂物,例如砷(As)、磷(P)、其他第五族(group V)元素或前述的组合。基极207A为P型掺杂,可具有掺杂物,例如硼(B)或其他第三族(group III)元素。集电极208A为N型掺杂,可具有掺杂物,例如砷(As)、磷(P)、其他第五族(group V)元素或前述的组合。在其他实施例中,源极/漏极区可包含硅化物,以达到低电阻,硅化物的材料可包括例如NiSi、NiPtSi、NiPtGeSi、NiGeSi、YbSi、PtSi、IrSi、ErSi、CoSi、其他合适的材料,和/或前述的组合。
图2F-G示出了在沟槽210中形成金属硅化物阻挡结构211B的示意图,首先,在半导体衬底201上沉积一层金属硅化物阻挡介质211A,如图2F所示,沉积的SAB介质211A将沟槽210填满并且均匀覆盖在衬底201上。随后,通过蚀刻工艺,将均匀覆盖在衬底201表面的SAB介质去除,保留留在沟槽210内的SAB介质211B。上述沉积工艺包括但不限于,通过化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、高密度等离子体CVD(HDPCVD)、金属有机CVD(MOCVD)或等离子体增强CVD(PECVD)形成SAB介质层211A。上述蚀刻工艺包括但不限于干法刻蚀或湿法腐蚀的工艺和/或其他蚀刻方法(例如,反应离子蚀刻)。其中SAB金属硅化物阻挡介质包括但不限于二氧化硅、氮化硅。
通过在第一有源区205A靠近STI浅沟槽隔离结构202A部分形成沟槽,并且在其中填充金属硅化物阻挡介质,使得沟槽210表面由于SAB介质的存在,不能在后续的工艺中形成金属电极。由于该部分不能形成金属电极的区域在晶体管的发射极区域,因此电流的集肤效应使部分发射极电流聚集在SAB介质区域附近,从而中和部分基极区域电流,达到增加晶体管电流增益的效果。同时,由于本发明所提供的带沟槽结构的双极型晶体管的SAB介质形成在事前蚀刻的沟槽内,SAB介质的体积与沟槽体积一致,可以通过工艺参数控制,使SAB介质区域更大,使得SAB区域周围能够集肤的电流聚集得更多,因此对应能够中和的基极区域电流更大,基极区域的复合电流降低,使得晶体管的电流增益增加。同时,通过控制实现蚀刻沟槽的宽度以及深度,能够对SAB区域进行调节,相应地对晶体管电流增益进行可控调节。
图2H示出了本发明所提供的晶体管的一实施例结构示意图,如图2H所示,对形成SAB金属硅化物阻挡结构211B后的晶体管进行后续金属电极的形成,包括但不限于金属接触形成硅化物接触将金属和硅紧密结合在一起,局部互连形成晶体管和触点间的金属连线,层间介质沉积介质并制作连接局部互连金属与金属层的通孔,用于金属刻蚀的金属淀积金属三明治结构并刻印该层金属,淀积第二层层间介质以及通孔并且淀积金属叠加结构,淀积和刻蚀第三层层间介质以及压点蚀刻、合金化重复成膜工艺直到金属压焊点淀积完毕等。
正如上述,根据本发明所提供的带沟槽结构的双极型晶体管,由于在发射极与浅沟槽隔离结构之间形成了沟槽结构,并且在其中形成有金属硅化物阻挡介质,使得上述区域在后续不能形成金属电极,通过电流的集肤效应使得一部分发射极电流聚集在SAB沟槽区域附近,中和部分基区电流,以提高晶体管电流增益。并且因为沟槽的蚀刻,将原本由于前层多步清洗和蚀刻工艺造成的STI结构边角区域的样貌不平整区域去除,使晶体管的电场分布更为均匀,提高了电流增益的稳定性。
图3A-3C示出了双极型晶体管电子电流分布对比示意图,其中图3A为无SAB结构的双极型晶体管,图3B为平面型SAB双极型晶体管,图3C为沟槽型SAB双极型晶体管。从图中可以看出,并没有电子聚集在如图3A所示的无SAB结构的双极型晶体管的发射极区域,而在如图3B所示的平面型双极型晶体管,有一部分电子聚集在SAB区域的发射极,但电子聚集的量受制于SAB区域的大小,而如图3C所示,也就是本发明所提供的带沟槽的SAB双极型晶体管,大量电子聚集在发射极区域,能够中和基区电流,提高双极型晶体管的电流增益。
图4A-4C示出了双极型晶体管空穴电流分布对比示意图,其中图4A为无SAB结构的双极型晶体管,图4B为平面型SAB双极型晶体管,图4C为沟槽型SAB双极型晶体管。从图中可以看出,由于没有电子聚集在如图3A所示的无SAB结构的双极型晶体管的发射极区域,图4A中基极区域的空穴电流较大,而在如图4B所示的平面型双极型晶体管,有一部分电子聚集在SAB区域的发射极(图3B所示),因此在如图4B中,一部分基区的空穴电流被中和,但由于电子聚集的量受制于SAB区域的大小,空穴电流被中和的量也有所限制。而如图4C所示,也就是本发明所提供的带沟槽的SAB双极型晶体管,大量电子聚集在发射极区域(图3C所示),中和大量基区空穴电流,提高双极型晶体管的电流增益。
图5示出了无SAB结构、平面型SAB、沟槽型SAB双极型晶体管的电流增益对比示意图。在其余条件不变的情况下,无SAB结构的电流增益最大为2.3,而平面型SAB晶体管的电流增益最大为3.0,本发明所提供的沟槽型SAB晶体管的电流增益最大为3.6,高于无SAB和平面型SAB晶体管,能够带来更大的电流增益。
图6示出了沟槽型SAB双极型晶体管在沟槽宽度确定、深度不同的情况下的电流增益对比示意图。从图中可以看出,当沟槽的宽度一致时,随着沟槽深度的增加,晶体管能够达到的电流增益越大。其中当沟槽深度为0时,相当于平面型SAB能够提供的电流增益。因此,可以知道,沟槽的形状可以根据晶体管所要求达到的不同的电流增益进行调节,沟槽的体积与晶体管所要求达到的电流增益成正比。
至此,已经描述了用于制作带沟槽的双极型晶体管的方法及其结构的实施例。尽管已经关于特定的示例性实施例描述了本公开,但将明显的是,可以对这些实施例做出各种修改和改变而不偏离本公开的更广泛的精神和范围。因此,本说明书和附图应被视为是说明性的含义而不是限制性的含义。
应当理解的是,本说明书将不用于解释或限制权利要求的范围或意义。此外,在前面的详细描述中,可以看到的是,各种特征被在单个实施例中组合在一起以用于精简本公开的目的。本公开的此方法不应被解释为反映所要求保护的实施例要求比在每个权利要求中明确列举的特征更多的特征的目的。相反,如所附权利要求所反映的,创造性主题在于少于单个所公开的实施例的所有特征。因此,所附权利要求据此并入详细描述中,其中每个权利要求独立地作为单独的实施例。
在该描述中提及的一个实施例或实施例意在结合该实施例描述的特定的特征、结构或特性被包括在电路或方法的至少一个实施例中。在说明书中各处出现的短语一个实施例不一定全部指的是同一实施例。

Claims (14)

1.一种带沟槽结构的双极型晶体管制造方法,其特征在于,所述方法包括:
提供半导体衬底;
制作浅沟槽隔离结构以定义器件有源区;
在所述有源区形成N型阱和P型阱以定义所述双极型晶体管的第一区域、第二区域以及第三区域;
对所述第一区域上部邻接所述浅沟槽隔离结构的部分进行蚀刻以形成沟槽;
执行离子注入以形成所述双极型晶体管的发射极、基极和集电极;
在所述沟槽内形成金属硅化物阻挡结构;
形成所述双极型晶体管的金属电极,其中
所述发射极形成在所述第一区域内,包围所述沟槽的侧壁和底部。
2.如权利要求1所述的方法,其特征在于,所述沟槽的一端为所述浅沟槽隔离结构,另一端的形状根据所述晶体管要求达到的电流增益调节。
3.如权利要求2所述的方法,其特征在于,所述沟槽的另一端具有直角结构。
4.如权利要求1所述的方法,其特征在于,所述沟槽的体积与所述晶体管要求达到的电流增益成正比。
5.如权利要求1所述的方法,其特征在于,形成所述金属硅化物阻挡结构包括:
在所述沟槽内以及所述晶体管表面沉积金属硅化物阻挡介质;
对沉积后的所述晶体管刻蚀处理,去除所述发射极、所述基极和所述集电极表面的所述金属硅化物阻挡介质,保留所述沟槽内的所述金属硅化物阻挡介质。
6.如权利要求5所述的方法,其特征在于,所述沉积金属硅化物阻挡介质采用化学汽相沉积工艺。
7.如权利要求5所述的方法,其特征在于,所述金属硅化物阻挡介质为二氧化硅、氮化硅中的一者或多者。
8.如权利要求5所述的方法,其特征在于,采用干法蚀刻、湿法蚀刻或干湿法结合中的一种工艺对沉积后的所述晶体管进行刻蚀处理。
9.一种带沟槽结构的双极型晶体管,其特征在于,所述晶体管具有:
半导体衬底;
第一有源区、第二有源区和第三有源区,所述有源区之间通过浅沟槽隔离结构隔离;
所述第一有源区上部区域内邻接所述浅沟槽隔离结构的部分具有沟槽结构;
所述第一有源区上部具有发射极、所述第二有源区上部具有基极以及所述第三有源区上部具有集电极,所述发射极包围所述沟槽结构的侧壁和底部;
所述沟槽结构内具有金属硅化物阻挡结构;
所述发射极、所述基极、所述集电极表面具有金属电极。
10.如权利要求9所述的晶体管,其特征在于,所述沟槽的一端为所述浅沟槽隔离结构,另一端的形状根据所述晶体管要求达到的电流增益调节。
11.如权利要求10所述的晶体管,其特征在于,所述沟槽的另一端具有直角结构。
12.如权利要求9所述的晶体管,其特征在于,所述沟槽的体积与所述晶体管要求达到的电流增益成正比。
13.如权利要求9所述的晶体管,其特征在于,所述金属硅化物阻挡结构为在所述沟槽内以及所述晶体管表面沉积的金属硅化物阻挡介质;
以及刻蚀处理沉积后的所述晶体管,去除所述发射极、所述基极和所述集电极表面的所述金属硅化物阻挡介质,保留在所述沟槽内的所述金属硅化物阻挡介质。
14.如权利要求13所述的晶体管,其特征在于,所述金属硅化物阻挡介质为二氧化硅、氮化硅中的一者或多者。
CN201711374117.6A 2017-12-19 2017-12-19 一种带沟槽结构的双极型晶体管及其制作方法 Active CN108110051B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711374117.6A CN108110051B (zh) 2017-12-19 2017-12-19 一种带沟槽结构的双极型晶体管及其制作方法
US15/944,801 US10347753B1 (en) 2017-12-19 2018-04-04 Bipolar transistor with trench structure
US16/427,356 US10535753B2 (en) 2017-12-19 2019-05-31 Method of manufacturing a bipolar transistor with trench structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711374117.6A CN108110051B (zh) 2017-12-19 2017-12-19 一种带沟槽结构的双极型晶体管及其制作方法

Publications (2)

Publication Number Publication Date
CN108110051A CN108110051A (zh) 2018-06-01
CN108110051B true CN108110051B (zh) 2019-11-12

Family

ID=62210206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711374117.6A Active CN108110051B (zh) 2017-12-19 2017-12-19 一种带沟槽结构的双极型晶体管及其制作方法

Country Status (2)

Country Link
US (2) US10347753B1 (zh)
CN (1) CN108110051B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545849B (zh) * 2018-12-12 2022-05-27 上海华力集成电路制造有限公司 Cmos集成工艺bjt结构及其制造方法
CN111785630A (zh) * 2020-07-15 2020-10-16 上海华力集成电路制造有限公司 Pnp双极型晶体管制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002190B1 (en) * 2004-09-21 2006-02-21 International Business Machines Corporation Method of collector formation in BiCMOS technology
US9111985B1 (en) * 2007-01-11 2015-08-18 Cypress Semiconductor Corporation Shallow bipolar junction transistor
US8020128B2 (en) * 2009-06-29 2011-09-13 International Business Machines Corporation Scaling of bipolar transistors
CN102376757B (zh) * 2010-08-12 2013-06-12 上海华虹Nec电子有限公司 SiGe HBT工艺中的横向型寄生PNP器件及制造方法
US9842834B2 (en) * 2015-12-21 2017-12-12 Marko Koricic Horizontal current bipolar transistors with improved breakdown voltages

Also Published As

Publication number Publication date
US10535753B2 (en) 2020-01-14
CN108110051A (zh) 2018-06-01
US20190319115A1 (en) 2019-10-17
US10347753B1 (en) 2019-07-09
US20190189786A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US11164792B2 (en) Complementary field-effect transistors
CN103545176B (zh) 用于将碳导入半导体结构的方法及由此形成的结构
TW317648B (zh)
US20170186748A1 (en) FinFET Device Having Flat-Top Epitaxial Features and Method of Making the Same
CN108962994A (zh) 用于形成不同晶体管的源极/漏极区的注入
CN109427870A (zh) 半导体结构及其形成方法
CN105244320A (zh) 基于SOI的应变Ge沟道倒梯形栅CMOS集成器件及制备方法
US20110115047A1 (en) Semiconductor process using mask openings of varying widths to form two or more device structures
CN109841680A (zh) 半导体装置
CN102487073A (zh) 具有提高的载体迁移率的源极/漏极应力源及其制造方法
TW473834B (en) Method of doping a gate and creating a very shallow source/drain extension and resulting semiconductor
CN109817564A (zh) 用于半导体器件中的噪声隔离的结构和方法
US11302587B2 (en) Method for fabricating a 3D semiconductor apparatus having two vertically disposed seminconductor devices
TWI654769B (zh) 半導體裝置中之電容結構及其形成之方法
US11901463B2 (en) Method of making decoupling capacitor
CN108110051B (zh) 一种带沟槽结构的双极型晶体管及其制作方法
CN108807159A (zh) 半导体装置的形成方法
Neudeck et al. Multiple layers of silicon-on-insulator for nanostructure devices
CN105633042B (zh) 超高纵横比接触件
CN108565287A (zh) 一种半导体结构及其制造方法
US7038249B2 (en) Horizontal current bipolar transistor and fabrication method
CN108122779A (zh) 一种金属栅极半导体结构及其制备方法
CN109545849B (zh) Cmos集成工艺bjt结构及其制造方法
CN105206584B (zh) 异质沟道槽型栅cmos集成器件及其制备方法
US20170110460A1 (en) Metal strap for dram/finfet combination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant