CN108103457B - 一种自润滑纳米复合涂层及其制备方法 - Google Patents

一种自润滑纳米复合涂层及其制备方法 Download PDF

Info

Publication number
CN108103457B
CN108103457B CN201711488329.7A CN201711488329A CN108103457B CN 108103457 B CN108103457 B CN 108103457B CN 201711488329 A CN201711488329 A CN 201711488329A CN 108103457 B CN108103457 B CN 108103457B
Authority
CN
China
Prior art keywords
target
composite coating
coating
self
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711488329.7A
Other languages
English (en)
Other versions
CN108103457A (zh
Inventor
赵鑫
杨兵
吴忠烨
蔡耀
刘琰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201711488329.7A priority Critical patent/CN108103457B/zh
Publication of CN108103457A publication Critical patent/CN108103457A/zh
Application granted granted Critical
Publication of CN108103457B publication Critical patent/CN108103457B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于薄膜材料领域,具体涉及一种Cr/Cu‑Pb‑Sn‑WS2自润滑纳米复合涂层材料及其制备方法。所述自润滑纳米复合涂层材料由过渡层和交替复合涂层组成,所述过渡层为Cr层,所述交替复合涂层为Cu‑Pb‑Sn‑WS2/Cr层,所述Cu‑Pb‑Sn‑WS2/Cr层是由Cu‑Pb‑Sn‑WS2靶和Cr靶交替沉积所得,所述Cu‑Pb‑Sn‑WS2靶的各组分按质量百分比计为:70%Cu、10%Pb、10%Sn和10%WS2。本发明采用Cr与Cu‑Pb‑Sn‑WS2交替沉积形成复合涂层,材料结构上比较新颖,且制备的涂层致密性较好,具有良好的抗粘着磨损性能,金属自润滑涂层的摩擦系数小,稳定在0.2以下。

Description

一种自润滑纳米复合涂层及其制备方法
技术领域
本发明属于薄膜材料领域,具体涉及一种Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层材料及其制备方法。
背景技术
随着科技的发展,机械系统工作环境特别是航空航天机械变得极为苛刻(即非常高或低的温度、真空、强辐射等)。在这样的工作条件下,油、脂润滑剂已不能起到润滑作用。润滑油和润滑脂的使用温度范围大约为-60℃~350℃,而固体润滑剂能在更低和更高的温度范围下使用,同时适用于无需维修保养、无人值守和经常拆卸的场合。根据摩擦学观点,磨损发生在工件表面或近表面区域,因此在工件表层制备固体自润滑复合涂层是最经济、有效的方式。自润滑涂层因兼有涂层基体的力学性能和润滑相的摩擦学特性受到越来越多关注。其中金属基自润滑涂层具有较高的机械强度、导电传热性能良好、摩擦系数小、抗磨损性能好等优点,被广泛应用于润滑条件更加苛刻的环境下。
在工业生产过程中零件磨损会导致低的生产效率和加工效率,甚至导致机械故障。同时摩擦也会造成巨大的资源浪费。据统计目前世界上的机械系统约有1/3~1/2以各种方式失效并最终表现为摩擦损耗。其中粘着磨损是一种最常见的磨损形式。许多零件、工具的报废和失效都和粘着磨损有关,如轴承、刃具和磨具在真空环境下的粘着磨损已成为空间技术的核心问题;另外,工作在气态、液态和侵蚀介质中的原子能反应堆及其他承受重载的机械装备也不能摆脱粘着磨损的危害。由此可见,研究改善零部件粘着磨损对工业技术的进步具有重要意义。
改善粘着磨损的主要途径是正确选择摩擦副的配对材料,原则是配对材料在接触摩擦中粘着倾向小,不易发生冷焊;其次是在两摩擦副的表面间增加剪切强度低的薄膜。故在摩擦副表面镀覆自润滑材料可以有效的提高摩擦副的抗粘着能力。科研人员开发出了多种制备工艺,如热喷涂、堆焊等,在材料表面沉积一层润滑材料,在摩擦过程中能够转移或黏附在对磨面上,使得摩擦在涂层之间进行从而起到润滑作用,这种涂层就是自润滑涂层。近年来自润滑复合涂层发展迅猛,国内外学者对自润滑复合涂层进行了大量的研究,如Bhalla等研究了Cu-PTFE复合镀层,Serhal等对Au-Co-PTFE复合镀层的开发和研究,R-Balaji等研究了 Cu-Sn-PTFE复合镀层的工艺及磨损性能。铜基涂层由于较低的剪切强度和良好的机械性能,具有优良的耐磨损和抗粘着性能。但单纯的铜基涂层硬度较小,耐磨损性能较差。
发明内容
本发明针对现有技术的不足,目的在于提供一种Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层材料及其制备方法。
为实现上述发明目的,本发明采用的技术方案为:
一种Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层,由过渡层和交替复合涂层组成,所述过渡层为Cr层,所述交替复合涂层为Cu-Pb-Sn-WS2/Cr层,所述Cu-Pb-Sn-WS2/Cr层是由 Cu-Pb-Sn-WS2靶和Cr靶交替沉积所得,所述Cu-Pb-Sn-WS2靶的各组分按质量百分比计为: 70%Cu、10%Pb、10%Sn和10%WS2
一种Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层的制备方法,包括如下步骤:
(1)首先将基体在酒精和丙酮中依次进行超声清洗;
(2)采用阴极电弧离子镀法,将基体置于真空室中进行离子轰击;然后以Cr靶为靶材,在基体表面沉积过渡层;再以Cu-Pb-Sn-WS2靶和Cr靶为交替靶材,当基体转动到 Cu-Pb-Sn-WS2靶对面时,在基体上沉积Cu-Pb-Sn-WS2涂层,当基体转动到Cr靶对面时,在基体上沉积Cr涂层,如此,在过渡层上交替沉积Cu-Pb-Sn-WS2/Cr复合涂层;
(3)待步骤(2)制备所得复合涂层自然冷却后,对其进行退火处理,在基体表面得到 Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层材料。
上述方案中,步骤(2)所述离子轰击的条件参数为:温度100~300℃,氩气环境,偏压 -500~1000V,工作气压2~10Pa,轰击时间5~10min。
上述方案中,步骤(2)所述过渡层沉积的条件参数为:氩气气氛,Cr靶偏压为-100~-200V,工作气压0.25~2.5Pa,沉积时间为5~10min。
上述方案中,步骤(2)所述Cu-Pb-Sn-WS2/Cr复合涂层交替沉积的条件参数为:氩气气氛,工作气压0.25~2.5Pa,靶材的偏压-100~150V,占空比70~80%,Cu-Pb-Sn-WS2靶的电流为20~70A,Cr靶的电流为40~70A,调制周期11.5s~41s,沉积时间为30~60min。
上述方案中,步骤(3)所述退火处理的条件为:在300℃~700℃保温,保温时间为30~60min。
本发明利用阴极电弧离子镀技术来制备Cu-Pb-Sn-WS2/Cr自润滑复合涂层,阴极电弧离子镀具有离化率高,设备简单的特点;当氩气经过电弧放电区时,由于电弧区为高度离化的等离子体,所以气体也会被电离,离化率高达90%以上。本发明利用氩气进行轰击,可以去除基体表面的氧化皮,同时使基体活化,对基体进行预热,降低涂层的热应力,提高涂层与基体的结合力。同时本发明采用Cr靶对Cu-Pb-Sn-WS2自润滑涂层进行复合,通过改变调制周期等条件参数来改善涂层的性能,这种多层复合结构能够有效的减少单一的Cu-Pb-Sn-WS2涂层中柱状晶的形成,抑制裂纹等缺陷的扩展,同时可以增加涂层的硬度及耐磨损性能。
本发明所述Cu-Pb-Sn-WS2/Cr自润滑复合涂层兼具基体铜和固体润滑剂的特性,能够被广泛的应用于工业领域。Cu,Pb具有面心晶格结构,滑移系较多,塑韧性较好,没有低温脆性,可应用于较宽的温度范围,同时由于其滑移主要在晶体内部进行,可自行修补,极大的提高了使用寿命;Sn具有极低的剪切强度;WS2属于密排六方结构,具有与石墨类似的层状结构,层间原子通过较弱的范德华力结合,层间具有较低的剪切强度,这样造成层间易于滑移,使其能作为良好的固体润滑剂,耐高温,强度大,稳定性好,能在大负荷、真空等苛刻工况条件下使用。Cr的多层复合有利于提高涂层的硬度,同时也有效的阻止了柱状晶的形成和裂纹等缺陷的扩展。因此,本发明所述Cu-Pb-Sn-WS2/Cr自润滑复合涂层具有较低的摩擦系数及良好的抗粘着磨损性能。
本发明的有益效果:
(1)本发明采用阴极电弧离子镀方法,在真空系统中利用离子轰击对基体进行预热清洗,有利于提高涂层的膜基结合力和均匀性;所述电弧离子方法的离化率高,涂层生长速率较快;采用Cr靶对Cu-Pb-Sn-WS2自润滑涂层进行复合,制备过程简单,易于控制,大大提高了涂层的工业应用价值;(2)本发明采用Cr与Cu-Pb-Sn-WS2交替沉积形成复合涂层,材料结构上比较新颖,且制备的涂层致密性较好,具有良好的抗粘着磨损性能,金属自润滑涂层的摩擦系数小,稳定在0.2以下。
附图说明
图1为本发明所采用的镀膜系统结构示意图。
图2为本发明不同调制周期复合涂层的表面扫描电镜(SEM)图。
图3位本发明复合涂层的截面扫描电镜(SEM)图。
图4为本发明不同调制周期复合涂层的摩擦系数图。
图5为本发明不同调制周期复合涂层的XRD图。
图6为不同温度退火后涂层的摩擦系数图。
图7为不同温度退火后涂层的XRD图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层,由如下方法制备:1)首先将基体在酒精和丙酮中依次进行超声清洗10min;2)采用阴极电弧离子镀法,将基体置于真空室中进行离子轰击,所述离子轰击的条件为:温度170℃,氩气环境下,偏压为-700V,工作气压为0.25Pa,轰击时间为5min;3)在真空室内通入氩气,用电弧离子镀技术的电弧高温使得靶材蒸发离化,同时在外加电场的作用下定向移动沉积到基体表面,以Cr靶为靶材,Cr靶偏压为-100V,工作气压为0.25Pa,在基体表面沉积过渡层,沉积时间为5min,4)再以Cu-Pb-Sn-WS2靶和Cr靶为交替靶材,通过改变基体的转速来调节调制周期,当基体转动到Cu-Pb-Sn-WS2靶对面时,在基体上沉积一层Cu-Pb-Sn-WS2涂层,当基体转动到Cr靶对面时,在基体上沉积一层Cr涂层,这样交替沉积Cu-Pb-Sn-WS2/Cr复合自润滑涂层,其中工作气压为0.5Pa,两个靶材的偏压均为-100V,占空比为70%,Cu-Pb-Sn-WS2靶的电流为40A,Cr靶的电流为50A,控制调制周期分别为11.5s、17s、20s、28s、或41s,沉积时间为60min,在基体表面得到Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层材料。
图1为本发明所采用的镀膜系统结构示意图,本设备为开门式真空设备,装置的真空室高度为0.5-1.5米,体积为50×50×50cm。真空室前面设有炉门6,以方便靶材的装卸。真空室设有抽真空口2,抽真空机组通过抽真空口对真空室进行抽真空,抽真空机组由机械泵和分子泵组成,极限真空可以达到8×10-4Pa。真空室左侧炉壁装有Cu-Pb-Sn-WS2靶1,真空室左侧炉壁装有纯Cr靶3,靶电流在20-170A内可调。通过靶后装的磁铁4产生磁场控制电弧运动。炉内装有两个对称分布的加热器5,用于加热真空室。样品装在转架7上,转架沿逆时针转动,转速可调。工作气体为氩气,由质量流量计控制。
本实施例在不同调制周期下制备所得Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层的表面扫描电镜(SEM)图如图2所示,图2说明了所得涂层表面均匀性较好,涂层的性能较为稳定,截面扫描电镜(SEM)图如图3所示,图3说明了涂层与基体的结合较好,没有明显的空洞和空隙,且涂层致密性良好,无柱状晶生成,不同调制周期涂层的摩擦系数图如图4所示,图4说明了涂层的平均摩擦系数分别为0.241、0.105、0.396、0.152和0.159。随着调制周期的减小,涂层的摩擦系数呈先减小后增加最后趋于平稳的趋势,在调制周期为28s时涂层的平均摩擦系数最小,为0.105,涂层的综合性能达到最优。不同调制周期涂层的XRD图如图 5所示,图5说明了涂层的各衍射峰随着调制周期的减小,呈先减后增的趋势,涂层的非晶化程度先减后增,S2的衍射峰强度最小,涂层的非晶化程度最高,涂层的耐磨性良好。
实施例2
Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层,由如下方法制备:1)首先将基体在酒精和丙酮中依次进行超声清洗10min;2)采用阴极电弧离子镀法,将基体置于真空室中进行离子轰击,所述离子轰击的条件为:温度200℃,氩气环境下,偏压为-800V,工作气压为0.30Pa,轰击时间为5min;3)在真空室内通入氩气,用电弧离子镀技术的电弧高温使得靶材蒸发离化,同时在外加电场的作用下定向移动沉积到基体表面,以Cr靶为靶材,Cr靶偏压为-150V,工作气压0.4Pa,在基体表面沉积过渡层,沉积时间为5min,4)再以Cu-Pb-Sn-WS2靶和Cr 靶为交替靶材,通过改变基体的转速来调节调制周期,当基体转动到Cu-Pb-Sn-WS2靶对面时,在基体上沉积一层Cu-Pb-Sn-WS2涂层,当基体转动到Cr靶对面时,在基体上沉积一层 Cr涂层,这样交替沉积Cu-Pb-Sn-WS2/Cr复合自润滑涂层,其中工作气压为0.5Pa,两个靶材的偏压均为-150V,占空比为80%,Cu-Pb-Sn-WS2靶的电流为40A,Cr靶的电流为50A,控制调制周期分别为28s,沉积时间为60min;5)将制备所得复合涂层自然冷却后,对其进行退火处理,在400℃、500℃、600℃和700℃保温,保温时间为60min,然后随炉冷却,在基体表面得到Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层材料。
本实施例在不同调制周期下制备所得Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层的摩擦系数如图6所示,图6说明了与退火处理前的原始试样S2相比,通过600℃退火1h处理后,涂层的摩擦系数有所降低,退火后涂层的平均摩擦系数稳定在0.091。不同温度退火后涂层的 XRD图如图7所示,图7说明了在退火过程中涂层生成了新相,其中CuO新相对基体起到弥散强化的作用,使得涂层性能得到改善。
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (6)

1.一种Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层,其特征在于,由设置在基体上的过渡层和设置在过渡层上的交替复合涂层组成,所述过渡层为Cr层,所述交替复合涂层为Cu-Pb-Sn-WS2/Cr层,所述Cu-Pb-Sn-WS2/Cr层是由Cu-Pb-Sn-WS2靶和Cr靶交替沉积所得,所述Cu-Pb-Sn-WS2靶的各组分按质量百分比计为:70% Cu、10%Pb、10%Sn和10%WS2
2.根据权利要求1所述Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层的制备方法,其特征在于,包括如下步骤:
(1)首先将基体在酒精和丙酮中依次进行超声清洗;
(2)采用阴极电弧离子镀法,将基体置于真空室中进行离子轰击;然后以Cr靶为靶材,在基体表面沉积过渡层;再以Cu-Pb-Sn-WS2靶和Cr靶为交替靶材,当基体转动到Cu-Pb-Sn-WS2靶对面时,在基体上沉积Cu-Pb-Sn-WS2涂层,当基体转动到Cr靶对面时,在基体上沉积Cr涂层,如此,在过渡层上交替沉积Cu-Pb-Sn-WS2/Cr复合涂层;
(3)待步骤(2)制备所得复合涂层自然冷却后,对其进行退火处理,在基体表面得到Cr/Cu-Pb-Sn-WS2自润滑纳米复合涂层材料。
3.根据权利要求2所述的制备方法,其特征在于,步骤(2)所述离子轰击的条件参数为:温度100~300℃,氩气环境,偏压-500~1000V,工作气压0.2~10Pa,轰击时间5~10min。
4.根据权利要求2所述的制备方法,其特征在于,步骤(2)所述过渡层沉积的条件参数为:氩气气氛,Cr靶偏压为-100~-200V,工作气压0.25~2.5Pa,沉积时间为5~10min。
5.根据权利要求2所述的制备方法,其特征在于,步骤(2)所述Cu-Pb-Sn-WS2/Cr复合涂层交替沉积的条件参数为:氩气气氛,工作气压0.25~2.5Pa,靶材的偏压-100~150V,占空比70~80%,Cu-Pb-Sn-WS2靶的电流为20~70A,Cr靶的电流为40~70A,调制周期11.5s~41s,沉积时间为30~60min。
6.根据权利要求2所述的制备方法,其特征在于,步骤(3)所述退火处理的条件为:在300℃~700℃保温,保温时间为30~60min。
CN201711488329.7A 2017-12-30 2017-12-30 一种自润滑纳米复合涂层及其制备方法 Expired - Fee Related CN108103457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711488329.7A CN108103457B (zh) 2017-12-30 2017-12-30 一种自润滑纳米复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711488329.7A CN108103457B (zh) 2017-12-30 2017-12-30 一种自润滑纳米复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN108103457A CN108103457A (zh) 2018-06-01
CN108103457B true CN108103457B (zh) 2020-01-14

Family

ID=62215142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711488329.7A Expired - Fee Related CN108103457B (zh) 2017-12-30 2017-12-30 一种自润滑纳米复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN108103457B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034026A (zh) * 1988-01-06 1989-07-19 大连海运学院 一种钢铁表面离子镀固体润滑膜的方法
JPH08323485A (ja) * 1995-06-01 1996-12-10 Hyogo Pref Gov タングステン基金属材と銅基金属材との摩擦圧接方法
CN101144151A (zh) * 2006-09-14 2008-03-19 中国科学院兰州化学物理研究所 低温离子镀制备金属基润滑薄膜的方法
CN102021577A (zh) * 2009-09-16 2011-04-20 中国科学院金属研究所 一种箔片空气轴承用高温固体润滑涂层及其制备方法
CN104894515A (zh) * 2015-05-27 2015-09-09 陕西斯瑞工业有限责任公司 一种在CuCr触头表面形成CuCr涂层的电弧离子镀方法
CN106702332A (zh) * 2017-01-20 2017-05-24 西安工业大学 一种双技术协同制备轴瓦减摩镀层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034026A (zh) * 1988-01-06 1989-07-19 大连海运学院 一种钢铁表面离子镀固体润滑膜的方法
JPH08323485A (ja) * 1995-06-01 1996-12-10 Hyogo Pref Gov タングステン基金属材と銅基金属材との摩擦圧接方法
CN101144151A (zh) * 2006-09-14 2008-03-19 中国科学院兰州化学物理研究所 低温离子镀制备金属基润滑薄膜的方法
CN102021577A (zh) * 2009-09-16 2011-04-20 中国科学院金属研究所 一种箔片空气轴承用高温固体润滑涂层及其制备方法
CN104894515A (zh) * 2015-05-27 2015-09-09 陕西斯瑞工业有限责任公司 一种在CuCr触头表面形成CuCr涂层的电弧离子镀方法
CN106702332A (zh) * 2017-01-20 2017-05-24 西安工业大学 一种双技术协同制备轴瓦减摩镀层的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Sliding Scar Analyses of High Speed Sliding Contact Characteristics of Cu-Sn Based Composite Materials Containing WS2";Yoshitada Watanabe等;《2012 IEEE 58th Holm Conference on Electrical Contacts(Holm)》;20121022;全文 *
"铜基-WS2无铅双金属固体自润滑材料及其摩擦学性能研究";赵林等;《第十一届全国摩擦学大会论文集》;20131231;全文 *

Also Published As

Publication number Publication date
CN108103457A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
Zhu et al. Development and characterization of Co-Cu/Ti3SiC2 self-lubricating wear resistant composite coatings on Ti6Al4V alloy by laser cladding
CN108977776B (zh) 空间宽温域环境下高结合力固体润滑膜层及其制备方法
CN107653438B (zh) 一种具有真空长效润滑性能碳薄膜的制备方法
CN101701332B (zh) 中频磁控辉光放电法制备复合类金刚石涂层的方法
CN103143761B (zh) 一种AlTiN-MoN纳米多层复合涂层铣刀及其制备方法
CN108342705B (zh) 具有自愈合功能的Ta基高温防护涂层的制备方法
CN109504945A (zh) 一种空间环境用长效抗菌固体润滑膜层及其制备方法
CN110408889B (zh) 一种耐磨减摩碳掺杂TiAlN纳米多层硬质薄膜及制备方法
CN113106408B (zh) 一种自润滑难熔高熵合金薄膜及其制备方法
CN114574827B (zh) 一种含碳高熵合金薄膜及其制备方法与应用
CN101429648B (zh) 三靶磁控共溅射制备铝-铜-铁准晶涂层的方法及其应用
CN108251803B (zh) TiB2自润滑涂层及其制备方法和耐磨构件
CN100552247C (zh) 具有扩散层pvd轴瓦的生产方法
CN102094172B (zh) 一种TiWN/MoS2复合薄膜的制备方法
CN108103457B (zh) 一种自润滑纳米复合涂层及其制备方法
CN114351088B (zh) 一种固体自润滑涂层及其制备方法
CN110205628A (zh) 一种基于非导电陶瓷的自润滑涂层的电火花沉积制备方法
CN108149198B (zh) 一种wc硬质合金薄膜及其梯度层技术室温制备方法
CN111962043B (zh) 一种轴承表面自润滑薄膜的制备装置及方法
CN104928639B (zh) 一种超强韧碳基表面防护涂层及其制备方法
CN109898056B (zh) 一种基于pvd技术的块体金属/金属陶瓷纳米梯度材料及其制备方法和应用
CN1880499A (zh) 采用物理气相沉积法制备二硫化钨固体润滑膜的方法
CN109943822B (zh) 一种提高CrN涂层抗磨减摩性能的后处理方法
CN107034438B (zh) 高速钢丝锥表面涂层制备方法
Li et al. Wear resistance of molybdenum disulfide-based coatings on titanium alloys: a review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200114

Termination date: 20211230

CF01 Termination of patent right due to non-payment of annual fee