CN108977776B - 空间宽温域环境下高结合力固体润滑膜层及其制备方法 - Google Patents
空间宽温域环境下高结合力固体润滑膜层及其制备方法 Download PDFInfo
- Publication number
- CN108977776B CN108977776B CN201810900908.6A CN201810900908A CN108977776B CN 108977776 B CN108977776 B CN 108977776B CN 201810900908 A CN201810900908 A CN 201810900908A CN 108977776 B CN108977776 B CN 108977776B
- Authority
- CN
- China
- Prior art keywords
- layer
- film layer
- wide
- mos
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
- C23C14/025—Metallic sublayers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0664—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种空间宽温域环境下高结合力固体润滑膜及其制备方法,采用离子注入与沉积结合磁控溅射技术在钛合金、铝合金、不锈钢、轴承钢基底上沉积由结合层(Ti)、过渡层(TiN/TiCN)和功能层(TiN/MoS2‑Ag)依次构成的纳米晶复合涂层。所制备纳米晶复合涂层可在‑150℃~300℃空间宽温域环境下可靠服役,且附着力强、摩擦系数低,可以大幅度提高空间飞行器运动部件的寿命,并提高其可靠性。此外本发明的制备方法具有离化率高、膜层设备结构简单、可批量化处理等特点,易于实现工业生产,具有良好的应用前景。
Description
鞠鹏飞、吴超、宋晓航、沙春生、李忠建、周宏
技术领域:
本发明涉及材料表面真空镀膜技术领域,特别涉及一种空间宽温域环境下高结合力固体润滑膜层及其制备方法。
背景技术:
随着我国航天事业的不断发展,对深空领域的探测需求也越来越迫切。空间探测器在深空环境中将会同时处于几种环境的作用下,其性能将会比发生比单因素环境更加严重的退化。因此,开展针对特殊空间环境下特种膜层设计与制备技术研究,突破深空探测器运动机构耐磨性能,解决空间运动机构长寿命可靠性问题,已经成为型号研制的当务之急。
常用的MoS2基空间固体润滑膜层主要是针对减摩,防冷焊等润滑要求,由于MoS2溅射膜层自身硬度较低,耐磨损性能不高,不太适用于高承载传动类活动部件的表面改性;且在宽温域的环境中,在高温条件下MoS2很容易失去润滑性能。温度自适应膜层能够随着外界温度的变化而自动调节表面组成和结构以降低摩擦的复合材料。自适应原理是:当薄膜暴露在交变的温度和磨损中,基体内的非晶和纳米晶填充物在摩擦接触区域就会转变成光滑的润滑相态,使得固体润滑膜层在极端高低温环境下具有良好的摩擦学性能。
发明内容:
本发明的目的是提供一种空间宽温域环境下高结合力固体润滑膜层及其制备方法,所制备纳米晶复合膜层可在-150℃~300℃空间宽温域环境下可靠服役,且附着力强、摩擦系数低,可以大幅度提高空间飞行器运动部件的寿命,并提高其可靠性。
本发明的空间宽温域环境下高结合力固体润滑膜层,包括基体和在基体表面沉积的涂层,所述在基体表面沉积的膜层包括Ti结合层、TiN/TiCN过渡层,TiN、MoS2-Ag交替排列的功能层;最外层为MoS2-Ag层。
所述基体材料为钛合金、铝合金、不锈钢、轴承钢等。
所述在基体表面沉积的涂层为典型的纳米晶/非晶结构,镀层的硬度为15~22GPa,其温度适应性范围在-150℃至300℃。
所述结合层、过渡层、功能层的厚度可根据具体要求确定。
TiN/MoS2-Ag交替沉积的次数可根据具体要求确定。
MoS2-Ag中Ag元素百分含量也可根据需要调整。
本发明的另一技术方案在于,提供了上述空间宽温域环境下高结合力固体润滑膜层的制备方法,是利用离子注入与沉积技术结合磁控溅射技术进行镀制的,制备方法如下步骤:
1)溅射清洗:被镀制样件经表面抛光、丙酮超声清洗、乙醇超声清洗并烘干后放入镀膜设备内可旋转的靶台上,利用抽真系统抽真空至5.0×10-3Pa,通入Ar,启动射频对样件进行Ar等离子体溅射清洗;
2)镀结合层:通入Ar,利用靶台两边对称分布两个磁过滤阴极弧蒸发装置,将Ti阴极靶材蒸发、离化体并引入真空室形成金属等离子,经靶台下方脉冲高压电源为样件提供负脉冲高压的作用,金属等离子体被加速沉积在样件上,形成Ti结合层;
3)镀过渡层:按照步骤2所示的方法,将通入真空室内的气体更换为N2,便可制备获得TiN层,将通入真空室内的气体更换为N2和C2H2混合气体便可制备获得TiCN层,并最终获得TiN/TiCN过渡层;
4)镀功能层:将靶台旋转至磁控溅射工位,磁控溅射靶为Ag掺杂MoS2,工作气体为Ar,采用RF射频电源产生等离子体,制备MoS2-Ag膜层。当膜层达到一定厚度后,将靶台旋转至离子注入与沉积工位,按照步骤3所示方法制备TiN膜层,通过分别多次重复上述步骤制备TiN/MoS2-Ag交替排列的功能层;
5)关闭设备,涂层制备完成。
本发明所述的离子注入与沉积技术所用设备为哈尔滨工业大学生产的PIIID-04型多功能离子注入与沉积系统。
本发明有益效果:本发明通过调整不同阴极种类及工作气体流量比率来制备具有自润滑性能的纳米晶复合涂层,通过离子注入与沉积技术复合磁控溅射技术制备TiN/MoS2-Ag温度自适应固体润滑膜层,从而实现其在空间环境宽温域条件下的自润滑性能。所获得膜层硬度为15~22GPa以上,温度适应性范围在-150℃至300℃,显著的降低了涂层的表面粗糙度,膜层摩擦系数低于0.2,显示出非常好的宽温域自润滑性能。
附图说明:
图1是本发明一种空间宽温域环境下高结合力固体润滑膜层的结构示意图;
图2是本发明空间宽温域环境下高结合力固体润滑膜层的制备方法所用的离子注入与沉积设备结构示意图。
具体实施方式:
结合图2,本发明一种空间宽温域环境下高结合力固体润滑膜层的具体制备工艺按以下步骤进行:
1)溅射清洗:附图2所示的镀膜设备,待镀制样件26经表面抛光、丙酮超声清洗、乙醇超声清洗并烘干后放入可旋转的靶台24上,真空室27内抽真空至5.0×10-3Pa,通入Ar,启动RF射频25对样件进行Ar等离子体溅射清洗;
2)镀结合层:通入极少量Ar,利用靶台两边对称分布两个磁过滤阴极弧蒸发装置21、22,将Ti阴极靶材蒸发、离化并引入真空室形成金属等离子体,经靶台下方脉冲高压电源为样件提供负脉冲高压的作用,金属等离子体被加速沉积在样件上,形成Ti结合层;
3)镀过渡层:按照步骤2所示的方法,将通入真空室内的气体更换为N2,便可制备获得TiN层,将通入真空室内的气体更换为N2和C2H2混合气体便可制备获得TiCN层,并最终获得TiN/TiCN过渡层;
4)镀功能层:将靶台旋转至磁控溅射工位,磁控溅射靶23为Ag掺杂MoS2,工作气体为Ar,采用RF射频电源产生等离子体,制备MoS2-Ag膜层。当膜层达到一定厚度后,将靶台旋转至离子注入与沉积工位,按照步骤3所示方法制备TiN膜层,通过分别多次重复上述步骤制备TiN/MoS2-Ag交替排列的功能层;
5)关闭设备,涂层制备完成。
实施例1:
一种空间宽温域环境下高结合力固体润滑膜层,如图1所示;其中基体1、结合层2(Ti)、过渡层3(TiN/TiCN)、功能层4(TiN)、功能层5(MoS2-Ag),基体1为TC4合金、厚度为2μm的Ti/TiN/TiCN/(TiN/MoS2-Ag)纳米复合多层膜。
上述空间宽温域环境下高结合力固体润滑膜层的具体制备工艺按以下步骤进行:
1)溅射清洗:被镀制样件经表面抛光、丙酮超声清洗、乙醇超声清洗并烘干后放入镀膜设备内可旋转的靶台上,真空室内抽真空至4.0×10-3Pa,通入Ar,控制气压为3.0×10-1Pa,启动射频对样件进行Ar等离子体溅射清洗,射频功率为400W,同时开启负脉冲高压电源,脉冲偏压为-6kV,清洗时间为30min;
2)镀结合层:通入Ar,真空室气压控制4.0×10-2Pa,开启Ti磁过滤阴极弧蒸发靶材,同时开启负脉冲高压电源,脉冲偏压为-20kV,注入与沉积时间为1h,制备获得厚度为200nm的Ti结合层。
3)镀过渡层:按照步骤2所示的方法,开启Ti磁过滤阴极弧蒸发靶材,同时开启负脉冲高压电源,脉冲偏压为-20kV,将通入真空室内的气体更换为N2,气体流量为50sccm,控制气压为1.0×10-1Pa,制备时间为1h,制备获得厚度为300nm的TiN层;将通入真空室内的气体更换为N2和C2H2混合气体,气体流量分别为25sccm,气压为1.0×10-1Pa,制备时间为1h获得厚度为300nm的TiCN层,并最终获得TiN/TiCN过渡层;
4)镀功能层:将靶台旋转至磁控溅射工位,磁控溅射靶为Ag掺杂MoS2,工作气体为Ar,气体流量为50sccm,控制气压为1.0Pa,开启磁控溅射靶,功率为300W,开启负脉冲高压电源,脉冲偏压为-6kV,制备时间9min,获得厚度为150nm的MoS2-Ag膜层;随后将靶台旋转至磁过滤阴极弧工位,按照步骤3所示方法制备TiN膜层,制备时间为30min,获得厚度为150nm的TiN膜层。依次开启磁控溅射靶和磁过滤阴极弧,重复上述步骤共四次,获得厚度为1.2μm的TiN/MoS2-Ag交替排列的功能层;
5)关闭设备,涂层制备完成。
本实施例沉积出的复合涂层为典型的纳米晶/非晶结构,显微硬度15~22GPa,涂层表面光亮平整。该涂层可在-150℃~300℃空间宽温域环境下可靠服役,且附着力强、摩擦系数低。上述实施例仅用于说明本发明,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。
实施例2:
将实施例1中步骤4中TiN膜层的制备时间由30min缩短至10min,MoS2-Ag膜层的制备时间9min缩短至3min,相应的多层层数由8层提升至24层,并保持膜层总厚度一致,其他步骤同实施例1。
Claims (4)
1.空间宽温域环境下高结合力固体润滑膜层的制备方法,利用离子注入与沉积结合磁控溅射技术进行镀制,其特征在于,包括如下步骤:
1)溅射清洗:被镀制样件经表面抛光、丙酮超声清洗、乙醇超声清洗并烘干后放入镀膜设备内可旋转的靶台上,利用抽真系统抽真空至5.0×10-3Pa,通入Ar,启动射频对样件进行Ar等离子体溅射清洗;
2)镀结合层:通入Ar,利用靶台两边对称分布两个磁过滤阴极弧蒸发装置,将Ti阴极靶材蒸发、离化体并引入真空室形成金属等离子,经靶台下方脉冲高压电源为样件提供负脉冲高压的作用,金属等离子体被加速沉积在样件上,形成Ti结合层;
3)镀过渡层:按照步骤2),将通入真空室内的气体更换为N2,便可制备获得TiN层,将通入真空室内的气体更换为N2和C2H2混合气体便可制备获得TiCN层,并最终获得TiN/TiCN过渡层;
4)镀功能层:将靶台旋转至磁控溅射工位,磁控溅射靶为Ag掺杂MoS2,工作气体为Ar,采用RF射频电源产生等离子体,制备MoS2-Ag膜层;当膜层达到一定厚度后,将靶台旋转至离子注入与沉积工位,按照步骤3)制备TiN膜层,通过分别多次重复上述步骤制备TiN/MoS2-Ag交替排列的功能层,最外层为MoS2-Ag层;
关闭设备,涂层制备完成。
2.如权利要求1所述的空间宽温域环境下高结合力固体润滑膜层的制备方法,其特征在于,所述步骤3)工作气体Ar、N2以及N2和C2H2的混合气体的流量为5~50sccm,工作气压为0.05~2.0Pa。
3.如权利要求1所述的空间宽温域环境下高结合力固体润滑膜层的制备方法,其特征在于,所述步骤4)MoS2-Ag靶材Ag含量为10 at.%,纯度为99.9%。
4.如权利要求1所述的空间宽温域环境下高结合力固体润滑膜层的制备方法,其特征在于,所述步骤4)脉冲高压为10~25kV,RF射频功率为100~500W。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810900908.6A CN108977776B (zh) | 2018-08-09 | 2018-08-09 | 空间宽温域环境下高结合力固体润滑膜层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810900908.6A CN108977776B (zh) | 2018-08-09 | 2018-08-09 | 空间宽温域环境下高结合力固体润滑膜层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108977776A CN108977776A (zh) | 2018-12-11 |
CN108977776B true CN108977776B (zh) | 2020-07-17 |
Family
ID=64556338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810900908.6A Active CN108977776B (zh) | 2018-08-09 | 2018-08-09 | 空间宽温域环境下高结合力固体润滑膜层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108977776B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109628891A (zh) * | 2019-01-16 | 2019-04-16 | 兰州城市学院 | 一种TiN/MoS2/Ag高温润滑复合薄膜的制备方法 |
CN112030121B (zh) * | 2019-06-03 | 2023-06-02 | 中国科学院宁波材料技术与工程研究所 | 宽温域减摩耐磨MoCN复合薄膜、其制备方法及应用 |
CN110331370A (zh) * | 2019-07-25 | 2019-10-15 | 清华大学 | 一种二硫化钼基复合多层薄膜及其制备方法 |
CN110373631B (zh) * | 2019-08-20 | 2021-04-02 | 中国科学院宁波材料技术与工程研究所 | 一种MeCN-催化金属复合涂层、其制备方法与应用 |
CN110867382A (zh) * | 2019-11-22 | 2020-03-06 | 广西民族大学 | 一种具有微纳结构的氧化锌薄膜材料的制备方法 |
CN111500977A (zh) * | 2019-12-17 | 2020-08-07 | 麦福枝 | 一种在金属上生产具有碳氮化钛载体层杀菌膜的方法 |
CN112522676B (zh) * | 2020-11-05 | 2021-08-31 | 中国科学院力学研究所 | 一种空间磁控溅射镀膜装置 |
CN115287610B (zh) * | 2022-05-30 | 2023-09-08 | 昆明理工大学 | 一种自润滑涂层及其制备方法和应用 |
CN116174546B (zh) * | 2023-04-28 | 2023-07-14 | 佛山高谱机械科技有限公司 | 一种基于导电与自润滑复合作用的管材热弯曲方法 |
CN118086901A (zh) * | 2024-02-02 | 2024-05-28 | 科汇纳米技术(深圳)有限公司 | 一种应用于太空环境的高性能钛合金涂层及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106342103B (zh) * | 2011-06-30 | 2014-06-04 | 上海航天设备制造总厂 | 一种溅射沉积二硫化钼/金属复合固体润滑膜的方法 |
CN104711513A (zh) * | 2013-12-17 | 2015-06-17 | 上海航天设备制造总厂 | 一种固体润滑膜层及其制备方法 |
-
2018
- 2018-08-09 CN CN201810900908.6A patent/CN108977776B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106342103B (zh) * | 2011-06-30 | 2014-06-04 | 上海航天设备制造总厂 | 一种溅射沉积二硫化钼/金属复合固体润滑膜的方法 |
CN104711513A (zh) * | 2013-12-17 | 2015-06-17 | 上海航天设备制造总厂 | 一种固体润滑膜层及其制备方法 |
Non-Patent Citations (2)
Title |
---|
Microstructures and Properties of Nanostructured TiN/MoS2/Ag Composite Film Prepared by Pulsed Laser Deposition;Hongjian Guo, et. Al.;《Journal of Materials Engineering and Performance》;20180720;3869-3874页 * |
MoS_2/Zr复合薄膜的制备工艺研究;宋文龙等;《郑州大学学报(工学版)》;20090310(第01期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108977776A (zh) | 2018-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108977776B (zh) | 空间宽温域环境下高结合力固体润滑膜层及其制备方法 | |
CN103668095B (zh) | 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法 | |
CN102653855B (zh) | 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法 | |
CN108690956B (zh) | 电弧离子镀-磁控溅射复合沉积高温耐磨减摩AlTiN纳米多层涂层及其制备方法和应用 | |
CN101435071B (zh) | 耐磨损和抗氧化TiAlSiCN薄膜的制备方法 | |
CN101469402B (zh) | 类富勒烯碳膜的制备方法 | |
CN203174194U (zh) | 一种多功能等离子体增强涂层系统 | |
CN109576641B (zh) | 一种空间机构高结合力固体抗菌润滑膜层及其制备方法 | |
GB2303380A (en) | Improving the sputter deposition of metal-sulphur coatings | |
CN104278241B (zh) | 一种具有多环境适应性的薄膜材料的制备技术 | |
CN104278234A (zh) | 一种室温到800℃宽温域自润滑涂层的制备技术 | |
CN108611613B (zh) | 一种纳米多层结构碳基薄膜的制备方法 | |
CN107699859B (zh) | 轴瓦用全金属自润滑减摩涂层及其制备方法 | |
CN115044867A (zh) | 一种TiAlWN涂层及其制备方法与应用 | |
Yan et al. | High power impulse magnetron sputtering and its applications | |
CN103009697B (zh) | 一种自润滑梯度复合超硬膜及其制备方法 | |
CN104711513A (zh) | 一种固体润滑膜层及其制备方法 | |
Weise et al. | Influence of magnetron sputtering process parameters on wear properties of steel/Cr3Si or Cr/MoSx | |
CN102943240A (zh) | 一种多功能等离子体增强涂层系统 | |
WO2008028355A1 (fr) | Procédé de fabrication de produits antibactériens en surface suivant la technique de déposition physique en phase vapeur | |
CN101397666B (zh) | 一种Zn/ZnS复合固体润滑薄膜及其制备方法 | |
CN101880876B (zh) | 压缩机滑片及其表面涂层处理方法 | |
CN114196913B (zh) | 一种超低摩擦固液复合润滑涂层及其制备方法 | |
CN115074684A (zh) | 一种含银高熵合金宽温域润滑薄膜材料及其制备方法 | |
CN104928639B (zh) | 一种超强韧碳基表面防护涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |