CN108102364B - 一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法 - Google Patents

一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法 Download PDF

Info

Publication number
CN108102364B
CN108102364B CN201711381604.5A CN201711381604A CN108102364B CN 108102364 B CN108102364 B CN 108102364B CN 201711381604 A CN201711381604 A CN 201711381604A CN 108102364 B CN108102364 B CN 108102364B
Authority
CN
China
Prior art keywords
nickel
core
nanochain
solution
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711381604.5A
Other languages
English (en)
Other versions
CN108102364A (zh
Inventor
汪嘉恒
李映欣
崔颖
崔接武
张勇
吴玉程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Maiwei New Material Technology Co ltd
Hefei University Of Technology Asset Management Co ltd
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201711381604.5A priority Critical patent/CN108102364B/zh
Publication of CN108102364A publication Critical patent/CN108102364A/zh
Application granted granted Critical
Publication of CN108102364B publication Critical patent/CN108102364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开了一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法,利用水合肼的还原性,常压液相还原镍盐,制备由尺寸均匀的球形颗粒自组装形成的镍纳米链;然后,使用原位聚合法在纳米链表面包覆聚苯胺,获得纳米链状核壳型镍/聚苯胺复合吸波材料;所述纳米链状核壳型镍/聚苯胺复合吸波材料为核壳结构,以磁性金属镍纳米链为核心,导电聚合物聚苯胺为壳层。本发明利用镍纳米球自组装形成的纳米链作为磁性核心,通过几何效应增强磁各向异性,在保证介电损耗的前提下,进一步提升核壳结构整体的微波磁导率,从而改善吸波材料的阻抗匹配,降低电磁波的表面反射,提高材料的吸波性能。

Description

一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法
技术领域
本发明涉及一种自组装复合纳米吸波材料的制备方法,具体地说是一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法,属于吸波功能材料领域。
背景技术
吸波材料及器件的应用是目前电子电气产品抗电磁辐射和电磁干扰的主要解决方案,也是提升产品电磁兼容(EMC)的重要手段,目前广泛应用于民用和军事领域。核壳纳米结构使传统吸波材料的性能在微纳米尺度得到了有效的叠加和扩展,并引入了量子效应、界面效应、电磁耦合等新的物理机制,极大的提升了材料的电磁波吸收性能,已经成为吸波材料研究和应用的热点。其中,磁性/介电复合的核壳纳米吸波材料可以同时损耗电磁波的电和磁部分的能量,并具有丰富的界面极化和增强的磁自然共振,被认为是未来宽频带吸波材料的候选。特别是磁性金属/导电聚合物的核壳纳米结构组合,其超强的饱和磁化强度和多样的介电偶极共振使其在许多应用频段获得了极高的电磁波吸收性能,聚合物壳层又可以有效阻止金属核心的氧化和腐蚀,因此极具应用价值。然而,在电磁波频段下,较磁性金属和导电聚合物普遍具有的高介电常数而言,较低的相对磁导率却难以与之匹配,造成电磁波入射阻抗和表面反射的增加,核壳结构很难在较宽的频带上形成有效的电磁波吸收,这一阻抗匹配问题也严重阻碍了基于核壳纳米结构的宽频带电磁波吸收材料的发展和应用。因此,从根本上提升核壳型纳米吸波材料的磁导率,解决其阻抗匹配问题,也是目前宽频带电磁波吸收材料的研究焦点。
发明内容
本发明的目的在于提供一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法,利用自组装链状磁性纳米核心的磁各向异性,改善核壳型吸波材料的阻抗匹配,拓宽其吸收频带和增强其吸波性能。
本发明纳米链状核壳型镍/聚苯胺复合吸波材料为核壳结构,以磁性金属镍纳米链为核心,导电聚合物聚苯胺为壳层。
本发明利用水合肼的还原性,常压液相还原镍盐(如:氯化镍、硝酸镍、乙酸镍等),制备由尺寸均匀的球形颗粒自组装形成的镍纳米链;然后,使用原位聚合法在纳米链表面包覆聚苯胺,获得纳米链状核壳型镍/聚苯胺复合吸波材料。
本发明纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法,包括以下步骤:
步骤1:镍纳米链的制备
1a、将0.05~0.6mmol镍盐溶于20ml乙二醇中,在50~100℃下以300~600rpm的速度机械搅拌15~30min,获得澄清透明的镍醇溶液,记为溶液1;
步骤1a中,所述镍盐选自氯化镍、硝酸镍或乙酸镍等。
1b、将5~15mmol氢氧化钠和0.5~5ml水合肼加入至10ml乙二醇中,均匀搅拌至溶解,所得溶液记为溶液2;
1c、将溶液2升温至50~100℃,并保持该温度以300~600rpm的速度持续机械搅拌;将溶液1滴加至溶液2中,并保持原速度机械搅拌0.5~4h后自然冷却至室温;使用永磁体分离其中的磁性产物,并倾倒剩余的溶液,使用蒸馏水和无水乙醇各进行3次10min/次的超声清洗,并磁性分离,获得镍纳米链;
步骤1c中,升温速率控制在1~5℃/min。
步骤1c中,溶液1的滴加速度控制在0.1~4ml/min。
步骤2:聚苯胺壳层的包覆
2a、将步骤1c获得的镍纳米链重新分散于0.05~0.2mol/L的盐酸溶液中超声清洗1~5min并磁性分离出来,再将其分散于0.01~0.2mol/L的对氨基苯甲酸乙醇溶液中,在50~75℃下回流机械搅拌1~2h,磁性分离后获得表面改性的镍纳米链;
2b、将2a获得的表面改性的镍纳米链分散于pH值为3-6、浓度为0.5-2mol/L的苯胺水溶液中,超声震荡0.5~3h,获得前驱溶液;以微量进样器向所述前驱溶液中滴加0.5~2mol/L的过硫酸盐水溶液,在0℃冰浴条件下机械搅拌1~5h,撤去冰浴,继续搅拌1~10h;所得产物经过蒸馏水和无水乙醇各3次10min/次的超声清洗和磁性分离,真空干燥,获得纳米链状核壳型镍/聚苯胺复合吸波材料。
步骤2b中,所述过硫酸盐选自过硫酸铵、过硫酸钠或过硫酸钾等。
步骤2b中,真空干燥的参数为:压力0.01MPa,温度60℃,时间2~10h。
本发明的有益效果体现在:
1、本发明利用镍纳米球自组装形成的纳米链作为磁性核心,通过几何效应增强磁各向异性,在保证介电损耗的前提下,进一步提升核壳结构整体的微波磁导率,从而改善吸波材料的阻抗匹配,降低电磁波的表面反射,提高材料的吸波性能。
2、本发明利用水合肼的强还原性,低温常压对镍盐进行还原和自组装生长。该方法反应过程中产生的氨气可以有效防止金属镍纳米颗粒的氧化,因此产品颗粒尺寸均匀、制备操作简单、重复性好。
3、本发明中聚苯胺在镍纳米链表面的原位聚合可以在无规则的几何表面形成均匀的聚合物壳层包覆,在吸波材料的应用中可以有效的阻止金属镍核心的氧化失效。
附图说明
图1为镍/聚苯胺核壳纳米链结构的FESEM图像。
图2为镍/聚苯胺核壳纳米链结构的TEM图像。
图3为镍/聚苯胺核壳纳米链结构在0.1~18GHz频段和0~10mm厚度范围内的反射损耗(RL)。
具体实施方式
下面结合具体的实施例对本发明的技术方案作进一步分析说明。
本发明链状核壳型镍/聚苯胺复合吸波材料制备方法如下:
1、将0.4mmol六水合氯化镍溶于20ml乙二醇中,在60℃下以500rpm的速度机械搅拌30min至完全溶解,获得浅绿色澄清的镍醇溶液,记为溶液1;
2、将10mmol氢氧化钠和1ml水合肼在室温下溶解于10ml乙二醇中,并机械搅拌至完全溶解,所得溶液记为溶液2,所述溶液2以2℃/min的速度加热溶液至60℃;
3、保持溶液2的温度和搅拌速度,将溶液1以0.5ml/min的速度逐滴加入溶液2中,并持续反应1h,此时溶液中逐渐有黑色沉淀生成;
4、反应结束后,立即移除加热装置,待反应物自然冷却至室温,用蒸馏水和无水乙醇各进行3次10min/次的超声清洗和磁性分离,直至滤液为澄清透明,所收集的黑色粉体即为镍纳米链;
5、将步骤4制得的镍纳米链粉体分散在25ml浓度为0.1mol/L的盐酸水溶液中,并超声清洗2min;再将其磁性分离出来,重新分散在30ml浓度为0.1mol/L的对氨基苯甲酸乙醇溶液中,并在50℃下以300rpm的速度机械搅拌1h,磁性分离后获得表面改性的镍纳米链;
6、将步骤5收集的镍纳米链粉体分散于30ml浓度为1mol/L的苯胺水溶液中,并向其中滴加5ml浓度为0.1mol/L的盐酸水溶液,并持续超声处理1h,获得前驱溶液;
7、在500rpm速度的机械搅拌条件下,向步骤6获得的溶液中滴加5ml浓度为1mol/L的过硫酸铵水溶液,并在0℃冰浴条件下持续搅拌2h,而后撤去冰浴在室温下继续搅拌4h;
8、步骤7反应后的粉体通过磁性分离收集起来,并在0.01MPa、60℃条件下真空干燥10h,获得纳米链状核壳型镍/聚苯胺复合吸波材料。
本实施例获得的镍/聚苯胺纳米链吸波材料的FESEM图像如图1所示。图1显示,纳米链由众多尺寸均匀的球形纳米颗粒构成,纳米颗粒通过自组装生长链接形成了纳米链状结构,纳米链长度>1μm。图2为纳米链端部的TEM图像。由图2可见,构成纳米链的镍纳米球直径约为150nm,表面包覆较为均匀的聚苯胺壳层,壳层厚度约为10nm。图3为40wt.%镍/聚苯胺纳米链与石蜡制备的吸波体在0.1~18GHz频段和0~10mm厚度范围内的反射损耗(RL)曲线。由图3可见,随着d的增加,吸波体的有效吸收峰向短波方向显著移动,当d为6mm和f为14GHz时,RL达到了最小值-39.8dB。

Claims (5)

1.一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法,其特征在于:利用水合肼的还原性,常压液相还原镍盐,制备由尺寸均匀的球形颗粒自组装形成的镍纳米链;然后,使用原位聚合法在纳米链表面包覆聚苯胺,获得纳米链状核壳型镍/聚苯胺复合吸波材料;所述纳米链状核壳型镍/聚苯胺复合吸波材料为核壳结构,以磁性金属镍纳米链为核心,导电聚合物聚苯胺为壳层;具体包括如下步骤:
步骤1:镍纳米链的制备
1a、将0.05~0.6mmol镍盐溶于20ml乙二醇中,在50~100℃下机械搅拌15~30min,获得澄清透明的镍醇溶液,记为溶液1;
1b、将5~15mmol氢氧化钠和0.5~5ml水合肼加入至10ml乙二醇中,均匀搅拌至溶解,所得溶液记为溶液2;
1c、将溶液2升温至50~100℃,并保持该温度持续机械搅拌;将溶液1滴加至溶液2中,并保持原速度机械搅拌0.5~4h后自然冷却至室温;使用永磁体分离其中的磁性产物,并倾倒剩余的溶液,使用蒸馏水和无水乙醇依次进行超声清洗,并磁性分离,获得镍纳米链;
步骤2:聚苯胺壳层的包覆
2a、将步骤1c获得的镍纳米链重新分散于0.05~0.2mol/L的盐酸溶液中超声清洗1~5min并磁性分离出来,再将其分散于0.01~0.2mol/L的对氨基苯甲酸乙醇溶液中,在50~75℃下回流机械搅拌1~2h,磁性分离后获得表面改性的镍纳米链;
2b、将2a获得的表面改性的镍纳米链分散于pH值为3-6、浓度为0.5-2mol/L的苯胺水溶液中,超声震荡0.5~3h,获得前驱溶液;以微量进样器向所述前驱溶液中滴加0.5~2mol/L的过硫酸盐水溶液,在0℃冰浴条件下机械搅拌1~5h,撤去冰浴,继续搅拌1~10h;所得产物经过蒸馏水和无水乙醇依次进行超声清洗并磁性分离,真空干燥,获得纳米链状核壳型镍/聚苯胺复合吸波材料;
步骤1a中,所述镍盐选自氯化镍、硝酸镍或乙酸镍;
步骤1c中,溶液1的滴加速度控制在0.1~4ml/min。
2.根据权利要求1所述的制备方法,其特征在于:
步骤1c中,升温速率控制在1~5℃/min。
3.根据权利要求1所述的制备方法,其特征在于:
步骤1a、1c中,机械搅拌的速度控制在300~600rpm。
4.根据权利要求1所述的制备方法,其特征在于:
步骤2b中,所述过硫酸盐选自过硫酸铵、过硫酸钠或过硫酸钾。
5.根据权利要求1所述的制备方法,其特征在于:
步骤2b中,真空干燥的参数为:压力0.01MPa,温度60℃,时间2~10h。
CN201711381604.5A 2017-12-20 2017-12-20 一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法 Active CN108102364B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711381604.5A CN108102364B (zh) 2017-12-20 2017-12-20 一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711381604.5A CN108102364B (zh) 2017-12-20 2017-12-20 一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法

Publications (2)

Publication Number Publication Date
CN108102364A CN108102364A (zh) 2018-06-01
CN108102364B true CN108102364B (zh) 2020-05-19

Family

ID=62210503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711381604.5A Active CN108102364B (zh) 2017-12-20 2017-12-20 一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法

Country Status (1)

Country Link
CN (1) CN108102364B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138673B (zh) * 2019-12-26 2021-05-04 南京航空航天大学 一种自组装多孔聚苯胺/钴核壳球状结构吸波材料的制备方法
CN112573509B (zh) * 2020-12-23 2022-05-24 湖南医家智烯新材料科技有限公司 笼状石墨烯材料及其制备方法
CN114539738B (zh) * 2022-03-28 2023-09-05 安徽超星新材料科技有限公司 一种抗静电pet材料的制备方法
CN117840446A (zh) * 2023-12-21 2024-04-09 南京航空航天大学 一种单金属Ni纳米球电磁吸波材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436008C (zh) * 2007-04-10 2008-11-26 北京科技大学 一种金属镍纳米线的化学制备方法
CN103044915B (zh) * 2013-01-17 2014-12-17 黑龙江大学 聚苯胺/石墨烯/纳米镍复合材料的制备方法
CN106180740B (zh) * 2015-05-27 2019-02-12 中国科学院金属研究所 Co,Ni,FeCo,GdCo5纳米胶囊原位自组装纳米链及其制备

Also Published As

Publication number Publication date
CN108102364A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
CN108102364B (zh) 一种纳米链状核壳型镍/聚苯胺复合吸波材料的制备方法
CN110290691B (zh) 一种片层状MXene负载钴铁氧体的复合吸波材料及其制备方法
CN103012786B (zh) 一种石墨烯/CoFe2O4/聚苯胺复合吸波材料的制备方法
CN110283570B (zh) 一种FeCo@MXene核壳结构复合吸波材料及其制备方法
Yun et al. Microwave absorption enhancement of e-Fe3O4@ C microspheres by core surface modification
CN101342598A (zh) 金属镍纳米线的化学制备方法
CN109054741B (zh) 三明治结构钴镍合金颗粒/还原石墨烯复合材料的制备方法
Wang et al. Tunable dielectric properties and electromagnetic wave absorbing performance of MoS2/Fe3O4/PANI composite
Salimkhani et al. Study on the magnetic and microwave properties of electrophoretically deposited nano-Fe3O4 on carbon fiber
CN104192815A (zh) 一种枝状氮化铁粉末及其制备方法
CN107541185B (zh) 锌掺杂铁氧体/碳纳米管吸波材料及其制备方法
CN111363517A (zh) CoNi@C/PVDF复合高效吸波材料及其制备方法
CN113426999A (zh) 一种核壳异质结构磁性纳米线及其制备方法与应用
CN108971509B (zh) 一种可控粒径的铁镍合金纳米材料的制备方法
CN113697798B (zh) 一种磁性石墨烯纳米卷吸波材料的制备方法
CN117809925A (zh) 一种高频变压器纳米晶磁芯材料及其制备方法
CN113060772B (zh) 一种镍铁氧化物异质结吸波材料及其制备方法
CN107298762B (zh) 一种多孔锌掺杂四氧化三铁/聚苯胺复合材料
CN115843172A (zh) 一种中空碳负载金属镍颗粒及制备方法和微波吸收的应用
KR20160137415A (ko) 그래핀-자성입자 복합체의 제조 방법
CN113603149A (zh) 一种制备纳米核壳结构γ-Fe2O3@SiO2铁氧硅复合吸波材料的方法
CN104130405A (zh) 一种钴/聚吡咯纳米复合吸波材料及其制备方法
CN116063846A (zh) 一种吸波材料的制备方法
CN110958829B (zh) 一种Fe-Ni固溶体-Mn掺杂ZnO的电磁屏蔽复合材料及其制法
CN110982200B (zh) 制备复合吸波材料的方法及其制备的复合吸波材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230726

Address after: 230009 No. 193, Tunxi Road, Hefei, Anhui

Patentee after: HeFei University of Technology Asset Management Co.,Ltd.

Address before: Tunxi road in Baohe District of Hefei city of Anhui Province, No. 193 230009

Patentee before: Hefei University of Technology

Effective date of registration: 20230726

Address after: Room F505, Intelligent Institute of Technology University, No. 369 Huayuan Avenue, Baohe District, Hefei City, Anhui Province, 230051

Patentee after: Hefei Maiwei New Material Technology Co.,Ltd.

Address before: 230009 No. 193, Tunxi Road, Hefei, Anhui

Patentee before: HeFei University of Technology Asset Management Co.,Ltd.

TR01 Transfer of patent right
CP02 Change in the address of a patent holder

Address after: Room 508, Industrial Service Center, Baiyan Science Park, No. 188, Mingchuan Road, High tech Zone, Hefei City, Anhui Province, 230051

Patentee after: Hefei Maiwei New Material Technology Co.,Ltd.

Address before: Room F505, Intelligent Institute of Technology University, No. 369 Huayuan Avenue, Baohe District, Hefei City, Anhui Province, 230051

Patentee before: Hefei Maiwei New Material Technology Co.,Ltd.

CP02 Change in the address of a patent holder