CN108091687A - 具有等离子体钝化层的GaNHEMT及制备方法 - Google Patents

具有等离子体钝化层的GaNHEMT及制备方法 Download PDF

Info

Publication number
CN108091687A
CN108091687A CN201711408893.3A CN201711408893A CN108091687A CN 108091687 A CN108091687 A CN 108091687A CN 201711408893 A CN201711408893 A CN 201711408893A CN 108091687 A CN108091687 A CN 108091687A
Authority
CN
China
Prior art keywords
plasma
passivation layer
ganhemt
plasma passivation
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711408893.3A
Other languages
English (en)
Other versions
CN108091687B (zh
Inventor
王荣华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Runxin Microelectronics Dalian Co ltd
Original Assignee
Dalian Core Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Core Technology Co Ltd filed Critical Dalian Core Technology Co Ltd
Priority to CN201711408893.3A priority Critical patent/CN108091687B/zh
Publication of CN108091687A publication Critical patent/CN108091687A/zh
Application granted granted Critical
Publication of CN108091687B publication Critical patent/CN108091687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开一种具有等离子体钝化层的GaNHEMT,由下至上依次为衬底、缓冲层、GaN或InGaN沟道层及InxAlyGa1‑x‑yN势垒层,所述InxAlyGa1‑x‑yN势垒层边缘有隔离区,在隔离区之内有源区的InxAlyGa1‑x‑yN势垒层表面有源电极、漏电极及栅电极,所述InxAlyGa1‑x‑yN势垒层上有等离子体钝化层。制备方法是制备预处理器件,将预处理器件置于反应腔内,将反应腔抽真空;向反应腔通入气体并使腔体压强达到3毫托~10托,开启功率小于200瓦的射频源使气体形成等离子体,所述气体为含F气体、含O气体、含Cl气体、氮气以及氩气中的至少一种;预处理器件在等离子体环境下保留0.5~5分钟;制成具有等离子体钝化层的GaN HEMT。

Description

具有等离子体钝化层的GaNHEMT及制备方法
技术领域
本发明属于高电子迁移率晶体管器件制备领域,尤其涉及一种可大幅提升击穿电压的具有等离子体钝化层的GaN HEMT及制备方法。
背景技术
氮化镓高电子迁移率晶体管器件(GaN HEMT)是基于氮化镓(GaN)材料的高电子迁移率晶体管(HEMT),在微波射频和电力电子应用中发挥越来越重要的角色。GaN高电子迁移率晶体管器件的结构是由下至上依次为衬底、缓冲层、GaN或InGaN沟道层及InxAlyGa1-x-yN势垒层(可有GaN或SiN帽层覆盖其上),所述InxAlyGa1-x-yN势垒层边缘有隔离区,隔离区之内有源区的InxAlyGa1-x-yN势垒层表面有源电极、漏电极及栅电极。三族氮化物InxAlyGa1-x-yN(0<x,y<1,x+y<=1)材料体系具有极强的极化效应,表面容易积累可移动电荷,对HEMT器件的性能造成如下主要影响:1)器件提前击穿,即实际击穿电压比设计值小,可靠性差;2)器件开关过程中实际电阻比静态电阻大,又称电流崩塌效应,影响器件的输出功率。
为了解决三族氮化物表面积累可移动电荷的问题,现有的方法是在GaN HEMT的源、漏、栅电极制备后通过等离子体增强化学气相沉积(PECVD)或原子层沉积(ALD)的方法,直接在器件的InxAlyGa1-x-yN势垒层表面及源电极、漏电极及栅电极表面生长氮化硅(SiN)、氧化硅(SiO2)、氧化铝(Al2O3)或氧化铪(Hf2O3)等介质薄膜(即钝化)。部分实验结果表明,InxAlyGa1-x-yN表面的移动电荷密度随介质层厚度的增加而减少,但不能完全去除;且对于微波射频器件而言,过厚的介质层会带来很大的寄生电容,影响器件在开关截止频率、增益等方面的性能,故介质层厚度受到限制。对于高压电力电子器件而言,未能去除的表面移动电荷仍会引起器件的提前击穿,影响器件长期的可靠性和稳定性。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种可大幅提升击穿电压的具有等离子体钝化层的GaN HEMT及制备方法。
本发明的技术方案是:一种具有等离子体钝化层的GaN HEMT,由下至上依次为衬底、缓冲层、GaN或InGaN沟道层及InxAlyGa1-x-yN势垒层,InxAlyGa1-x-yN势垒层边缘有隔离区,在隔离区之内有源区的InxAlyGa1-x-yN势垒层表面有源电极、漏电极及栅电极,所述InxAlyGa1-x-yN势垒层上有等离子体钝化层。
所述等离子体钝化层为源电极、栅电极及漏电极正投影之外的区域。
所述等离子体钝化层为源电极及漏电极正投影之外的区域。
所述等离子体钝化层为栅电极正投影区域。
在上表面沉积有介质薄膜。
一种上述具有等离子体钝化层的GaN HEMT的制备方法,其特征在于依次按照如下步骤进行:
a. 制备预处理器件;
b. 将预处理器件置于反应腔内,将反应腔抽真空;向反应腔通入气体并使腔体压强达到3毫托~10托,开启功率小于200瓦的射频源使气体形成等离子体,所述气体为含F气体(CF4、CHF3、C2F6、SF6)、含O气体(O2、O3、N2O)、含Cl气体(Cl2、BCl3、SiCl4)、氮气以及氩气中的至少一种;预处理器件在等离子体环境下保留0.5~5分钟;
c. 制成具有等离子体钝化层的GaN HEMT。
所述制备预处理器件是制备源电极、漏电极及栅电极后的器件。
所述制备预处理器件是制备源电极及漏电极后的器件。
所述制备预处理器件是制备经光刻、显影生成栅电极图形后的器件。
本发明的等离子体钝化层可完全去除InxAlyGa1-x-yN表面的移动电荷,无需介质层即可消除三族氮化物表面的移动电荷,使击穿电压大幅提升,提高电力电子器件在工作电压下的可靠性,又可避免过厚介质层带来的寄生电容对微波射频器件的负面影响,同时还可使器件的尺寸进一步缩小,降低器件成本。
附图说明
图1是本发明实施例1的结构示意图。
图2是本发明实施例2的结构示意图。
图3是本发明实施例3的结构示意图。
图4是本发明实施例4的结构示意图。
图5是本发明实施例1与现有技术击穿电压对比示意图。
具体实施方式
实施例1:
a. 制备预处理器件
按照现有技术制备GaN HEMT,由下至上依次为衬底1、缓冲层2、GaN或InGaN沟道层3及InxAlyGa1-x-yN势垒层4,所述InxAlyGa1-x-yN势垒层边缘4有隔离区5,在隔离区5之内有源区的InxAlyGa1-x-yN势垒层表面沉积有源电极6、漏电极7及栅电极8。
b. 将预处理器件置于真空设备反应腔内,将反应腔抽真空(小于5毫托),真空设备是能激发等离子体的真空设备或装置,如反应离子刻蚀机RIE,感应耦合等离子体刻蚀机ICP,电子回旋共振等离子体刻蚀机ECR,等离子体去胶机或等离子体表面清洁机等;向反应腔通入O2气体并使腔体压强达到30毫托,开启功率小于200瓦的射频源使气体形成等离子体;预处理器件在等离子体环境下保留5分钟;
即制成如图1所示的具有等离子体钝化层的GaN HEMT,由下至上依次为衬底1、缓冲层2、GaN或InGaN沟道层3及InxAlyGa1-x-yN势垒层4, InxAlyGa1-x-yN势垒层边缘4有隔离区5,在隔离区5之内有源区的InxAlyGa1-x-yN势垒层表面有源电极6、漏电极7及栅电极8,所述InxAlyGa1-x-yN势垒层4上有等离子体钝化层9,所述等离子体钝化层9为源电极6、栅电极8及漏电极7正投影之外的区域。
与现有的介质层钝化不同,等离子体钝化能有效去除InxAlyGa1-x-yN表面的移动电荷,即切断表面移动电荷于源电极、栅电极和漏电极间在电场强度的驱动下进行表面迁移的可能。虽然实施例1栅电极下的表面还存在移动电荷,但源电极与栅电极之间和漏电极与栅电极之间的表面没有移动电荷,器件因表面移动电荷造成的提前击穿即可得到抑制。
实施例2:
a. 制备预处理器件
按照现有技术制备GaN HEMT,由下至上依次为衬底1、缓冲层2、GaN或InGaN沟道层3及InxAlyGa1-x-yN势垒层4,所述InxAlyGa1-x-yN势垒层边缘4有隔离区5,在隔离区5之内有源区的InxAlyGa1-x-yN势垒层表面沉积有源电极6及漏电极7。
b. 将预处理器件置于真空设备反应腔内,将反应腔抽真空(小于50毫托),真空设备是能激发等离子体的真空设备或装置,如反应离子刻蚀机RIE,感应耦合等离子体刻蚀机ICP,电子回旋共振等离子体刻蚀机ECR,等离子体去胶机或等离子体表面清洁机等;向反应腔通入CF4并使腔体压强达到5托,开启功率小于200瓦的射频源使气体形成等离子体;预处理器件在等离子体环境下保留3分钟;
c. 按照现有技术制作栅电极并沉积在等离子体钝化层9上。
即制成如图2所示的具有等离子体钝化层的GaN HEMT,由下至上依次为衬底1、缓冲层2、GaN或InGaN沟道层3及InxAlyGa1-x-yN势垒层4,InxAlyGa1-x-yN势垒层边缘4有隔离区5,在隔离区5之内有源区的InxAlyGa1-x-yN势垒层表面有源电极6、漏电极7及栅电极8,所述InxAlyGa1-x-yN势垒层4上有等离子体钝化层9,所述等离子体钝化层9为源电极6及漏电极7正投影之外的区域。
与实施例1不同的是栅电极下的移动电荷也被等离子体钝化去除。适用于在源漏电极制备完成后希望借助于介质层制备T型栅的器件结构。
实施例3:
a. 制备预处理器件
按照现有技术制备GaN HEMT,由下至上依次为衬底1、缓冲层2、GaN或InGaN沟道层3及InxAlyGa1-x-yN势垒层4,所述InxAlyGa1-x-yN势垒层边缘4有隔离区5,在隔离区5之内有源区的InxAlyGa1-x-yN势垒层表面有源电极6及漏电极7。在随后的栅电极制备过程中,利用光刻、显影生成以光刻胶为掩膜的栅电极图形,再进行下一步预处理即等离子体钝化。
b.将预处理器件置于真空设备反应腔内,将反应腔抽真空(小于50毫托),真空设备是能激发等离子体的真空设备或装置,如反应离子刻蚀机RIE,感应耦合等离子体刻蚀机ICP,电子回旋共振等离子体刻蚀机ECR,等离子体去胶机或等离子体表面清洁机等;向反应腔通入BCl3和氩气并使腔体压强达到10托,开启功率小于200瓦的射频源使气体形成等离子体;预处理器件在等离子体环境下保留0.5分钟;
c. 按照现有技术进行金属沉积和剥离,获得栅电极。
即制成如图3所示的具有等离子体钝化层的GaN HEMT,由下至上依次为衬底1、缓冲层2、GaN或InGaN沟道层3及InxAlyGa1-x-yN势垒层4, InxAlyGa1-x-yN势垒层边缘4有隔离区5,在隔离区5之内有源区的InxAlyGa1-x-yN势垒层表面有源电极6、漏电极7及栅电极8,所述InxAlyGa1-x-yN势垒层4上有等离子体钝化层9,等离子体钝化层9位于栅电极8正投影区域,即栅电极8的下面。
实施例3只有栅电极下的移动电荷被等离子体钝化去除,而栅电极以外源电极与漏电极之间的表面区域仍存在移动电荷。但源电极与栅电极和漏电极与栅电极之间的移动电荷的迁移通道被阻断,同样可以达到抑制器件提前击穿的效果。
实施例4:
如图4所示:在实施例1(或实施例2或实施例3)的基础上,用现有技术的方法在上表面,即在GaN HEMT的源、漏、栅电极制备后通过PECVD或ALD的方法,直接在器件的InxAlyGa1-x-yN势垒层表面沉积SiN、SiO2、Al2O3或Hf2O3等介质薄膜10,以免器件受湿度或表面污染等环境方面的影响。
本发明实施例1与未钝化GaN HEMT、介质层钝化GaN HEMT的击穿电压对比如图5所示:在栅电极控制沟道处于关断状态的情况下,未钝化的GaN HEMT器件漏电极电流Id在漏极电压 Vds = 300V时开始迅速上升,在Vds = 400V时硬击穿;在对器件进行介质层钝化(介质材料为100nm厚SiN)后,漏电极电流Id在漏极电压Vds = 400V时开始上升,在Vds = 450V时硬击穿。在按照本发明实施例1进行等离子体钝化后,器件的击穿电压大幅提高至1020V。
实验表明本发明可大幅提升击穿电压。

Claims (9)

1.一种具有等离子体钝化层的GaNHEMT,由下至上依次为衬底(1)、缓冲层(2)、GaN或InGaN沟道层(3)及InxAlyGa1-x-yN势垒层(4),所述InxAlyGa1-x-yN势垒层边缘(4)有隔离区(5),在隔离区(5)之内有源区的InxAlyGa1-x-yN势垒层表面有源电极(6)、漏电极(7)及栅电极(8),其特征在于:所述InxAlyGa1-x-yN势垒层(4)上有等离子体钝化层(9)。
2.根据权利要求1所述具有等离子体钝化层的GaNHEMT,其特征在于:所述等离子体钝化层(9)为源电极(6)、栅电极(8)及漏电极(7)正投影之外的区域。
3.根据权利要求1所述具有等离子体钝化层的GaNHEMT,其特征在于:所述等离子体钝化层(9)为源电极(6)及漏电极(7)正投影之外的区域。
4.根据权利要求1所述具有等离子体钝化层的GaNHEMT,其特征在于:所述等离子体钝化层(9)为栅电极(8)正投影区域。
5.根据权利要求1、2、3或4所述具有等离子体钝化层的GaNHEMT,其特征在于在上表面沉积有介质薄膜(10)。
6.一种如权利要求1所述具有等离子体钝化层的GaNHEMT的制备方法,其特征在于依次按照如下步骤进行:
a. 制备预处理器件;
b. 将预处理器件置于反应腔内,将反应腔抽真空;向反应腔通入气体并使腔体压强达到3毫托~10托,开启功率小于200瓦的射频源使气体形成等离子体,所述气体为含F气体、含O气体、含Cl气体、氮气以及氩气中的至少一种;预处理器件在等离子体环境下保留0.5~5分钟;
c. 制成具有等离子体钝化层的GaNHEMT。
7.根据权利要求6所述具有等离子体钝化层的GaNHEMT的制备方法,其特征在于所述制备预处理器件是制备源电极(6)、漏电极(7)及栅电极(8)后的器件。
8.根据权利要求6所述具有等离子体钝化层的GaNHEMT的制备方法,其特征在于所述制备预处理器件是制备源电极(6)及漏电极(7)后的器件。
9.根据权利要求6所述具有等离子体钝化层的GaNHEMT的制备方法,其特征在于所述制备预处理器件是制备经光刻、显影生成栅电极(8)图形后的器件。
CN201711408893.3A 2017-12-22 2017-12-22 具有等离子体钝化层的GaNHEMT及制备方法 Active CN108091687B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711408893.3A CN108091687B (zh) 2017-12-22 2017-12-22 具有等离子体钝化层的GaNHEMT及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711408893.3A CN108091687B (zh) 2017-12-22 2017-12-22 具有等离子体钝化层的GaNHEMT及制备方法

Publications (2)

Publication Number Publication Date
CN108091687A true CN108091687A (zh) 2018-05-29
CN108091687B CN108091687B (zh) 2020-10-27

Family

ID=62178938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711408893.3A Active CN108091687B (zh) 2017-12-22 2017-12-22 具有等离子体钝化层的GaNHEMT及制备方法

Country Status (1)

Country Link
CN (1) CN108091687B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108777262A (zh) * 2018-06-15 2018-11-09 中国科学院微电子研究所 高电子迁移率晶体管
CN108831922A (zh) * 2018-06-05 2018-11-16 大连芯冠科技有限公司 具有GaAs和GaN复合沟道的GaN HEMT器件及制备方法
CN111640797A (zh) * 2020-06-02 2020-09-08 南方科技大学 半导体器件的制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131970A1 (en) * 2005-12-09 2007-06-14 Mittereder Jeffrey A Silicon nitride passivation with ammonia plasma pretreatment for improving reliability of AIGaN/GaN HEMTs
CN102064108A (zh) * 2010-11-12 2011-05-18 中国电子科技集团公司第五十五研究所 一种制造介质/氮化物复合结构增强型场效应管的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131970A1 (en) * 2005-12-09 2007-06-14 Mittereder Jeffrey A Silicon nitride passivation with ammonia plasma pretreatment for improving reliability of AIGaN/GaN HEMTs
CN102064108A (zh) * 2010-11-12 2011-05-18 中国电子科技集团公司第五十五研究所 一种制造介质/氮化物复合结构增强型场效应管的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831922A (zh) * 2018-06-05 2018-11-16 大连芯冠科技有限公司 具有GaAs和GaN复合沟道的GaN HEMT器件及制备方法
CN108831922B (zh) * 2018-06-05 2021-05-18 大连芯冠科技有限公司 具有GaAs和GaN复合沟道的GaN HEMT器件及制备方法
CN108777262A (zh) * 2018-06-15 2018-11-09 中国科学院微电子研究所 高电子迁移率晶体管
CN111640797A (zh) * 2020-06-02 2020-09-08 南方科技大学 半导体器件的制作方法

Also Published As

Publication number Publication date
CN108091687B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN105655395B (zh) 一种增强型高电子迁移率晶体管及其制作方法
EP3059757B1 (en) Group-iii nitride semiconductor device and manufacturing method therefor
CN102723358B (zh) 绝缘栅场效应晶体管及其制造方法
CN103035703B (zh) 化合物半导体器件及其制造方法
CN103219239B (zh) AlGaN/GaN HEMT制造法
CN104134690B (zh) 一种高电子迁移率晶体管及其制备方法
CN107369704B (zh) 含有铁电栅介质的叠层栅增强型GaN高电子迁移率晶体管及制备方法
CN102789982A (zh) 一种增强型AlN/GaN高电子迁移率晶体管及其制作方法
CN108091687A (zh) 具有等离子体钝化层的GaNHEMT及制备方法
CN109004029A (zh) 具有金属氧化物/二氧化硅叠栅的GaN基MOS-HEMT器件及其制备方法
CN107887383A (zh) GaN基单片功率逆变器及其制作方法
CN107768252A (zh) 一种高阈值电压高导通性能的常关型GaN基MOSFET结构及其制备方法
JP5717677B2 (ja) 半導体装置およびその製造方法
CN106876256A (zh) SiC双槽UMOSFET器件及其制备方法
CN114420564A (zh) 一种分离栅沟槽mos器件及其制造方法
CN108417628A (zh) 一种GaN HEMT器件及制备方法
CN111739801B (zh) 一种SOI基p-GaN增强型GaN功率开关器件的制备方法
CN110875382A (zh) 半导体器件及其制造方法
CN106257686A (zh) 半导体器件及其制造方法
CN113178480A (zh) 具有栅漏复合阶梯场板结构的增强型hemt射频器件及其制备方法
CN107591444A (zh) 增强型晶体管及其制作方法
CN208368513U (zh) 基于金属氧化物/二氧化硅叠栅的GaN基MOS-HEMT器件
CN116387361A (zh) SiO2阻挡层Ga2O3垂直UMOS晶体管及其制备方法
CN111739800B (zh) 一种SOI基凹栅增强型GaN功率开关器件的制备方法
CN103681831B (zh) 高电子迁移率晶体管及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 116000 building 7, industrial design Industrial Park, No. 57 Xinda street, Qixianling, high tech Industrial Park, Dalian, Liaoning

Patentee after: Runxin Microelectronics (Dalian) Co.,Ltd.

Address before: 116023 building 7, industrial design Industrial Park, 57 Xinda street, Dalian high tech Industrial Park, Liaoning Province

Patentee before: DALIAN XINGUAN TECHNOLOGY CO.,LTD.

CP03 Change of name, title or address