CN108048415A - 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用 - Google Patents

两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用 Download PDF

Info

Publication number
CN108048415A
CN108048415A CN201810103624.4A CN201810103624A CN108048415A CN 108048415 A CN108048415 A CN 108048415A CN 201810103624 A CN201810103624 A CN 201810103624A CN 108048415 A CN108048415 A CN 108048415A
Authority
CN
China
Prior art keywords
mrfls2
mrfls1
seq
albumen
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810103624.4A
Other languages
English (en)
Other versions
CN108048415B (zh
Inventor
李鲜
邢梦云
曹运琳
任传宏
解林峰
徐昌杰
孙崇德
陈昆松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810103624.4A priority Critical patent/CN108048415B/zh
Publication of CN108048415A publication Critical patent/CN108048415A/zh
Application granted granted Critical
Publication of CN108048415B publication Critical patent/CN108048415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
    • C12Y114/11023Flavonol synthase (1.14.11.23)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了两个杨梅黄酮醇合成酶MrFLSs蛋白,来源于杨梅果实的双加氧酶家族,其氨基酸序列SEQ:NO.18和SEQ:NO.19所示。在杨梅果实发育过程中,MrFLS1基因表达与黄酮醇累积呈正相关关系,MrFLS2则在果实成熟时高表达,与后期黄酮醇含量增加相关。本发明验证了MrFLS1和MrFLS2基因的功能,原核表达体外验证表明,MrFLS1和MrFLS2蛋白均可将二氢山奈酚催化生成山奈酚、将二氢槲皮素催化生成槲皮素,且MrFLS2具有较高催化效率;在烟草中过量表达MrFLS1或MrFLS2,转基因植株的黄酮醇含量均显著增加。本发明可在工程微生物菌及植物遗传转化中的应用。

Description

两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用
技术领域
本发明属于分子生物学领域,涉及重组蛋白和基因工程,具体涉及两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用。
技术背景
FLS(EC 1.14.11.23)属于FeⅡ/2-酮戊二酸盐依赖性双加氧酶家族,是合成黄酮醇化合物必不可少的关键酶之一,在2-酮戊二酸盐和氧气存在的条件下,它催化二氢黄酮醇发生去饱和反应,生成黄酮醇、琥珀酸盐、二氧化碳和水。黄酮醇广泛存在于植物根、茎、叶、花、果实和种子中,对植物生长发育和抵抗逆境等发挥着重要作用,包括调控生长素转运、促进侧根形成、影响花粉发育、抗紫外线、调节叶片气孔开度等。FLS基因在转录水平上的表达模式与植物黄酮醇的积累密切相关。拟南芥种子萌发过程中,白光照射能引起AtFLS1在不同组织中的差异性表达,并导致黄酮醇不同程度的积累。反义NtFLS后,烟草中无法检测到黄酮醇,而花粉也不能正常萌发成花粉管。
杨梅(Morella rubra)属于我国特色水果,具有很好的医药学活性,这与其较高的黄酮类化合物含量密不可分,而黄酮醇是杨梅中主要的黄酮类化合物,通常以糖苷衍生物形式存在于液泡中。大量研究报道了黄酮醇抗氧化、抗肿瘤、预防心血管疾病、消炎等医药学活性。富含黄酮醇的植物可用于生产保健食品、药品,具有广阔的开发应用前景。
鉴别出参与杨梅果实黄酮醇生物合成相关的FLS,对于阐明杨梅果实黄酮醇生物合成机制具有重要意义,为开发工程微生物菌奠定基础,且可指导研究单一黄酮醇化合物分流机制。
发明内容
本发明的目的是提供两个杨梅黄酮醇合成酶MrFLSs蛋白,来源于杨梅果实的双加氧酶家族,是两个参与杨梅黄酮醇生物合成的关键基因MrFLS1和MrFLS2,其氨基酸序列如SEQ:NO.18和SEQ:NO.19所示,其编码的核苷酸序列如SEQ:NO.1和SEQ:NO.2所示。
本发明的另一个目的是提供所述的两个杨梅黄酮醇合成酶MrFLSs蛋白在工程微生物菌及植物遗传转化中的应用。利用原核表达技术将pET28a-MrFLS1或pET28a-MrFLS2重组质粒转化BL21(DE3),诱导出的蛋白均可将二氢山奈酚催化生成山奈酚、将二氢槲皮素催化生成槲皮素;利用基因工程技术获得高表达MrFLS1或MrFLS2的烟草转基因植株,相较于野生型,转基因株系中黄酮醇含量显著增加。
本发明提供的基因特征如下:
(1)基因表达特征:随着杨梅果实发育,MrFLS1表达先降后升,与杨梅黄酮醇的变化趋势一致,MrFLS2则在杨梅果实成熟时高表达,与后期黄酮醇含量增加相关;
(2)基因功能特征:(1)大肠杆菌BL21(DE3)表达PET28a-MrFLS1或PET28a-MrFLS2重组载体,诱导表达出的蛋白均可将二氢山奈酚催化生成山奈酚、将二氢槲皮素催化生成槲皮素,说明MrFLSs编码的蛋白具有黄酮醇合成酶活性,能够将二氢黄酮醇转化为黄酮醇;
(3)利用基因工程技术获得过表达MrFLS1或MrFLS2的转基因烟草植株,与野生型相比,转基因株系花中黄酮醇含量显著上升。
本发明提供了两个参与杨梅黄酮醇生物合成的关键基因MrFLS1和MrFLS2,从杨梅果实中分离获得,分别具有如SEQ:NO.1和SEQ:NO.2所示的核苷酸序列,SEQ:NO.18和SEQ:NO.19所示的氨基酸序列。杨梅果实发育过程中,MrFLS1基因表达与黄酮醇累积呈正相关关系,MrFLS2则在杨梅果实成熟时高表达,与后期黄酮醇含量增加相关。本发明验证了MrFLS1和MrFLS2基因的功能,原核表达体外验证表明,MrFLS1和MrFLS2蛋白均可将二氢山奈酚催化生成山奈酚、将二氢槲皮素催化生成槲皮素,且MrFLS2具有较高催化效率;在烟草中过量表达MrFLS1或MrFLS2,转基因植株的黄酮醇含量均显著增加;本工作对研究单一黄酮醇化合物分流机制具有指导意义,为开发工程微生物菌奠定基础。
附图说明
图1.杨梅发育过程中黄酮醇含量变化。
图2.杨梅发育阶段MrFLS1或MrFLS2基因表达模式。
图3.原核表达MrFLS1或MrFLS2重组蛋白SDS-PAGE图。
图4.重组蛋白活性显示MrFLS1能够将二氢山柰酚转化为山柰酚。
图5.重组蛋白活性显示MrFLS1能够将二氢槲皮素转化为槲皮素。
图6.重组蛋白活性显示MrFLS2能够将二氢山柰酚转化为山柰酚。
图7.重组蛋白活性显示MrFLS2能够将二氢槲皮素转化为槲皮素。
图8.过量表达MrFLS1或MrFLS2显著改变烟草黄酮醇含量。
具体实施方式
本发明结合附图和实施例作进一步的说明。
说明:本发明中涉及的目的基因引物设计、全长克隆、表达载体构建、RNA提取、cDNA合成、测序分析和鉴定以及PCR产物的分离纯化等基本操作,可按照本领域已知的技术进行,若未特别说明,实施例中的技术手段为本领域技术人员熟知的常规手段。
实施例1:MrFLSs基因全长获得及鉴定
在荸荠杨梅果实的RNA-Seq数据库中,以flavonol为关键词搜索与黄酮醇合成相关的基因,并以拟南芥中功能明确的AtFLS1氨基酸序列为参考,通过CLUSTALX软件同源比对,筛选出两个可能参与杨梅果实黄酮醇合成的基因Unigene19653(MrFLS1)和Unigene16520(MrFLS2),应用序列分别为:SEQ:NO.1和SEQ:NO.2,并通过BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)在线分析,确认其为全长序列。设计全长克隆引物:SEQ:NO.3和SEQ:NO.4及SEQ:NO.5和SEQ:NO.6,PCR反应体系为50μL,成分分别为:0.5μLRoche高保真酶,5μL缓冲液(10×),4μL dNTP(2.5mM),上下游引物(10μM,Hua Gene)各2μL,4μL cDNA,32.5μL H2O。反应程序为:预变性95℃,2min;变性95℃,30s;退火58℃,30s;延伸72℃,90min,35个循环;72℃延伸10min,4℃保存。克隆结果经测序验证,获得与转录组数据库相匹配的MrFLSs全长序列SEQ:NO.1和SEQ:NO.2。在线翻译成氨基酸序列(http://web.expasy.org/translate/),即:SEQ:NO.18(MrFLS1)和SEQ:NO.19(MrFLS2)。
实施例2:杨梅发育阶段果实MrFLSs基因表达和黄酮醇含量检测
1.杨梅果实材料
荸荠杨梅发育阶段果实当天采收,经液氮冷冻后存放于-80℃冰箱,每个阶段果实组织设置3个生物学重复,每个重复6-7个果实。
2.RNA提取和cDNA合成
杨梅组织样品在液氮环境中研磨成粉末,利用普通CTAB法提取总RNA,经电泳检测合格后,参照TURBO DNAase Kit(Ambion)说明书,去除DNA,根据iScript cDNA Synthesis Kit(Bio-Rad)要求,取1.0μg RNA,反转录成cDNA。
4.黄酮醇含量检测
分别称量0.3g左右鲜样粉末,按1:10(g:mL)溶于80%甲醇(1%HCL)中,浸泡2h,超声30min,重复3次,合并上清液,得粗提液6mL。取1mL提取液30℃旋转真空浓缩到只剩水相,10000rpm离心5min,定容到200μL色谱甲醇(1%HCL)中,过0.22μM水系滤膜(LABMAX)滤膜,备用。检测色谱柱为固定相(SunfireC18 5μm(4.6*250mm)),流动相为A:(0.1%甲酸)B:乙腈:水(0.1%甲酸)=1:1,进样体积10μL,流速1mL/min,柱温25℃,体系:0-20min 28%B,20-25min 28-36%B,25-40min 36%B,40-45min 36-50%B,45-60min 50-100%B,60-65min 100%B,65-70min 100-28%B,70-75min 28%B。所用流动相均为色谱级。
在荸荠杨梅果实发育过程中,黄酮醇含量呈下降趋势,但在果实成熟时(S4)有一定幅度上升(附图1)。
3.MrFLSs基因表达分析
根据MrFLS1(SEQ:NO.1)或MrFLS2(SEQ:NO.2)的3’端跨终止密码子序列,设计实时荧光定量PCR(Q-PCR)特异引物(SEQ:NO.7和SEQ:NO.8及SEQ:NO.9和SEQ:NO.10),引物特异性经阴性对照(以水为模板)分析、熔点曲线分析、Q-PCR产物再测序验证。内参基因为:SEQ:NO.11,引物序列为:SEQ:NO.12和SEQ:NO.13。Q-PCR反应体系为:10μL480SYBRGreen I Master(Roche),上下游引物(10μM,Hua Gene)各1μL,2μL cDNA,6μL H2O。Q-PCR反应程序为:预变性95℃,3min;变性95℃,10s;退火60℃,30s,50个循环。所用仪器为罗氏实时荧光定量PCR仪(480II),每次检测内参基因和MrFLSs都有阴性对照反应。
基因表达分析结果表明,随着杨梅果实生长发育,MrFLS1的表达趋势与黄酮醇积累模式相一致,MrFLS2则在杨梅果实成熟时高表达,与后期黄酮醇含量增加相关(附图2)。
实施例3:pET28a-MrFLSs表达载体的构建
根据pET28a载体多克隆位点序列及MrFLS1(SEQ:NO.1)或MrFLS2(SEQ:NO.2)全长基因序列,设计包含SalI和HindIII酶切位点的引物序列:SEQ:NO.14和SEQ:NO.15及SEQ:NO.16和SEQ:NO.17,该引物设计包含起始密码子和终止密码子,扩增得到含有SalI和HindIII酶切位点的MrFLSs序列。PCR反应体系为50μL,成分分别为:1μL Phanta高保真酶(Vazyme),25μL缓冲液(2×),1μL dNTP(10mM),上下游引物(10μM,Hua Gene)各2μL,1μL cDNA,18μLH2O。反应程序为:预变性95℃,2min;变性95℃,15s;退火58℃,15s;延伸72℃,1min,35个循环;72℃彻底延伸5min,4℃保存。分别用SalI(NEB)和HindIII(NEB)双酶切PET28a载体,使用II连接酶(Vazyme)将目的基因片段连接到PET28a载体上。连接反应体系为10μL,成分分别为:1μLII连接酶(Vazyme),2μL缓冲液(5×),1μL PCR回收产物,3μL载体,3μL H2O。混匀后,37℃连接0.5h后冰上放置5min。将连接产物转化到DH5а感受态(Takara)中,涂布于含有Amp的培养板上37℃过夜培养,挑取阳性克隆菌株,送往上海HuaGene测序,分析测序结果,含有正确目的基因序列的载体,则为构建成功的pET28a-MrFLS1或pET28a-MrFLS2重组质粒。
实施例4:MrFLSs蛋白的表达及纯化
1.转化培养大肠杆菌BL21并诱导表达
将构建成功的pET28a-MrFLS1或pET28a-MrFLS2重组质粒转化至大肠杆菌BL21(DE3)(北京全式金生物技术有限公司,目录好:CD701-01)中。涂布于含有Amp的培养板上37℃过夜培养,挑取单菌落,检测有无空载。取50mL离心管,加入20mL LB培养基,180转37℃过夜培养表达菌株,以体积比1:50将菌液加入新鲜500mL LB中,180转37℃培养至OD600nm=0.8~1.0,加入IPTG至终浓度1mM,诱导温度为20℃,15h后收集菌体,室温条件下3000g离心5min即可。用22mL Tris-HCL(pH=7.4)缓冲液重悬浮菌体,冻存于-80℃冰箱备用。
2.蛋白纯化
从-80℃冰箱将收集好的菌液取出,30℃下温和溶解,超声波破碎菌体细胞(工作2s,间隔4s,15min)。菌体破碎后,4℃条件下6000g离心10min,收集上清液。另取干净的50mL锥形瓶,收集过0.45μM滤膜(Millex-HV)的上清液,以备过HisTALON重力柱(Clontech,目录号:635656),流程为:①过出柱中溶液(全部过出);②取10mL Equilibration Buffer过柱,此步骤旨在平衡柱子;③过膜后的上清液样品(22mL)全部过柱;④取8mL EquilibrationBuffer过柱,后用15mLwash buffer(由19mL Equilibration Buffer+1mL Elution Buffer配制)过柱,除去吸附在柱子上的杂蛋白;⑤最后,用5-8mL(一般用8mL)Elution Buffer(含150mM咪唑)洗脱,同时用干净的1.5mL离心管分收集洗脱下来的蛋白。HisTALON柱可回收再利用,用20%乙醇清洗至柱子恢复浅粉色即可,保留1mL 20%乙醇,4℃条件下保存。如图3所示,泳道1:蛋白标准分子marker;泳道2:纯化后的MrFLS1;泳道3:纯化后的MrFLS2。
实施例5:MrFLSs蛋白活性检测
1.蛋白活性检测
取2mL离心管备用。检测体系为:150μL的0.1M Tris/HCL(PH=7.4),含有20μg/mL的底物,0.5mg/mL过氧化氢酶,0.1mg/mL牛血清蛋白,50μM硫酸亚铁,2mg/mL抗坏血酸和1.5mg/mL 2-酮戊二酸,最后加入20μL的重组蛋白(30~50μg)。在30℃且有氧条件下(开盖),反应100min。
2.黄酮醇检测
反应完成后,加入1:1体积的乙酸乙酯溶液终止反应,涡旋混匀,1000g离心5min,取上清到新的2mL离心管,重复操作一次,合并上清,真空旋转蒸干有机相,加入150μL的色谱甲醇溶解备用。液相检测流动相:A:水(0.1%甲酸)B:乙腈(0.1%甲酸);进样体积:10μL;流速:1mL/min;柱温:25℃;洗脱梯度:0-7min 90%-50%A,7-10min 50%A,10-15min 50%-0%A,15-15.1min 0-90%A,15.1-16min 90%A。
检测结果表明,MrFLS1和MrFLS2均具有黄酮醇合成酶的活性,可将二氢山奈酚催化为山奈酚,将二氢槲皮素转化为槲皮素,且MrFLS2催化效率更高(附图4、5、6和7)。
实施例6:转基因烟草过量表达MrFLSs促进黄酮醇积累
1.转基因载体构建
应用引物组合SEQ:NO.20和SEQ:NO.21及SEQ:NO.22和SEQ:NO.23,分别扩增MrFLS1(SEQ:NO.1)和MrFLS2(SEQ:NO.2)的全长序列,搭载到pGreenⅡ0029 62-SK表达载体上,构建重组表达载体SK-MrFLS1或SK-MrFLS2。此PCR反应体系同实施例3中的PCR反应体系。将最终构建正确的表达载体电击法转入农杆菌株系GV3101∷pSoup,挑选3个阳性克隆菌株,用终浓度25%灭菌甘油保存于-80℃。
2.转基因植株鉴定
经基因工程技术转化烟草普通植株获得转基因植株后,需进一步通过PCR手段验证。利用CTAB法,提取烟草叶片总DNA,结合引物对SEQ:NO.24和SEQ:NO.25及SEQ:NO.26和SEQ:NO.27,进行PCR扩增鉴定转基因烟草植株,所得阳性植株进行后续培养,经过两代筛选,获得T1代转基因烟草植株。
3.黄酮醇含量检测
充分研磨烟草花,准确称取0.1g粉末加入1mL 50%甲醇水溶液中,超声30min,然后11000rpm离心15min,吸取700μL上清液至新管中,并加入300μL的3N HCL溶液,70℃水浴1h。然后13000rpm离心15min,吸取100μL上清液用于HPLC分析。检测过程同实施例5中黄酮醇检测。
结果表明,与野生型烟草相比,转基因植株花中黄酮醇含量显著增加,证明MrFLSs编码的蛋白在植物体内具有生物学功能,参与了黄酮醇生物合成(附图8)。
本发明利用实时荧光定量PCR、原核表达蛋白重组技术、蛋白活性检测技术和转基因技术,分离并鉴定出参与杨梅黄酮醇生物合成的MrFLS1和MrFLS2,可用于开发工程微生物菌。
以上对本发明的具体实施例进行了描述,需要理解的是,对于本领域普通技术人员来说,在权利要求范围内,可以根据上述说明加以改进或变换,这并不影响本发明的实质内容。
序列表
<110> 浙江大学
<120> 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用
<160> 27
<170> SIPOSequenceListing 1.0
<210> 1
<211> 996
<212> DNA
<213> Morella rubra
<400> 1
atggaagtag agagagtgca ggccttggca atcggtgggc tcaaagagct gcctgagcaa 60
tttatccgtc ctgcccacga gcggcctgag aatagcaagg ccgtggaggg ggtcactgtt 120
cccgtcatct ccttatctct tccacatgat gtgctcgttg agcaagtggc caaggcgtgt 180
cacgattggg gattcttcct tgtcaccgac cacggcatat caccgtcgtt gatccagcgg 240
ttgcaagagg ttggccagga gttctttgag cttccgcaag aagaaaagga gtcctatgca 300
aatgacgcag cctgtggaaa gttcgaaggg tatgggacca ggatgaccaa gaacgatgat 360
cagaaggttg agtgggtcga ctatttcttc catttcatgg ctcctccttc taaggttgat 420
tatggtgtgt ggcccaaaaa ccctcctgct tacagggaag tcacagaaga atataacaaa 480
gaaatggtga gaataacaga cgacctattg cagctactct cagaagggct aggtttggaa 540
gggaaggttt tgaagtccat tctacgaggt gaagaaatag aactggagat gaagataaac 600
atgtatccac cttgcccaca accggaattg gctcttggag ttgaaccgca tactgacatg 660
tctgcactca cgttgcttgt tcccaacgac gttccaggcc ttcaagtatc caaagacgac 720
aactggattg ctgtcaatta cttgccaaat gcacttttcg tacatgttgg cgaccaactt 780
gaggtgctga gcaacgggaa gtacaagagc gttcttcaca ggagtttggt gaacaaggaa 840
cgcacacgca tgtcatgggc agtgtttgta gtgcccccac aggaggccac gattgggcca 900
cttgaagagc ttgtggatga tcagaacccg gccaaatatt cgaccaagac ttatgccgag 960
tatcgacacc gcaaattcaa taagctccca cagtga 996
<210> 2
<211> 1011
<212> DNA
<213> Morella rubra
<400> 2
atggaggtgg agagagtgca agccgttgct tccttgtttc taaccagtga taccattcct 60
gcggagttca ttaggccgga gaaagaacag cctgcaatca ccacattccg agggccggtc 120
cctgaaatcc caactatcga tcttagtgac ccggatgaag ataacctggt tcgttccatt 180
gcgaacgcca gcaaggagtg ggggatattc caggttgtga accatgggat acctattgat 240
gtcataagaa acttgcaggc tgctggaaga gctttctttg aactcccaca ggaagaaaaa 300
gaaggatatg ctaggccccc atgcgctcag agcgtggaag gctacggaaa caaactccag 360
aaagatccag aaggaaagaa gtcttgggtc gatcatcttt tccataagat ttggcctcct 420
tctaatatca actacgcgtt ctggcccaag aacccaccta gctacagaga agccaatgaa 480
gtttacgcga aatatgtggg cggagtggcg gataagctgt acaagagtct ctcgctaggg 540
ttagggctcg aagggcatgt gatgaaagaa gcgtcgggcg gggaggagtt aatttacatg 600
atgaaaataa attattaccc accatgtcct cgccctgatc taacccttgg agtggtagcc 660
cacaccgatt tctccaccct caccattctc gtgcctaacg acgtccccgg actccaagtc 720
ctcaaagatg accgttggat cgatgccaaa tacatcccca acgccctgat tgtgcacatc 780
ggggaccaaa ttgagattct cagcaatggc atatacaaga gcgtgctgca caggagcaca 840
gtggataaag ggcagacgag gatgtcttgg ccggtgttct ttgagccaca gccggaattt 900
gtcgtcggac ctttgcctca acttgtgaac gaaccggaca accctccaaa gtacaaggcc 960
aagaagttca aggactatgc ttattgtaaa ttaaacaagc ttccccagtg a 1011
<210> 3
<211> 23
<212> DNA
<213> 人工序列(Unknown)
<400> 3
atggaagtag agagagtgca ggc 23
<210> 4
<211> 23
<212> DNA
<213> 人工序列(Unknown)
<400> 4
tcactgtggg agcttattga att 23
<210> 5
<211> 18
<212> DNA
<213> 人工序列(Unknown)
<400> 5
atggaggtgg agagagtg 18
<210> 6
<211> 22
<212> DNA
<213> 人工序列(Unknown)
<400> 6
tcactgggga agcttgttta at 22
<210> 7
<211> 20
<212> DNA
<213> 人工序列(Unknown)
<400> 7
caacgggaag tacaagagcg 20
<210> 8
<211> 20
<212> DNA
<213> 人工序列(Unknown)
<400> 8
attccacaaa ccgcaatccc 20
<210> 9
<211> 22
<212> DNA
<213> 人工序列(Unknown)
<400> 9
caagcttccc cagtgatcaa at 22
<210> 10
<211> 22
<212> DNA
<213> 人工序列(Unknown)
<400> 10
acatgacaac cttcacaaac gg 22
<210> 11
<211> 227
<212> DNA
<213> Morella rubra
<400> 11
aatggaactg gaatggtcaa ggctggattt gctggagacg atgctccgag ggctgtcttc 60
cccagtattg ttggtcgtcc caggcacaca ggtgttatgg taggcatggg acagaaagat 120
gcctatgtcg gggatgaggc acagtccaaa agaggtattc tcacattgaa ataccccatt 180
gagcatggga tcgttagcaa ctgggatgac atggagaaga tctggca 227
<210> 12
<211> 20
<212> DNA
<213> 人工序列(Unknown)
<400> 12
tggatttgct ggagacgatg 20
<210> 13
<211> 20
<212> DNA
<213> 人工序列(Unknown)
<400> 13
ctttctgtcc catgcctacc 20
<210> 14
<211> 46
<212> DNA
<213> 人工序列(Unknown)
<400> 14
cgatgataag gcctctgtcg acatggaagt agagagagtg caggcc 46
<210> 15
<211> 47
<212> DNA
<213> 人工序列(Unknown)
<400> 15
gcggccgcca gaattcgcaa gctttcactg tgggagctta ttgaatt 47
<210> 16
<211> 44
<212> DNA
<213> 人工序列(Unknown)
<400> 16
cgatgataag gcctctgtcg acatggaggt ggagagagtg caag 44
<210> 17
<211> 46
<212> DNA
<213> 人工序列(Unknown)
<400> 17
gcggccgcca gaattcgcaa gctttcactg gggaagcttg tttaat 46
<210> 18
<211> 331
<212> PRT
<213> Morella rubra
<400> 18
Met Glu Val Glu Arg Val Gln Ala Leu Ala Ile Gly Gly Leu Lys Glu
1 5 10 15
Leu Pro Glu Gln Phe Ile Arg Pro Ala His Glu Arg Pro Glu Asn Ser
20 25 30
Lys Ala Val Glu Gly Val Thr Val Pro Val Ile Ser Leu Ser Leu Pro
35 40 45
His Asp Val Leu Val Glu Gln Val Ala Lys Ala Cys His Asp Trp Gly
50 55 60
Phe Phe Leu Val Thr Asp His Gly Ile Ser Pro Ser Leu Ile Gln Arg
65 70 75 80
Leu Gln Glu Val Gly Gln Glu Phe Phe Glu Leu Pro Gln Glu Glu Lys
85 90 95
Glu Ser Tyr Ala Asn Asp Ala Ala Cys Gly Lys Phe Glu Gly Tyr Gly
100 105 110
Thr Arg Met Thr Lys Asn Asp Asp Gln Lys Val Glu Trp Val Asp Tyr
115 120 125
Phe Phe His Phe Met Ala Pro Pro Ser Lys Val Asp Tyr Gly Val Trp
130 135 140
Pro Lys Asn Pro Pro Ala Tyr Arg Glu Val Thr Glu Glu Tyr Asn Lys
145 150 155 160
Glu Met Val Arg Ile Thr Asp Asp Leu Leu Gln Leu Leu Ser Glu Gly
165 170 175
Leu Gly Leu Glu Gly Lys Val Leu Lys Ser Ile Leu Arg Gly Glu Glu
180 185 190
Ile Glu Leu Glu Met Lys Ile Asn Met Tyr Pro Pro Cys Pro Gln Pro
195 200 205
Glu Leu Ala Leu Gly Val Glu Pro His Thr Asp Met Ser Ala Leu Thr
210 215 220
Leu Leu Val Pro Asn Asp Val Pro Gly Leu Gln Val Ser Lys Asp Asp
225 230 235 240
Asn Trp Ile Ala Val Asn Tyr Leu Pro Asn Ala Leu Phe Val His Val
245 250 255
Gly Asp Gln Leu Glu Val Leu Ser Asn Gly Lys Tyr Lys Ser Val Leu
260 265 270
His Arg Ser Leu Val Asn Lys Glu Arg Thr Arg Met Ser Trp Ala Val
275 280 285
Phe Val Val Pro Pro Gln Glu Ala Thr Ile Gly Pro Leu Glu Glu Leu
290 295 300
Val Asp Asp Gln Asn Pro Ala Lys Tyr Ser Thr Lys Thr Tyr Ala Glu
305 310 315 320
Tyr Arg His Arg Lys Phe Asn Lys Leu Pro Gln
325 330
<210> 19
<211> 336
<212> PRT
<213> Morella rubra
<400> 19
Met Glu Val Glu Arg Val Gln Ala Val Ala Ser Leu Phe Leu Thr Ser
1 5 10 15
Asp Thr Ile Pro Ala Glu Phe Ile Arg Pro Glu Lys Glu Gln Pro Ala
20 25 30
Ile Thr Thr Phe Arg Gly Pro Val Pro Glu Ile Pro Thr Ile Asp Leu
35 40 45
Ser Asp Pro Asp Glu Asp Asn Leu Val Arg Ser Ile Ala Asn Ala Ser
50 55 60
Lys Glu Trp Gly Ile Phe Gln Val Val Asn His Gly Ile Pro Ile Asp
65 70 75 80
Val Ile Arg Asn Leu Gln Ala Ala Gly Arg Ala Phe Phe Glu Leu Pro
85 90 95
Gln Glu Glu Lys Glu Gly Tyr Ala Arg Pro Pro Cys Ala Gln Ser Val
100 105 110
Glu Gly Tyr Gly Asn Lys Leu Gln Lys Asp Pro Glu Gly Lys Lys Ser
115 120 125
Trp Val Asp His Leu Phe His Lys Ile Trp Pro Pro Ser Asn Ile Asn
130 135 140
Tyr Ala Phe Trp Pro Lys Asn Pro Pro Ser Tyr Arg Glu Ala Asn Glu
145 150 155 160
Val Tyr Ala Lys Tyr Val Gly Gly Val Ala Asp Lys Leu Tyr Lys Ser
165 170 175
Leu Ser Leu Gly Leu Gly Leu Glu Gly His Val Met Lys Glu Ala Ser
180 185 190
Gly Gly Glu Glu Leu Ile Tyr Met Met Lys Ile Asn Tyr Tyr Pro Pro
195 200 205
Cys Pro Arg Pro Asp Leu Thr Leu Gly Val Val Ala His Thr Asp Phe
210 215 220
Ser Thr Leu Thr Ile Leu Val Pro Asn Asp Val Pro Gly Leu Gln Val
225 230 235 240
Leu Lys Asp Asp Arg Trp Ile Asp Ala Lys Tyr Ile Pro Asn Ala Leu
245 250 255
Ile Val His Ile Gly Asp Gln Ile Glu Ile Leu Ser Asn Gly Ile Tyr
260 265 270
Lys Ser Val Leu His Arg Ser Thr Val Asp Lys Gly Gln Thr Arg Met
275 280 285
Ser Trp Pro Val Phe Phe Glu Pro Gln Pro Glu Phe Val Val Gly Pro
290 295 300
Leu Pro Gln Leu Val Asn Glu Pro Asp Asn Pro Pro Lys Tyr Lys Ala
305 310 315 320
Lys Lys Phe Lys Asp Tyr Ala Tyr Cys Lys Leu Asn Lys Leu Pro Gln
325 330 335
<210> 20
<211> 48
<212> DNA
<213> 人工序列(Unknown)
<400> 20
gagctccacc gcggtggcgg ccgcatggaa gtagagagag tgcaggcc 48
<210> 21
<211> 47
<212> DNA
<213> 人工序列(Unknown)
<400> 21
gcagcccggg ggatccacta gttcactgtg ggagcttatt gaatttg 47
<210> 22
<211> 46
<212> DNA
<213> 人工序列(Unknown)
<400> 22
gagctccacc gcggtggcgg ccgcatggag gtggagagag tgcaag 46
<210> 23
<211> 44
<212> DNA
<213> 人工序列(Unknown)
<400> 23
gcagcccggg ggatccacta gttcactggg gaagcttgtt taat 44
<210> 24
<211> 24
<212> DNA
<213> 人工序列(Unknown)
<400> 24
atggaagtag agagagtgca ggcc 24
<210> 25
<211> 18
<212> DNA
<213> 人工序列(Unknown)
<400> 25
tttccacagg ctgcgtca 18
<210> 26
<211> 22
<212> DNA
<213> 人工序列(Unknown)
<400> 26
atggaggtgg agagagtgca ag 22
<210> 27
<211> 19
<212> DNA
<213> 人工序列(Unknown)
<400> 27
tgtttccgta gccttccac 19

Claims (4)

1.两个杨梅黄酮醇合成酶MrFLSs蛋白,其特征在于,其氨基酸序列如SEQ:NO.18和SEQ:NO.9所示。
2.根据权利要求1所述的两个杨梅黄酮醇合成酶MrFLSs蛋白,其特征在于,所述蛋白编码的核苷酸序列如SEQ:NO.1和SEQ:NO.2所示。
3.根据权利要求1所述的两个杨梅黄酮醇合成酶MrFLSs蛋白在工程微生物菌及植物遗传转化中的应用。
4.根据权利要求3所述的应用,其特征在于,原核表达PET28a-MrFLS1或PET28a-MrFLS2重组载体,诱导表达出的蛋白将二氢山奈酚催化生成山奈酚、将二氢槲皮素催化生成槲皮素,利用基因工程技术将SK-MrFLS1或SK-MrFLS2重组质粒转化普通烟草,获得过表达MrFLS1或MrFLS2转基因烟草植株,使得转基因株系花中黄酮醇含量显著增加。
CN201810103624.4A 2018-02-01 2018-02-01 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用 Active CN108048415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810103624.4A CN108048415B (zh) 2018-02-01 2018-02-01 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810103624.4A CN108048415B (zh) 2018-02-01 2018-02-01 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用

Publications (2)

Publication Number Publication Date
CN108048415A true CN108048415A (zh) 2018-05-18
CN108048415B CN108048415B (zh) 2021-02-26

Family

ID=62125682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810103624.4A Active CN108048415B (zh) 2018-02-01 2018-02-01 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用

Country Status (1)

Country Link
CN (1) CN108048415B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518818A (zh) * 2020-03-26 2020-08-11 浙江大学 一个参与杨梅素生物合成的羟化酶基因及其应用
CN113430180A (zh) * 2021-07-14 2021-09-24 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) 甘薯黄酮醇合成酶IbFLS1及其编码基因与应用
CN113480664A (zh) * 2021-07-14 2021-10-08 扬州大学 一种合成山奈酚的高活性双功能酶及其合成方法和应用
CN113826502A (zh) * 2021-09-10 2021-12-24 中南林业科技大学 一种提高油茶种子中类黄酮含量的方法
CN115247156A (zh) * 2020-10-27 2022-10-28 聊城大学 一种重组苹果黄酮醇合酶及其制备方法和用途
CN117535316A (zh) * 2024-01-04 2024-02-09 湖南工程学院 一种人参PgJOX4基因及其在调节人参皂苷生物合成中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003606A1 (en) * 1992-08-05 1994-02-17 International Flower Developments Pty. Ltd. Genetic sequences encoding flavonol synthase enzymes and uses therefor
US6380464B1 (en) * 1998-12-04 2002-04-30 E. I. Du Pont De Nemours & Company Plant flavonol synthase homologs
CN103756982A (zh) * 2013-12-16 2014-04-30 上海交通大学 郁金香黄酮醇合成酶TfFLS蛋白及其编码基因
CN103789328A (zh) * 2014-01-16 2014-05-14 华中农业大学 玫瑰功能基因RrFLS1在调控植物类黄酮代谢中应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003606A1 (en) * 1992-08-05 1994-02-17 International Flower Developments Pty. Ltd. Genetic sequences encoding flavonol synthase enzymes and uses therefor
US6380464B1 (en) * 1998-12-04 2002-04-30 E. I. Du Pont De Nemours & Company Plant flavonol synthase homologs
CN103756982A (zh) * 2013-12-16 2014-04-30 上海交通大学 郁金香黄酮醇合成酶TfFLS蛋白及其编码基因
CN103789328A (zh) * 2014-01-16 2014-05-14 华中农业大学 玫瑰功能基因RrFLS1在调控植物类黄酮代谢中应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹运琳,等: "植物黄酮醇生物合成及其调控研究进展", 《园艺学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518818A (zh) * 2020-03-26 2020-08-11 浙江大学 一个参与杨梅素生物合成的羟化酶基因及其应用
WO2021190632A1 (zh) * 2020-03-26 2021-09-30 浙江大学 一种羟化酶基因及其应用
JP2021168646A (ja) * 2020-03-26 2021-10-28 浙江大学Zhejiang University 水酸化酵素遺伝子及びその使用
CN111518818B (zh) * 2020-03-26 2021-11-30 浙江大学 一个参与杨梅素生物合成的羟化酶基因及其应用
JP7122715B2 (ja) 2020-03-26 2022-08-22 浙江大学 水酸化酵素遺伝子及びその使用
CN115247156A (zh) * 2020-10-27 2022-10-28 聊城大学 一种重组苹果黄酮醇合酶及其制备方法和用途
CN113430180A (zh) * 2021-07-14 2021-09-24 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) 甘薯黄酮醇合成酶IbFLS1及其编码基因与应用
CN113480664A (zh) * 2021-07-14 2021-10-08 扬州大学 一种合成山奈酚的高活性双功能酶及其合成方法和应用
CN113826502A (zh) * 2021-09-10 2021-12-24 中南林业科技大学 一种提高油茶种子中类黄酮含量的方法
CN113826502B (zh) * 2021-09-10 2023-10-20 中南林业科技大学 一种提高油茶种子中类黄酮含量的方法
CN117535316A (zh) * 2024-01-04 2024-02-09 湖南工程学院 一种人参PgJOX4基因及其在调节人参皂苷生物合成中的应用
CN117535316B (zh) * 2024-01-04 2024-03-29 湖南工程学院 一种人参PgJOX4基因及其在调节人参皂苷生物合成中的应用

Also Published As

Publication number Publication date
CN108048415B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN108048415A (zh) 两个杨梅黄酮醇合成酶MrFLSs蛋白及其编码基因的应用
Lee et al. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin
Fang et al. A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis
Yin et al. Functional identification of BpMYB21 and BpMYB61 transcription factors responding to MeJA and SA in birch triterpenoid synthesis
Jahan et al. The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean
Wang et al. Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum)
JP2019533436A (ja) 腺毛状突起(glandular trichome)におけるカンナビノイドおよび他の化合物のマニピュレーションのための毛状突起特異的プロモーター
US20200071715A1 (en) Transformed plant and method for producing exudate containing sugar using transformed plant
CN110592111B (zh) 一种银杏类黄酮3′-羟化酶基因GbF3′H1及其应用
CN112724217B (zh) 一种青蒿MYB类转录因子AaMYB108及其应用
WO2021190632A1 (zh) 一种羟化酶基因及其应用
CN110184247A (zh) 紫花苜蓿褪黑素合成基因MsASMT及其在调控植物褪黑素和黄酮类物质合成中的应用
Yang et al. Hyperoside regulates its own biosynthesis via MYB30 in promoting reproductive development and seed set in okra
Ahmad et al. Chalcone synthase (CHS) family genes regulate the growth and response of cucumber (Cucumis sativus L.) to Botrytis cinerea and abiotic stresses
Chen et al. Transcription factor SmSPL7 promotes anthocyanin accumulation and negatively regulates phenolic acid biosynthesis in Salvia miltiorrhiza
CN107955067B (zh) 参与桃黄酮醇生物合成调控的两个myb转录因子及其应用
Chen et al. Integrated transcript and metabolite profiles reveal that Eb CHI plays an important role in scutellarin accumulation in erigeron breviscapus hairy roots
Nguyen et al. Agrobacterium tumefaciens–mediated genetic transformation and overexpression of the flavonoid 3′ 5′-hydroxylase gene increases the flavonoid content of the transgenic Aconitum carmichaelii Debx. plant
Shui et al. Characterization of the R2R3-MYB transcription factor CsMYB113 regulates anthocyanin biosynthesis in Tea plants (Camellia sinensis)
Ren et al. A MADS-box gene is involved in soybean resistance to multiple soybean mosaic virus strains
CN110117322A (zh) 从紫斑白三叶分离的myb类转录因子及其编码基因和应用
Cheng et al. Transcription factor VvibHLH93 negatively regulates proanthocyanidin biosynthesis in grapevine
Zhang et al. Identification of a strong anthocyanin activator, VbMYBA, from berries of Vaccinium bracteatum Thunb.
CN110964740B (zh) 一种高黄酮醇烟草的制备方法及其应用
Li et al. Identification of MAM1s in regulation of 3C glucosinolates accumulation in allopolyploid Brassica juncea

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant