CN1080406C - 自动制冰设备 - Google Patents

自动制冰设备 Download PDF

Info

Publication number
CN1080406C
CN1080406C CN98119179A CN98119179A CN1080406C CN 1080406 C CN1080406 C CN 1080406C CN 98119179 A CN98119179 A CN 98119179A CN 98119179 A CN98119179 A CN 98119179A CN 1080406 C CN1080406 C CN 1080406C
Authority
CN
China
Prior art keywords
ice
making disc
mentioned
horizontal
making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN98119179A
Other languages
English (en)
Other versions
CN1211713A (zh
Inventor
猿田进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1211713A publication Critical patent/CN1211713A/zh
Application granted granted Critical
Publication of CN1080406C publication Critical patent/CN1080406C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • F25C5/187Ice bins therefor with ice level sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2305/00Special arrangements or features for working or handling ice
    • F25C2305/022Harvesting ice including rotating or tilting or pivoting of a mould or tray
    • F25C2305/0221Harvesting ice including rotating or tilting or pivoting of a mould or tray rotating ice mould
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

本发明提供了一种自动制冰设备,其可在倒冰之前或之后进行测冰位动作。当制冰盘从水平位置沿正向旋转时实现倒冰沿反向旋转时冰位杆下降,从而判断贮冰箱中是否盛满水。此时,霍耳集成电路在制冰盘旋转的水平位置和最大扭转位置处处于打开状态,在位于测冰方向的场合处于关闭状态。在制冰盘位于测冰位区域时,该霍耳集成电路检测冰位杆的位置,从而检测出冰的有无。

Description

自动制冰设备
本发明涉及安装于冷藏库中的自动制冰设备。
在最近的冷藏库中设置有自动制冰设备。该自动制冰设备将水箱中的水供给制冰盘,使在制冰盘中生成的冰倾倒至贮冰箱中。
为了控制该自动制冰设备,必须获得制冰盘位置的信息和贮冰箱的贮冰量的信息,制冰盘位置的信息用于控制倒冰时的制冰盘的旋转,该贮冰箱的贮冰量的信息用于判断是否可制备冰。由此,必须安装检测盘旋转位置的位置传感器,以及检测贮冰量的测冰位传感器这两个传感器。
位置传感器对制冰盘的水平位置、和由于进行倒冰而使制冰盘扭转的最大扭转位置进行检测,并将该检测信号送向控制部。控制部对位置传感器传来的检测信号进行判断,如果在使盘沿倒冰方向运动后,控制部接收到检测信号,则此位置为最大扭转位置,如果在使制冰盘沿水平恢复方向旋转后,控制部接收到信号,则该位置为水平位置。
贮冰量的检测是根据测冰位传感器检测冰位杆的位置所得的冰位检测信号进行判断的,该测冰位杆在倒冰时朝向上方退回,在通常时向下伸入贮冰箱内部。
但是,为了进行上述的控制,必须同时采用位置传感器和测冰位传感器这两个传感器,并对于用于增加贮冰量的自动制冰设备的整个体积的缩小,或成本的降低是有不利的影响,因此,最好使这些传感器一体化。
于是,作为使这两个传感器形成一体的方案,提供下述的自动制冰设备(JP特开昭8-233419号文献)。
该自动制冰设备在进行倒冰时制冰盘的旋转过程中进行冰位测定,从而通过1个传感器,不但可进行位置检测,而且还可在盛满冰时,在较短的时间内输出信号,从而可对盛满冰进行检测。即,在使制冰盘沿倒冰方向旋转后,如果唯一的传感器发出信号,那么则在此时使该制冰盘沿反向旋转,然后经过一定时间,当该传感器发出信号时,则停止制冰盘的旋转。
此外,在贮冰量未达到盛满值的通常的倒冰场合,由于制冰盘沿倒冰方向旋转的过程中的盛满检测信号未输出,所以按照最大扭转位置处的信号使制冰盘沿反向旋转。在水平恢复时,如果只在倒冰时贮冰量达到盛满值而输出信号的情况下,由于该信号会持续一定时间,这样设备无视该信号,按照水平恢复位置上持续一定时间以上的信号使制冰盘停止旋转。
另一方面,在贮冰量达到盛满值时,如果使制冰盘从水平位置,沿倒冰方向旋转,则在旋转的过程中,输出盛满检测信号后,从该位置处使盘沿反向旋转,待其恢复到水平位置后,输出该位置处的可持续一定时间的信号,由此使制冰盘停止旋转。
也就是说,可通过使制冰盘沿倒冰方向旋转所花费的时间来判断它是否盛满水。
但是,如果采用上述结构的自动制冰设备,在通常情况下,在制冰盘沿倒冰方向的旋转过程中和水平恢复中的旋转过程中,冰位杆上下运动,一次倒冰进行2次的测冰位动作,因而这样会对冰位杆和其动作机构的寿命产生不利的影响。
另外,即使在以在倒冰之前测冰位为前提的时候,在为下次制备冰而在供水之前测冰位时,有未盛满的情况,也必须使制冰盘扭转,因此会使制冰盘的寿命缩短。
此外,由于必须监视制冰盘的旋转时间,或从传感器发出信号的持续时间,所以必须使驱动冰盘旋转的马达电压为较低的电压。于是,由于在采用变压器的电源电路中,商用电源电压的变化,或制冰盘扭转时的马达电流的增加等负载变化,会引起送向马达的电压发生变化,这样必须给变压器的容量留有余量,从而使电源电路大型化,由此会产生发热量增加等问题。如果采用转换电源等,则会产生成本增加的问题。
于是,本发明是针对上述问题而提出的,本发明的目的在于提供一种自动制冰设备,该自动制冰设备可在倒冰之前进行测冰位动作,也可在倒冰之后进行测冰位动作,而且,可通过1个传感器实现这些动作。
本发明第1项方案的自动制冰设备包括:可以正反转的马达;制冰盘,为了使制备的水脱离,该制冰盘从水平位置沿倒冰方向旋转,并且从水平位置沿与倒冰方向相反向的反倒冰方向旋转;贮冰箱,该贮冰箱设置于上述制冰盘的下方;冰位杆,该冰位杆在上述制冰盘沿反倒冰方向旋转时可以旋转以便从上方与存储在上述贮冰箱中的冰相接触;一个检测传感器,该检测传感器在上述制冰盘沿倒冰方向旋转时输出表示上述冰位杆的旋转状态的信号;控制机构,该控制机构控制倒冰步骤和测冰位步骤,倒冰步骤中上述制冰盘从水平位置沿倒冰方向旋转,从而进行倒冰动作,测冰位步骤中上述制冰盘沿反倒冰方向旋转,从而通过上述冰位杆检测上述贮冰箱是否盛满冰;对送向上述马达的电流进行检测的电流检测机构;上述检测传感器还在上述制冰盘位于水平位置时输出信号;上述控制机构在电源接通时等的初始化处理过程中进行使上述制冰盘返回水平位置的水平恢复步骤;该水平恢复步骤包括:第1水平恢复步骤,该步骤通过上述马达使上述制冰盘沿倒冰方向旋转;第2水平恢复步骤,该步骤在上述电流检测机构所检测到的电流达到基准值时使上述制冰盘沿反倒冰方向旋转;第3水平恢复步骤,该步骤在检测到上述检测传感器所发出的信号时使上述制冰盘停止在水平位置。
本发明第2项方案的自动制冰设备涉及上述第1项方案的设备,该设备包括:温度传感器,该温度传感器安装在上述制冰盘中,其根据上述制冰盘的温度,检测上述制冰盘中的水的有无;上述控制机构进行下述步骤:温度检测步骤,该步骤在电源接通时等的初始化处理的过程中,通过上述温度传感器,检测上述制冰盘中的水的有无;水平恢复步骤,该步骤在上述温度检测步骤中判定上述制冰盘中无水时,使上述制冰盘返回水平位置,在上述温度检测步骤中判定上述制冰盘中有水时,在制冰动作完毕后,使上述制冰盘返回水平位置。
下面对上述第1项方案的自动制冰设备进行描述。
在用制冰盘生成冰,之后进行倒冰动作的场合,控制机构进行下述倒冰步骤,该步骤使制冰盘从水平位置沿倒冰方向旋转,从而进行倒冰动作。
另外,在检测贮冰箱是否盛满冰的场合,进行测冰位步骤,该步骤使制冰盘沿反倒冰方向旋转,通过冰位杆对冰位进行检测。
控制机构在倒冰步骤中,使制冰盘从水平位置沿倒冰方向旋转,在检测到检测传感器发出的信号时,判定出制冰盘位于最大扭转位置,使制冰盘恢复到水平位置。即,沿反倒冰方向使制冰盘旋转。
另一方面,在测冰位步骤中,使制冰盘沿反倒冰方向旋转,通过冰位杆检测贮冰箱是否盛满冰,根据检测传感器发出的信号进行判断。
由此,可仅仅通过一个检测传感器,进行倒冰步骤和检冰位步骤中的检测。
对在电源接通时等初始化处理过程中的制冰盘返回到水平位置的情况进行描述。
上述控制机构进行第1水平恢复步骤,该步骤通过马达带动制冰盘沿倒冰方向旋转,之后,在电流检测机构所检测到的电流达到基准值时,进行第2水平恢复步骤,使该制冰盘沿反倒冰方向旋转,当检测到检测传感器发出的信号时,进行第3水平恢复步骤,该步骤使制冰盘停止在水平位置。于是,在使制冰盘沿倒冰方向旋转到达最大扭转位置时,对马达施加负荷,从而使电流增加。由此,通过电流检测机构对该电流的增加进行检测,从而检测出制冰盘是否位于最大扭转位置。
下面对上述第2项方案的自动制冰设备进行描述。
制冰盘中具有水时,如果使制冰盘旋转,则会产生水溢出的危险。如果进行某种程度的旋转,则水不会从制冰盘中溢出。
为此,控制机构在初始化处理的过程中,进行温度检测步骤,该步骤通过温度传感器对制冰盘中的水的有无进行检测,仅仅当在该温度检测步骤中判定制冰盘没有水时,才进行使制冰盘返回水平位置的水平恢复步骤。之后,当在该温度检测步骤中判定制冰盘中有水时,在制冰的动作完毕后,进行使上述制冰盘回到水平位置的水平恢复步骤。
图1为在表示本发明的一个实施例的自动制冰设备中,制冰盘处于水平位置时的透视图;
图2为上述制冰盘处于水平位置时的正视图;
图3为制冰盘处于倒冰状态时的透视图;
图4为制冰盘处于倒冰状态时的正视图;
图5为制冰盘处于检冰状态,并且冰未盛满时的透视图;
图6为上述制冰盘处于检冰状态,且冰盛满时的透视图;
图7为制冰盘处于检冰状态的场合的正视图;
图8为表示第1动作部件和第2动作部件之间的关系右侧面图;
图9为本实施例的冷藏库的中段部的纵向剖面图;
图10为从自动制冰设备的主体的右侧看到的纵向剖面图;
图11为从自动制冰设备的主体的背面看到的纵向剖面图;
图12为自动制冰设备的方框图;
图13为自动制冰设备的动作状态的说明图;
图14表示制冰盘旋转动作的表。
下面对本发明的一个实施例的自动制冰设备10进行描述。
(自动制冰设备10的整体结构)
图9为安装有自动制冰设备10的冷藏库12的中段的纵向剖面图。
在图9中,冷藏库12从上段往下包括冷藏室14、贮冰室16和冷冻室18,自动制冰设备10装在贮冰室16中。
该自动制冰设备10由制冰盘20、可旋转地支承该制冰盘的主体22、可相对该主体22自由旋转的冰位杆24构成。
另外,在冷藏室14的底部装有向制冰盘20供水的水箱26,由该水箱26提供的水通过进水管30,送向制冰盘20,该进水管30安装在冷藏室12和贮冰室16的分隔部件28之间。
此外,在制冰设备10的下方装有用于存储从制冰盘20中落下的冰的贮冰箱32。
(自动制冰设备10的内部结构)
下面根据图10、11对自动制冰设备10的主体22的内部结构进行描述。图10为从主体22的右侧看到的纵向剖面图,图11为从主体22的背面看到的纵向剖面图。
如图10所示,制冰盘20的盘旋转轴34穿过主体22的后面。
如图11所示,在该盘旋转轴34上,同轴地装有圆板36和第1齿轮38。第2齿轮40与该第1齿轮38啮合,第3齿轮42与该第2齿轮40啮合。在圆板36与主体22的后面之间装有马达44,装在该马达44的旋转轴上的蜗杆46与上述的第3齿轮42啮合。
由此,当马达44驱动时,蜗杆46、第3齿轮42、第2齿轮40、第1齿轮38旋转,带动圆板36也随其旋转,从而使制冰盘20发生转动。
另一方面,冰位杆24在主体22的右侧面与杆旋转轴48铰接。
(使制冰盘20旋转的结构)
下面根据图1~8对使制冰盘20旋转的圆板36和冰位杆24进行描述。另外,在图1~8中,由于很容易对使圆板36旋转的齿轮38、40、42、46和马达44进行图示说明,故省略对它们的描述。
首先,对制冰盘20的旋转方向进行说明。
如图1和图2所示,“制冰盘20的水平状态”指制冰面为水平的状态。
在制冰盘进行倒冰动作时,如图3和4所示,其沿正旋转方向旋转,制冰盘20处于扭转状态,从而实现倒冰。在这里,“正旋转”指图3和图4中的A1方向。
制冰盘20在按照后述的方式检测贮冰量时,如图5、6、7所示,沿与正旋转方向A1的相反方向的反旋转方向A2旋转。
圆板36的后面构成第1凸轮50,圆板36的前面构成第2凸轮52。
下面对第1凸轮50的结构和动作进行描述。
如图2、4、7所示,在圆板36的后面基本呈环状开有第1凸轮槽53。
在上述第1凸轮50的前方装有长条板状的第1动作部件54。该第1动作部件54的右端部可绕轴点56自由地旋转,其左端部可自由地沿上下移动。另外,在该左端部上装有位置检测用磁体58。此外,在第1动作部件54的中央设有与第1凸轮槽53相嵌合的第1凸部60。
由此,当圆板36(第1凸轮50)旋转时,随着第1凸轮槽53的旋转,第1凸部60沿上下运动,位于第1动作部件54的左端部的位置检测用磁体58也同样上下运动。
在这里,第1凸轮槽53按照下述方式形成,该方式为:仅仅在制冰盘20位于相对水平位置约±10°的位置时,为使第1动作部件54的位置检测用磁体58置于上方位置,且仅在该位置,将第1凸轮槽53制成朝向上方扩大的、直径较大的槽的形状(以下,制冰盘的上述位置称为“水平领域62”)。
另外,在沿正旋转方向旋转约180°的位置上,第1凸轮槽53为了再次使第1凸部60朝向上方上升,将其做成直径较大的槽的形状(以下,将该位置称为制冰盘的“最大扭转区域63”)。
还有,在其它的旋转角度,为了使位置检测用磁体58位于下方位置,而将其做成直径较小的槽的形状。
下面对第2凸轮52的结构和动作进行描述。
第2凸轮52是由在圆板36的前面的环状的第2凸轮槽64形成的。
第2凸部66与第2凸轮槽64相嵌合,该第2凸部66从冰位杆24的杆旋转轴48伸出。
制冰盘20沿反旋转方向旋转约45°时,第2凸轮槽64为使第2凸部66可朝向其它的位置的下方移动,呈直径较大的槽的形状(以下,将该位置称为制冰盘的“测冰位区域68”)。
还有,在杆旋转轴48的中部装有第2动作杆70,在该第2动作部件70的前端装有贮冰检测用磁体72。该检测磁体72位于位置检测用磁体58附近。
下面对第2凸轮52的动作进行描述,当制冰盘20沿反旋转方向旋转约45°时,测冰位区域68位于杆旋转轴48中的第2凸部66处。从而,在该位置,通过冰位杆24对冰位进行检测,如果贮冰箱32盛满冰,则该冰位杆24与冰相接触,而不能发生旋转,杆旋转轴48上的第2凸部66不能落入到测冰位区域68中。另一方面在没有冰,或未盛满冰的场合,冰位杆24会因重力而朝向下方旋转,第2凸部66落入到测冰位区域68中。此时,贮冰检测用磁体72也随杆旋转轴48旋转。
在主体22的右侧面的内侧装有霍耳集成电路74。当该霍耳集成电路74靠近上面所描述的位置检测用磁体58,或贮冰检测用磁体72时,从关闭状态变为打开状态。
(自动制冰装置10中的电路结构)
下面根据图12的方框图,对自动制冰设备10的电路结构进行描述。
对自动制冰设备10进行控制的控制机构78由微机构成,其与霍耳集成电路74、温度传感器76和马达44的驱动电路80连接。另外,该机构还与电流检测电路82连接。该电流检测电路82对从驱动电路80送向马达44的电流值进行检测。
温度传感器76装在制冰盘20的底面,它对该制冰盘20的温度进行检测,并向控制机构78发出其检测信号。该控制机构78根据该检测信号,对制冰动作是否完毕进行判断。具体来说,当检测温度处于-9.5℃以下的状态持续2个小时,另外,检测温度处于-12.5℃以下的状态持续10秒时断定制冰动作完毕。
(自动制冰设备10的动作状态)
下面根据图1至8、13、14,对上面所述的自动制冰设备10的动作状态进行描述。
(1)制冰盘20处于水平位置的场合(参照图1、2、13、14)
在于制冰盘20中生成冰的场合或无水的场合,制冰盘20在水平位置保持静止。
这时,如图1所示,在第2凸轮52中,由于第2凸部66位于测冰位区域68以外,所以杆旋转轴48保持在将冰位杆24朝向上方上升的状态。另一方面,由于第2动作部件70位于离开霍耳集成电路74的位置,所以贮冰检测用磁体72不会对霍耳集成电路74造成影响。
如图2所示,在第1凸轮50中,由于第1动作部件54中的第1凸部60位于第1凸轮槽53的水平区域62内,因此第1动作部件54的位置检测用磁体58位于霍耳集成电路74附近,如图13所示,使霍耳集成电路74处于打开状态。
(2)制冰盘20进行倒冰动作的场合(参照图3、4、13、14)
根据温度传感器76的温度检测信号,判断制冰动作是否完毕,如果制冰动作完毕,则处于倒冰动作的马达44使制冰盘20沿正旋转方向A1旋转。
如图4所示,当圆板36(第1凸轮50)旋转时,由于在旋转的同时,第1凸部60朝水平区域62以外的位置移动,第1动作部件54的位置检测用磁体58与霍耳集成电路74分离开,如图13所示,使该霍耳集成电路74处于关闭状态。
如图4所示,马达44继续旋转,旋转至约180°的位置时,第1凸部60运动到最大扭转区域63。由此,第1动作部件54中的贮冰检测用磁体72再次位于霍耳集成电路74附近,如图13所示,使该霍耳集成电路74处于打开状态。
在霍耳集成电路74从关闭状态再次变为打开状态的位置,如图13所示,控制机构78判定制冰盘20到达最大扭转区域63,为使其恢复到水平位置,对马达44沿反旋转方向进行驱动。
当制冰盘20沿反旋转方向旋转,从而离开最大扭转区域63的位置时,上述霍耳集成电路74处于关闭状态,暂时连续保持该状态。另外,如图13所示,当到达水平区域62内时,该霍耳集成电路74再次处于打开状态,因而使控制机构78判定制冰盘20恢复到水平位置后,从而使马达44停止。
(3)冰位杆24进行测冰位动作的场合(参照图5、6、7、8、13、14)
如图13所示,通过装在控制机构78内部的计时器,按规定时间t1驱动,以使制冰盘20沿反旋转方向旋转约45°。
如图7所示,在第1凸轮50中,由于第1凸部60到达水平区域62以外的位置,而使第1动作部件54的位置检测用磁体58与霍耳集成电路74分离开,使霍耳集成电路74处于关闭状态。在该状态,测冰位区域68位于第2凸部66位置。
如图6所示,当贮冰箱32中的冰盛满时,冰位杆24与冰相接触,不能旋转,第2凸部66a处于相对测冰位区域68浮起的状态。由此,由于第2动作部件70的贮冰检测用磁体72也与霍耳集成电路74分离开,而使该霍耳集成电路74处于关闭状态。
另一方面,如图7所示,当贮冰箱32中没有冰,冰位杆24下降时,第2凸部66b也向下落入到测冰位区域68中。于是,第2动作部件70中的贮冰检测用磁体72靠近霍耳集成电路74,使该霍耳集成电路74处于打开状态。如图13所示,由于回到上述的打开状态,控制机构78判定贮冰箱32中没有冰。
如图13所示,为使制冰盘20恢复到水平位置,马达44再次使制冰盘20沿正旋转方向旋转t1时间。此时,制冰盘20是否恢复是这样判断的,当第1凸部60到达水平区域62的位置,霍耳集成电路74处于打开状态时,则到达该恢复位置。
(4)测冰位动作与倒冰动作的顺序的控制
测冰位动作与倒冰动作的顺序是任意的。
比如,可在测冰位动作之后,进行倒冰动作。通过测冰位动作判定冰未盛满,还可进行倒冰动作时,在从测冰位位置沿正旋转方向旋转t1时间后,可马上连续进行倒冰动作。
另外,在盛满冰的场合,也可不使制冰盘20返回到水平位置,使该制冰盘20处于逆45°的倾斜状态,等待冰使用后,直至冰位杆24下降。另外,一旦制冰盘20返回到水平位置后,也可将门的开闭,或一定的时间间隔作为时机,再次进行测冰位动作。
在先进行了倒冰动作的场合,在进行下次供应制冰用的水之前,进行测冰位动作。在当通过测冰位动作,测得冰盛满的场合,一直等到冰未盛满时才供水。该等待方法与上述先进行测冰位的场合相同,也可使制冰盘20处于倾斜状态,等待使用水,直至冰位杆24下降,另外,一旦制冰盘20返回到水平位置后,也可将门的开闭,或一定的时间间隔作为时机,再次进行测冰位动作。
(马达44的性能)
下面,对马达44进行说明。
在倒冰动作时,通过霍耳集成电路74确定制冰盘20是处于水平位置,还是处于最大扭转位置,不必同时采用计时器进行时间控制。由此,通过马达44实现倒冰的动作与马达44的电压没有关系。比如,可使马达电压处于7~13V的较宽范围。
反之,在进行测冰位动作时,只需使第2凸轮52旋转到冰位杆24可检测冰位的位置就可以了。换言之,由于在此场合,马达44上未施加负载,基本无需马达转矩,这样不会对电源电压的变动造成那么大的影响,额定值的变动,比如相对12V有±2V的变化量,不会产生问题,可给电源电压的稳定程度保持有余量。
此外,在进行该测冰位动作时,由于马达电压可为可实现倒冰动作的某一下限电压,这样可提高冰位杆24的动作精度,可在驱动电路80中采用变压器方式的价格较低的电源。
(制冰盘20的水平恢复控制方法)
(1)第1水平恢复控制方法
下面对冷藏库的电源接通时等进行初始化处理时,使制冰盘20恢复到水平位置的第1水平恢复控制方法进行描述。
进行上述的初始化处理时,使制冰盘20沿正向旋转t1时间以上(比如,t1+1秒,以下,将其称为“t2时间”)。
于是,制冰盘20处于从水平位置到最大扭转位置之间的位置,之后,使制冰盘20沿反向旋转,上述霍耳集成电路74回到打开状态的位置即回到水平位置。
还有,在从水平位置到最大扭转位置期间,当沿正向旋转t1时间以上的t2时间时,由于制冰盘20旋转超过最大扭转位置,为了使其旋转不超过该最大扭转位置而安装止动件,或使齿轮38~46之间的啮合脱开,而不限制制冰盘20的扭转为好。
(2)第2水平恢复控制方法
下面对制冰盘20的第2水平恢复控制方法进行描述。
如果采用第1水平恢复控制方法,为了使制冰盘20不超过最大扭转位置,必须设置止动件,该止动件会使齿轮38~46产生应力。另外,在使齿轮38~46脱开啮合时,会产生脱开时的噪音。
因此,在第2水平恢复控制方法中,按照下述方式进行控制,该方式为:控制从驱动电路80送向马达44的电流,不使制冰盘20旋转超过最大扭转位置。
具体来说,在最大扭转位置时,霍耳集成电路74处于打开的状态,与此同时,使马达44上作用有该扭转造成的转矩,马达电流增加。于是,在霍耳集成电路74处于打开状态,并且通过电流检测电路82,检测出马达电流超过基准值而判定制冰盘处于最大扭转位置,此时,即使在沿正向旋转未达到t2时间的情况下,仍使其沿反向旋转,一旦霍耳集成电路74变成关闭状态后,当该制冰盘旋转到使该霍耳集成电路74处于下次打开状态的位置的水平位置时使其停止。
(3)第3水平恢复控制方法
下面对制冰盘20的第3水平恢复控制方法进行描述。
为了代替按照第2水平恢复控制方法,通过基准值对马达电流进行判断的方式,在第3水平恢复控制方法中,通过通常旋转时的马达电流与水平恢复控制的正向旋转时的电流之间的差值,是否大于基准值,来判断是否达到最大扭转位置。除此以外的其它方面与第2水平恢复控制方法相同。通过采用该电流差,可消除因马达的个体差别、历时变化、温度对线圈阻抗的变化所造成的影响。
具体来说,通常旋转时的马达电流为在先进行t2时间的正向旋转,再进行1秒钟的反向旋转时的电流值,定其为通常旋转时的马达电流。
这是因为:即使在制冰盘位于最大扭转位置的情况下,当沿反向旋转时,制冰盘20上仍不会作用有扭矩。
另外,此时,为了在t2时间的正向旋转之前检测通常电流,必须沿正旋转旋转一个反向旋转时间。
(4)第4水平恢复控制方法
下面对制冰盘20的第4水平恢复控制方法进行描述。
第4水平恢复控制方法检测出由霍耳集成电路74与电流增加而达到最大扭转位置时,在与t2时间无关的情况下必须使制冰盘20沿正向旋转,至最大扭转位置,之后使其沿反向旋转,返回到水平状态。
(5)第5水平恢复控制方法
通过上述的方法,当然可使制冰盘20返回到水平位置,但是,在制冰盘20中进水的场合,会有水溢出的危险。为此,还必须在上述的水平恢复动作之前,进行下述的控制。
通过温度传感器76对制冰盘20的温度进行检测,在判定制备水动作完毕时,进行上述的水平恢复动作。通过采用上述方式,可防止水从制冰盘20中溢出的现象。另外,在接通电源时,盘较冷(比如,温度传感器在-9.5℃以下),可明显判定未进水的场合,也可在不等待制冰动作完毕的情况下,进行水平恢复动作。
另一方面,在制冰盘20中进水的场合,制冰盘20处于水平位置,此时,即使在使制冰盘20旋转±10°的情况下,水仍不会溢出。由此,如果在初始化处理后,使制冰盘20的位置沿反向旋转约10°,使霍耳集成电路74处于关闭状态,则由于制冰盘20不处于水平位置,从而进行返回到水平位置的前述的水平恢复动作。另外,在除此以外的场合,由于可能有水,而使制冰盘20返回原始位置,该设备会在与水的有无无关的情况下结束制备冰的动作,之后再进行水平恢复动作。
另外,也将引先开关与磁体组合,或将凸轮与开关组合,以便代替上述实施例中的霍耳集成电路74。
如果采用本发明的自动制冰设备,可单独地进行倒冰动作和测冰位动作,可在倒冰动作后进行测冰位动作,另外,也可反之,在测冰位动作之后进行倒冰动作。
如果采用本发明第1项方案所述的自动制冰设备,可通过1个检测传感器进行倒冰动作与测冰位动作。通过在初始化处理后进行水平恢复动作步骤,可确实使制冰盘恢复到水平位置。
如果采用本发明第2项方案所述的自动制冰设备,在判定制冰盘中无水时,由于进行水平恢复步骤,这样不会发生水从制冰盘溢出的情况。在判定出制冰盘中有水时,由于在制冰的动作之后进行水平恢复步骤,这样也不会产生水溢出的情况。

Claims (2)

1.一种自动制冰设备,其特征在于其包括:
可以正反转的马达;
制冰盘,为了使制备的冰脱离,通过上述马达,该制冰盘可从水平位置沿倒冰方向旋转,并且可从水平位置沿与倒冰方向相反向的反倒冰方向旋转;
贮冰箱,该贮冰箱设置于上述制冰盘的下方;
一冰位杆,该冰位杆在上述制冰盘沿反倒冰方向旋转时可以旋转以便从上方与存储在上述贮冰箱中的冰相接触;
一个检测传感器,该检测传感器在上述制冰盘沿倒冰方向旋转时输出表示上述冰位杆的旋转状态的信号;
控制机构,该控制机构控制倒冰步骤和测冰步骤,在该倒冰步骤中上述制冰盘从水平位置沿倒冰方向旋转,从而进行倒冰动作,在测冰位步骤中上述制冰盘沿反倒冰方向旋转,从而通过上述冰位杆检测上述贮冰箱是否盛满冰;
对送向上述马达的电流进行检测的电流检测机构;
上述检测传感器还在上述制冰盘位于水平位置时输出信号;
上述控制机构在电源接通时等的初始化处理过程中进行使上述制冰盘返回水平位置的水平恢复步骤;
该水平恢复步骤包括:
第1水平恢复步骤,该步骤通过上述马达使上述制冰盘沿倒冰方向旋转;
第2水平恢复步骤,该步骤在上述电流检测机构所检测到的电流达到基准值时使上述制冰盘沿反倒冰方向旋转;
第3水平恢复步骤,该步骤在检测到上述检测传感器所发出的信号时使上述制冰盘停止在水平位置。
2.根据权利要求1所述的自动制冰设备,其特征在于:
该设备包括温度传感器,该温度传感器安装在上述制冰盘中,其根据上述制冰盘的温度,检测上述制冰盘中的水的有无;
上述控制机构进行下述步骤:
温度检测步骤,该步骤在电源接通时等的初始化处理的过程中,通过上述温度传感器,检测上述制冰盘中的水的有无;
水平恢复步骤,该步骤在上述温度检测步骤中判定上述制冰盘中无水时,使上述制冰盘返回水平位置,在上述温度检测步骤中判定上述制冰盘中有水时,在制冰动作完毕后,使上述制冰盘返回水平位置。
CN98119179A 1997-09-12 1998-09-11 自动制冰设备 Expired - Lifetime CN1080406C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP248724/97 1997-09-12
JP24872497A JP3572175B2 (ja) 1997-09-12 1997-09-12 自動製氷装置

Publications (2)

Publication Number Publication Date
CN1211713A CN1211713A (zh) 1999-03-24
CN1080406C true CN1080406C (zh) 2002-03-06

Family

ID=17182412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98119179A Expired - Lifetime CN1080406C (zh) 1997-09-12 1998-09-11 自动制冰设备

Country Status (3)

Country Link
JP (1) JP3572175B2 (zh)
KR (1) KR100273051B1 (zh)
CN (1) CN1080406C (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571567B2 (en) * 2001-09-07 2003-06-03 Lg Electronics Inc. Ice-making apparatus in refrigerator
KR100671567B1 (ko) 2004-05-18 2007-01-18 엘지전자 주식회사 냉장고용 제빙기의 만빙 감지 장치
JP5414755B2 (ja) * 2011-08-31 2014-02-12 日立アプライアンス株式会社 冷蔵庫
KR101331104B1 (ko) * 2011-10-28 2013-11-20 주식회사 에스 씨디 냉장고용 제빙기 구동장치 및 구동방법
KR101344284B1 (ko) 2012-03-09 2013-12-24 주식회사 에스 씨디 냉장고용 제빙기 구동장치
JP5675935B2 (ja) * 2013-11-07 2015-02-25 日立アプライアンス株式会社 自動製氷機及び冷蔵庫
CN106524617B (zh) * 2016-10-27 2018-12-25 上海浪拓制冷设备有限公司 一种具有提高制冰和脱冰效率的制冰机
KR102446548B1 (ko) * 2017-12-13 2022-09-26 주식회사 대창 제빙기 및 이를 포함하는 냉장고
CN111336729A (zh) * 2018-12-19 2020-06-26 青岛海尔股份有限公司 制冰机及具有其的冰箱
KR102417855B1 (ko) 2020-09-14 2022-07-07 엘지전자 주식회사 제빙 어셈블리 및 그의 제어방법

Also Published As

Publication number Publication date
KR100273051B1 (ko) 2000-12-01
JP3572175B2 (ja) 2004-09-29
JPH1183260A (ja) 1999-03-26
KR19990029776A (ko) 1999-04-26
CN1211713A (zh) 1999-03-24

Similar Documents

Publication Publication Date Title
CN1080406C (zh) 自动制冰设备
CN1289886C (zh) 冰箱制冰机
EP3055629B1 (en) Continuous flaker ice-making freezer and a method of cleaning thereof
CN1573270A (zh) 供冰系统
CN1078701C (zh) 自动制冰装置
CN1303389C (zh) 满冰水平感应装置和方法
CN1077677C (zh) 自动制冰机及其冰盘位置控制方法
CN1769820A (zh) 用于制冰器的供水控制装置及其方法
US20070227164A1 (en) Automatic icemaker
CN1590940A (zh) 冰箱的供冰系统
KR20080035712A (ko) 제빙장치
CN1141542C (zh) 自动制冰机的驱动装置及自动制冰机
KR101001297B1 (ko) 얼음 정수기
CN1231733C (zh) 制冰器的检测方法及装置
CN1122801C (zh) 自动制冰装置用的给水装置
KR100254469B1 (ko) 냉장고의 자동제빙장치
JP2008196737A (ja) 製氷装置とそれを備えた冷凍冷蔵庫
CN1088824C (zh) 制冰器皿的复位方法
JP2004333088A (ja) 製氷装置
KR19990049551A (ko) 냉장고의 자동제빙장치
CN1435659A (zh) 冰箱专用制冰器的加热器控制装置及方法
JPH038927Y2 (zh)
CN1584452A (zh) 带有风扇装置的制冰机的风扇控制方法
KR100816091B1 (ko) 제빙기의 제어방법
KR20030015055A (ko) 냉장고용 제빙기의 만빙감지장치

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: Tokyo, Japan

Patentee after: Toshiba Corp.

Address before: Kanagawa

Patentee before: Toshiba Corp.

TR01 Transfer of patent right

Effective date of registration: 20160919

Address after: Tokyo, Japan

Patentee after: TOSHIBA LIFESTYLE PRODUCTS & SERVICES Corp.

Address before: Tokyo, Japan

Patentee before: Toshiba Corp.

CX01 Expiry of patent term

Granted publication date: 20020306

CX01 Expiry of patent term