CN108037171A - 一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用 - Google Patents

一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用 Download PDF

Info

Publication number
CN108037171A
CN108037171A CN201711430355.4A CN201711430355A CN108037171A CN 108037171 A CN108037171 A CN 108037171A CN 201711430355 A CN201711430355 A CN 201711430355A CN 108037171 A CN108037171 A CN 108037171A
Authority
CN
China
Prior art keywords
nitrogen
quantum dot
doped graphene
graphene quantum
water phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711430355.4A
Other languages
English (en)
Other versions
CN108037171B (zh
Inventor
吴萍
杨冠草
蔡称心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN201711430355.4A priority Critical patent/CN108037171B/zh
Publication of CN108037171A publication Critical patent/CN108037171A/zh
Application granted granted Critical
Publication of CN108037171B publication Critical patent/CN108037171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开了一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用,该制备方法为:以四丁基氢氧化铵的水溶液作为电解液;以高纯石墨棒作为工作电极,铂丝电极作为对电极,甘汞电极作为参比电极,采用恒电位计时电流法电解石墨棒;将电解后的溶液进行过滤以除去石墨烯片层,再通过透析袋透析,得到水相中高分散的氮掺杂石墨烯量子点。本发明的制备方法工艺简单、原料廉价易得、制备时间短,所制备的氮掺杂石墨烯量子点具有分散性于水相好、荧光寿命长、量子产率高及生物相容性好等特点,在生命样品的荧光检测及成像领域有非常好的应用前景。

Description

一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用。
背景技术
近年来,石墨烯量子点作为一种新型的量子点,因其独特的性能引起了人们的广泛关注。石墨烯量子点(GQDs)由于具有毒性低、荧光性能稳定、水中分散性高以及生物相容性良好等优点,已经在细胞成像和生物传感等多个生命科学领域展现了巨大的潜在应用价值。更为重要的是,GQDs的性质可以通过控制其尺寸、边缘形状以及剪裁其电子结构得到进一步调控。其中,杂原子掺杂是调控 GQDs电子结构的最为有效的途经,杂原子的掺杂可以调控GQDs的带宽并提高其荧光量子产率。由于氮原子与碳原子具有相似的原子半径,从而被视为最为理想的掺杂对象。
目前已经发展了多种制备氮掺杂石墨烯量子点(NGQDs)的方法,包括气相沉积法、水热法、微波法及电化学方法等。其中电化学方法是一种简单、快速且无需强酸、高温处理的制备NGQDs的简单方法。但是,目前电化学方法制备NGQDs 主要以四丁基高氯酸铵(TBAP)为N源,而TBAP不溶于水,而溶于乙腈(在乙腈中溶解度0.1g/mL)。该方法制备得到的NGQDs分散在乙腈相中,无法直接用于生命样品的分析检测,从而限制了其在生命科学领域的应用。而如果将量子点从有机相转移到水相中,相转移过程会导致量子产率的大幅降低。
发明内容
鉴于此,本发明的目的是提供一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用,该方法成功制备了水相中高分散的氮掺杂石墨烯量子点,并且所获得的氮掺杂石墨烯量子点具有荧光性能稳定、量子产率高及生物相容性好的特点,可直接应用于生命样品的荧光检测与成像研究。
本发明是通过以下技术方案实现的:
一种水相中高分散的氮掺杂石墨烯量子点的制备方法,包括以下步骤:
步骤1)配置四丁基氢氧化铵溶液;
步骤2)以步骤1)制得的四丁基氢氧化铵溶液作为电解液,以高纯石墨棒作为工作电极,铂丝电极作为对电极,甘汞电极作为参比电极,构成三电极电化学工作系统;
步骤3)在步骤2)所述电化学工作系统中采用恒电位计时电流法电解石墨棒;
步骤4)将经步骤3)电解后的溶液进行过滤,除去剥落的石墨烯片层;
步骤5)将经步骤4)过滤后的液体放入透析袋,经透析纯化后,即得所述水相中高分散的氮掺杂石墨烯量子点。
优选的,步骤3)所述电解石墨棒的工作电压为3~5V,电解时间为1h。
优选的,步骤4)制备的氮掺杂石墨烯量子点的粒径为3~6nm,平均粒径为 4.3nm。
优选的,步骤4)制备的氮掺杂石墨烯量子点的浓度为0.1~0.2mg/mL。
一种水相中高分散的氮掺杂石墨烯量子点在生命样品的荧光检测与成像研究上的应用。
本发明的有益效果如下:
(1)本发明提供的氮掺杂石墨烯量子点的制备方法合成工艺简单,所需原料便宜易得,危险性小且绿色环保,提供了一种在电化学制备水相中高分散氮掺杂石墨烯量子点的新方法。
(2)本发明制备的氮掺杂石墨烯量子点在水中分散性高、量子产率高、生物相容性好,可直接应用于生命样品(如蛋白质、核酸及细胞等)的荧光检测和成像分析。
附图说明
图1为实施例1制备的氮掺杂石墨烯量子点的透射电镜图;
图2为实施例1制备的氮掺杂石墨烯量子点的XPS能谱图;
图3为实施例1和2制备的氮掺杂石墨烯量子点的荧光光谱图;
图4为用MTT法评价实施例1制备的氮掺杂石墨烯量子点对MCF-10A细胞的毒性的示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步阐述。
实施例1
配制0.1mol/L四丁基氢氧化铵溶液,加入20mL该溶液到电解池中,以10 cm高纯石墨棒作为工作电极,铂丝电极作为对电极,甘汞电极作为参比电极插入到电解池中;采用恒电位计时电流法电解石墨棒,设置工作电压为3~5V,电解时间1h;将电解后的溶液用孔径0.22μm的滤头过滤3次;然后将滤液装入透析袋(截留量为3500Da)中,透析48h,每隔12h换一次水,即可得水相中高分散的氮掺杂石墨烯量子点,浓度为0.1mg/mL。
实施例2
配制0.1mol/L四丁基氢氧化铵溶液,加入20mL该溶液到电解池中,以10 cm高纯石墨棒作为工作电极,铂丝电极作为对电极,甘汞电极作为参比电极插入到电解池中;采用恒电位计时电流法电解石墨棒,设置工作电压为3~5V,电解时间1h;将电解后的溶液用孔径0.22μm的滤头过滤3次;然后将滤液装入透析袋(截留量为3500Da)中,透析48h,每隔12h换一次水,即可得水相中高分散的氮掺杂石墨烯量子点,浓度为0.2mg/mL。
测试例1
实施例1制备的氮掺杂石墨烯量子点(NGQDs)的透射电镜照片如图1所示,图1的表征说明,其粒径分布均匀(3~6nm,平均粒径为4.3nm),在水中分散性高;实施例1制备的NGQDs的光电子能谱XPS如图2所示,由图2可知,制备的NGQDs中N含量为5.3%;实施例1和2制备的NGQDs的荧光性能测试结果如图3所示,由图3可知,NGQDs在365nm的紫外灯照射下发蓝光,表现出典型的激发光波长依赖特性,最佳激发波长为360nm,此时最大荧光发射光谱在427nm和455nm处分别出现两个发射峰,分别对应于量子点中sp2杂化碳区域的π–π*跃迁和由含氧、氮官能团对应的n–π*跃迁。
我们以硫酸奎宁(溶于硫酸,浓度为0.1mol/L)为参照物质,测量了实施例1制备的NGQDs的荧光量子产率为12.2%。并用MTT比色法评价了所得NGQDs对细胞的毒性,如图4所示。具体做法为:在96孔中孵育正常人乳腺细胞MCF-10A,向其中加入100μL NGQDs分散液(0.1mg/mL),在37℃作用24 h。弃去培养基和未与细胞作用的NGQDs,用PBS冲洗3次。然后,在96孔板中加入培养基和10μL MTT溶液(5mg/mL,PBS,pH 7.4),在37℃共同孵育 4h,弃去培养基,每孔再加100μL二甲基亚砜(DMSO),用酶标仪在550nm 的波长下测量吸光度,结果表明作用24h后细胞活性仍维持在92%,说明所制备的NGQDs具有高的生物相容性,可直接用于生命样品的荧光检测与成像研究。
对比例1
配制0.1mol/L四丁基高氯酸铵(TBAP)乙腈溶液,取20mL该溶液加入到电解池中,以长度为10cm的纯石墨棒作为工作电极,铂丝作为对电极,甘汞电极作为参比电极,采用恒电位计时电流法电解石墨棒,设置工作电压为3~5V,电解时间2h;电解后的溶液用孔径0.22μm的滤头过滤3次;蒸发除去滤液中的乙腈;将剩下的物质分散在20mL水中,并装入透析袋(截留量为3500Da),在90℃时透析48h,每隔12h换一次水,即可将NGQDs转移至水相。此时测得NGQDs的荧光量子产率为3.6%,远低于直接在水相中电解得到的NGQDs的量子产率(12.2%)。
对比例2
配制0.1mol/L四丁基高氯酸铵(TBAP)乙腈溶液,取20mL该溶液加入到电解池中,以长度为10cm的纯石墨棒作为工作电极,铂丝作为对电极,甘汞电极作为参比电极,采用恒电位计时电流法电解石墨棒,设置工作电压为3~5V,电解时间2h;电解后的溶液用孔径0.22μm的滤头过滤3次;将滤液装入透析袋 (截留量为3500Da),透析48h,每隔12h换一次乙腈,即可将分散在乙腈中的NGQDs。将其与细胞作用24h,MTT测试结果表明细胞死亡率为98%。说明乙腈相中的NGQDs的生物相容性远远低于水相中的NGQDs。

Claims (5)

1.一种水相中高分散的氮掺杂石墨烯量子点的制备方法,包括以下步骤:
步骤1)配置四丁基氢氧化铵溶液;
步骤2)以步骤1)制得的四丁基氢氧化铵溶液作为电解液,以高纯石墨棒作为工作电极,铂丝电极作为对电极,甘汞电极作为参比电极,构成三电极电化学工作系统;
步骤3)在步骤2)所述电化学工作系统中采用恒电位计时电流法电解石墨棒;
步骤4)将经步骤3)电解后的溶液进行过滤,除去剥落的石墨烯片层;
步骤5)将经步骤4)过滤后的液体放入透析袋,经透析纯化后,即得所述水相中高分散的氮掺杂石墨烯量子点。
2.根据权利要求1所述的一种水相中高分散的氮掺杂石墨烯量子点的制备方法,其特征在于,步骤3)所述电解石墨棒的工作电压为3~5V,电解时间为1h。
3.根据权利要求1所述的一种水相中高分散的氮掺杂石墨烯量子点的制备方法,其特征在于,步骤4)制备的氮掺杂石墨烯量子点的粒径为3~6nm,平均粒径为4.3nm。
4.根据权利要求1所述的一种水相中高分散的氮掺杂石墨烯量子点的制备方法,其特征在于,步骤4)制备的氮掺杂石墨烯量子点的浓度为0.1~0.2mg/mL。
5.权利要求1所述的制备方法制备的水相中高分散的氮掺杂石墨烯量子点在生命样品的荧光检测与成像研究上的应用。
CN201711430355.4A 2017-12-26 2017-12-26 一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用 Active CN108037171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711430355.4A CN108037171B (zh) 2017-12-26 2017-12-26 一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711430355.4A CN108037171B (zh) 2017-12-26 2017-12-26 一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用

Publications (2)

Publication Number Publication Date
CN108037171A true CN108037171A (zh) 2018-05-15
CN108037171B CN108037171B (zh) 2020-02-14

Family

ID=62101360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711430355.4A Active CN108037171B (zh) 2017-12-26 2017-12-26 一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用

Country Status (1)

Country Link
CN (1) CN108037171B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108840327A (zh) * 2018-07-30 2018-11-20 湖南理工学院 一种制备氮掺杂石墨烯材料的电化学方法
CN110368940A (zh) * 2019-07-22 2019-10-25 南京师范大学 一种Fe3O4/GQD纳米催化剂及其制备方法和应用
CN113148988A (zh) * 2021-04-14 2021-07-23 南昌大学 一种氮原子掺杂的石墨烯量子点的制备方法
CN113582160A (zh) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 一种纳米多孔材料及其制备方法和其在肟类重排制备酰胺中的应用
CN113578397A (zh) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 一种纳米材料及其制备方法
CN113845106A (zh) * 2020-06-28 2021-12-28 中国石油化工股份有限公司 一种纳米材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201345835A (zh) * 2012-05-10 2013-11-16 Nat Univ Tsing Hua 石墨烯的製備方法
CN104028291A (zh) * 2014-06-12 2014-09-10 大连理工大学 氮掺杂荧光碳点和碳点石墨烯复合物及其制法和应用
CN105752973A (zh) * 2016-03-31 2016-07-13 常州大学 一种电化学剥离制备氮掺杂石墨烯材料的方法
CN105862057A (zh) * 2016-04-15 2016-08-17 北京科技大学 一种掺磷石墨烯量子点及其电化学制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201345835A (zh) * 2012-05-10 2013-11-16 Nat Univ Tsing Hua 石墨烯的製備方法
CN104028291A (zh) * 2014-06-12 2014-09-10 大连理工大学 氮掺杂荧光碳点和碳点石墨烯复合物及其制法和应用
CN105752973A (zh) * 2016-03-31 2016-07-13 常州大学 一种电化学剥离制备氮掺杂石墨烯材料的方法
CN105862057A (zh) * 2016-04-15 2016-08-17 北京科技大学 一种掺磷石墨烯量子点及其电化学制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108840327A (zh) * 2018-07-30 2018-11-20 湖南理工学院 一种制备氮掺杂石墨烯材料的电化学方法
CN110368940A (zh) * 2019-07-22 2019-10-25 南京师范大学 一种Fe3O4/GQD纳米催化剂及其制备方法和应用
CN113582160A (zh) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 一种纳米多孔材料及其制备方法和其在肟类重排制备酰胺中的应用
CN113578397A (zh) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 一种纳米材料及其制备方法
CN113582160B (zh) * 2020-04-30 2023-02-17 中国石油化工股份有限公司 一种纳米多孔材料及其制备方法和其在肟类重排制备酰胺中的应用
CN113578397B (zh) * 2020-04-30 2023-05-05 中国石油化工股份有限公司 一种纳米材料及其制备方法
CN113845106A (zh) * 2020-06-28 2021-12-28 中国石油化工股份有限公司 一种纳米材料及其制备方法和应用
CN113845106B (zh) * 2020-06-28 2023-05-05 中国石油化工股份有限公司 一种纳米材料及其制备方法和应用
CN113148988A (zh) * 2021-04-14 2021-07-23 南昌大学 一种氮原子掺杂的石墨烯量子点的制备方法
CN113148988B (zh) * 2021-04-14 2023-10-31 南昌大学 一种氮原子掺杂的石墨烯量子点的制备方法

Also Published As

Publication number Publication date
CN108037171B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN108037171A (zh) 一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用
Devi et al. Electrochemically exfoliated carbon quantum dots modified electrodes for detection of dopamine neurotransmitter
Li et al. Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution
Huang et al. Electrochemical cutting in weak aqueous electrolytes: the strategy for efficient and controllable preparation of graphene quantum dots
Hsu et al. Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting
Han et al. Uniform carbon-coated CdS core–shell nanostructures: synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting
Peng et al. Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors
Park et al. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide
Tsege et al. Cu-doped flower-like hematite nanostructures for efficient water splitting applications
Cao et al. Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties
Nong et al. Eco-friendly and high-performance photoelectrochemical anode based on AgInS 2 quantum dots embedded in 3D graphene nanowalls
CN104150473A (zh) 一种氮掺杂石墨烯量子点的化学制备方法
CN105733573B (zh) 电解掺氮一步法制备石油焦基碳量子点
Koushanpour et al. Biofuel cell based on carbon fiber electrodes functionalized with graphene nanosheets
CN108117066A (zh) 一种掺氮石墨烯量子点电化学制备方法
TW201418040A (zh) 能量儲存裝置、能量儲存裝置之膜與用於印刷薄膜之墨水
Shuaib et al. Carbon nanoparticles synthesized by laser ablation of coconut shell charcoal in liquids for glucose sensing applications
Freire et al. Morphology of ZnO nanoparticles bound to carbon nanotubes affects electrocatalytic oxidation of phenolic compounds
Huang et al. PrFeO 3-MoS 2 nanosheets for use in enhanced electro-oxidative sensing of nitrite
CN105670617A (zh) 简单高效一步法批量制备氮掺杂石油焦基碳量子点
do Prado et al. Bismuth vanadate/reduced graphene oxide nanocomposite electrode for photoelectrochemical determination of diclofenac in urine
CN103436257A (zh) 一种用酮电化学碳化制备荧光碳点的方法
Manavalan et al. Binder-free modification of a glassy carbon electrode by using porous carbon for voltammetric determination of nitro isomers
JP2009196840A (ja) カーボンナノチューブの切断方法、カーボンナノチューブ片、およびカーボンナノチューブ分散液
Çakıroğlu et al. Photosystem II as a chemiluminescence-induced photosensitizer for photoelectrochemical biofuel cell-type biosensing system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant