CN108034001A - OsGBP1基因在调控水稻开花及粒型中的应用 - Google Patents

OsGBP1基因在调控水稻开花及粒型中的应用 Download PDF

Info

Publication number
CN108034001A
CN108034001A CN201711481149.6A CN201711481149A CN108034001A CN 108034001 A CN108034001 A CN 108034001A CN 201711481149 A CN201711481149 A CN 201711481149A CN 108034001 A CN108034001 A CN 108034001A
Authority
CN
China
Prior art keywords
rice
osgbp1
genes
plant
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711481149.6A
Other languages
English (en)
Other versions
CN108034001B (zh
Inventor
余四斌
龚蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201711481149.6A priority Critical patent/CN108034001B/zh
Publication of CN108034001A publication Critical patent/CN108034001A/zh
Application granted granted Critical
Publication of CN108034001B publication Critical patent/CN108034001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供OsGBP1基因在调控水稻开花及粒型中的应用,该基因控制水稻开花时间,超量表达该基因将延迟水稻抽穗期,减小粒长,但不影响千粒重。该基因负调控种子大小,抑制该基因的表达,促进苗期植株生长,后期粒长变长。本发明为作物育种提供了宝贵的基因资源,可将水稻OsGBP1基因广泛应用于农作物杂交育种和杂交制种中。

Description

OsGBP1基因在调控水稻开花及粒型中的应用
技术领域
本发明属于植物基因工程技术领域,具体地说,涉及OsGBP1基因在调控水稻开花及粒型中的应用。
背景技术
水稻是世界上最重要的粮食作物之一。为了满足日益增长的人口对粮食的需求,育种家致力于通过提高水稻产量来解决需求。然而在过去的半个多世纪里,虽然第一次绿色革命带来的矮化育种和之后的杂交育种的成功应用和大面积推广使得水稻产量发生过两次质的飞跃,然而进二十年来,传统方式对产量的提升作用明显降低,再加上自然生态环境的日益恶化,在这样的背景下,我国科学家提出了绿色超级稻的构想,通过利用品种资源和功能基因组研究的平台成果,挖掘新的功能基因,培育高产、优质的新品种。
粒型的小大决定粒重,而粒重又是影响产量的重要因素,同时粒型也是决定稻米品质的重要影响因子。水稻粒型主要包括粒长和粒宽,一般来说,稻米的垩白率随着粒长的增加而降低,而随着粒宽的增加而升高。因此,控制粒型对提高水稻的产量和改良稻米品质具有重要的意义。到目前为止,研究者们已经克隆了一些控制粒型的主基因,如GS3、qGL3、GLW7等主要影响粒长(Fan et al.,2006;Zhang et al.,2012;Si et al.,2016),GW2、GW5/qSW5、GW8等主要影响粒宽(Song et al.,2007;Shomura et al.,2008;Weng et al.,2008;Wang et al.,2012)。这些基因主要通过影响颖壳细胞的伸长或细胞的分化来影响粒型,它们在调控粒型的同时也决定着水稻的稻米品质;控制粒宽的基因GW2、GW5/qSW5、GW8在增加产量的同时确会降低稻米品质。因此发掘新的粒型基因,增加水稻粒型的调控途径,对增加水稻产量和改善稻米品种具有重要的生产应用价值。
抽穗期是水稻重要的农艺性状之一,感光性、感温性和营养生长性三个因素共同决定了抽穗期的长短,且三者的不同组合,使抽穗期呈现出多样性。抽穗期的长短决定了水稻品种的地区和季节适应性,是影响水稻产量的重要因子。虽然在水稻中已经克隆许多抽穗期相关基因,如Ehd1、Ghd7、DTH8/Ghd8(Doi et al.,2004;Xue et al.,2008;Wei etal.,2010;Yan et al.,2010)等,有些基因,如Ghd7和Ghd8负调控水稻开花的同时又影响水稻的株高和产量,是一因多效基因,然而将这两个基因聚合时,将导致水稻一直处于营养生长阶段而不开花,严重影响产量潜力的发挥。因此发掘调控开花的新基因对控制水稻开花和提高水稻产量潜力具有重要意义。
发明内容
本发明的目的是提供水稻基因OsGBP1的用途,特别是OsGBP1基因在调控水稻开花及粒型中的应用。
为了实现本发明目的,本发明提供OsGBP1基因在调控水稻开花及粒型中的应用,所述OsGBP1基因是编码如下蛋白质(a)或(b)的基因:
(a)由SEQ ID NO:3所示的氨基酸序列组成的蛋白质;
(b)SEQ ID NO:3所示序列经取代、缺失或添加一个或几个氨基酸且具有同等功能的由(a)衍生的蛋白质。
所述调控是指在水稻中过表达所述OsGBP1基因,推迟水稻抽穗期,减小种子粒长;在水稻中抑制所述OsGBP1基因表达,增加种子粒长。
本发明还提供水稻基因OsGBP1在水稻开花改良中的应用。
本发明还提供水稻基因OsGBP1在水稻粒型改良中的应用。
本发明还提供一种推迟水稻抽穗期的方法,将OsGBP1基因的CDS序列构建到植物表达载体上,转化水稻(如中花11),获得过表达OsGBP1基因的阳性转基因植株,抽穗期延迟。
本发明还提供一种缩短水稻种子粒长的方法,将OsGBP1基因的CDS序列构建到植物表达载体上,转化水稻(如中花11),获得过表达OsGBP1基因的阳性转基因植株,结实留种,粒长减小。
优选地,所述OsGBP1基因的CDS序列如SEQ ID NO:2所示。
本发明中,过表达OsGBP1基因使用的植物表达载体优选为pCAMBIA1301S。
本发明还提供一种增加水稻种子粒长的方法,利用基因工程技术抑制OsGBP1基因在水稻中的表达,从而增加水稻种子粒长。
所述基因工程技术是指构建靶向OsGBP1基因的抑制子,并导入水稻植株中。所述抑制子选自shRNA、siRNA、dsRNA、miRNA、cDNA、反义RNA/DNA、低分子化合物、肽、抗体等中的至少一种。
优选地,所述抑制OsGBP1基因在水稻中表达的方法是将如SEQID NO:4所示的cDNA双链片段构建到植物表达载体上,转化水稻(如日本晴),获得阳性转基因植株,结实留种,粒长增加。
本发明中,抑制OsGBP1基因表达使用的植物表达载体优选为pDS1301。
本发明还提供OsGBP1基因在水稻育种中的应用。
本发明的目的是采用以下的技术方案来实现的:
步骤:A、从水稻品种日本晴中分离基因OsGBP1;B、将基因OsGBP1的CDS序列与载体pCAMBIA1301S连接构建超量表达载体;C、将OsGBP1的cDNA双链片段(SEQ ID NO:4)与载体pDS1301连接构建抑制表达载体;D、利用根癌农杆菌将重组载体导入水稻,获得转基因植株;E、利用聚合酶链式反应对T0代转化植株进行阳性检测,收获种子;F、将选留的T0代阳性单株的种子种成T1代家系,进行阳性检测后继续种植T2代家系。通过超量表达OsGBP1降低谷粒长度,并推迟水稻开花,抑制OsGBP1表达,增加谷粒长度,但不改变花期。
本发明的目的还可以采用以下的技术措施来进一步实现。
1、利用聚合酶链式反应(PCR)从水稻品种日本晴中扩增得到基因OsGBP1,基因全长6040个碱基,包括3463个碱基的启动子,2228个碱基的基因以及349个碱基的基因下游序列,核苷酸序列见SEQ ID NO:1。基因的编码序列(CDS)由996个碱基组成,核苷酸序列见SEQID NO:2,编码331个氨基酸(SEQ ID NO:3)。
2、将基因OsGBP1的CDS序列与超表达载体pCAMBIA1301S连接,构建OsGBP1超表达载体。
3、将基因OsGBP1的一段303个碱基的cDNA(SEQ ID NO:4)片段与抑制载体pDS1301连接构建OsGBP1的抑制表达载体。
4、利用根癌农杆菌EHA105(购于Takara公司,公开产品)介导的转基因方法分别将构建的OsGBP1的超表达载体导入水稻品种中花11中,将构建的抑制表达载体导入水稻品种日本晴中,获得转基因植株。
5、利用聚合酶链式反应(PCR)对步骤4产生的T0代超量表达转基因植株进行阳性检测,通过实时定量PCR(qRT-PCR)检测阳性转基因植株中OsGBP1的表达,选择OsGBP1表达量显著升高的转基因植株,收获单株自交种子。
6、将步骤5选留的三个单独转基因植株的种子种植成T1代家系,继续利用PCR对T1代单株进行阳性检测,考察阳性转基因单株和对照(CK)转基因阴性材料田间性状,如:抽穗期(从播种至见穗所经历的时间),株高,以及收获后的种子大小,并结合田间表现选择表现结实率高的转基因单株,自交留种。
7、将步骤6中OsGBP1超量表达的三个单独的转基因家系阳性单株取样,抽提大样DNA后,做印迹检测分析转基因的拷贝数,选择单拷贝单株,利用Tail-PCR方法分离侧翼序列,并针对T-DNA插入位置设计引物(FOX5F/R,FOX8F/R,FOX4F/R)分别与载体边界引物LBT2组合(表1),进行PCR检测,从T1代材料中分别获得三个转基因家系的纯合单株,将其种植T2代家系,将所得的材料自交留种。
8、利用PCR对步骤4产生的T0代抑制表达转基因植株进行阳性检测,并通过qRT-PCR检测阳性转基因植株中OsGBP1的表达,分别选择OsGBP1表达量显著下降的转基因植株,收获单株自交种子。
9、将步骤8选留的转基因植株的种子种植成T1代家系,继续利用PCR对T1代单株进行阳性检测,考察阳性转基因单株和对照(CK)转基因阴性材料的抽穗期,株高,以及收获后的种子大小,结合田间表现选择表现优良的转基因单株,自交留种。
表1
本发明提供的OsGBP1基因在水稻开花及粒型改良中的应用,其步骤为:
(1)将OsGBP1的一段cDNA双链片段(SEQ ID NO:4)在日本晴中表达后,抑制日本晴中内源OsGBP1的表达,种子粒长变长,水稻品种日本晴的粒型得到改良。
(2)将OsGBP1的CDS在水稻品种中花11中超量表达,转基因植株抽穗延迟。
(3)将OsGBP1的CDS在水稻品种中花11中超量表达,转基因植株种子粒长变短。
本发明首次揭示了水稻OsGBP1基因的生物学功能,该基因控制水稻开花时间,超量表达该基因将延迟水稻抽穗期,减小粒长,但不影响千粒重。该基因负调控种子大小,抑制该基因的表达,促进苗期植株生长,后期粒长变长。本发明为作物育种提供了宝贵的基因资源,可将水稻OsGBP1基因广泛应用于农作物杂交育种和杂交制种中。
附图说明
图1为本发明实施例2中水稻OsGBP1基因抑制表达载体的构建示意图。将基因OsGBP1的一段303个碱基的cDNA片段连接到表达载体pDS1301上形成中间载体,再将同一段cDNA片段与中间载体反向连接形成抑制重组载体。
图2为本发明实施例4中超量表达OsGBP1的T0代转基因植株阳性检测及基因OsGBP1表达量检测示意图。图2A为通过qRT-PCR检测基因OsGBP1在转基因植株中的相对表达量,其中阴性转基因单株为白色柱子显示,阳性单株为黑色柱子显示;图2B为跨OsGBP1基因内部的内含子设计的引物进行PCR检测的结果,转基因阳性单株扩增片段大小约600bp,而转基因阴性单株扩增片段大小约1.8kb。
图3为本发明实施例7中抑制OsGBP1表达T0代转基因植株的阳性检测及表达量检测示意图。图3A为通过qRT-PCR检测转基因植株中OsGBP1的相对表达量,其中阴性转基因单株为白色柱子显示,阳性单株为黑色柱子显示;图3B为检测抑制表达载体上正向和反向插入的OsGBP1的一段cDNA片段引物PMCGF1/R1和PMCGF2/R2进行PCR扩增的结果,第一对引物扩增的大小约为700bp的条带,第二对引物扩增约为500bp的条带,两对引物均出现目的大小的扩增片段,为转基因阳性,否则为阴性。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular Cloning:a Laboratory Manual,2001),或按照制造厂商说明书建议的条件。
本发明中使用的遗传转化的培养基及其配制的方法如下:
(1)试剂和溶液缩写
本发明中培养基所用到的植物激素的缩写表示如下:
6-BA(6-BenzylaminoPurine,6-苄基腺嘌呤);
CN(Carbenicillin,羧苄青霉素);
KT(Kinetin,激动素);
NAA(Napthalene acetic acid,萘乙酸);
IAA(Indole-3-acetic acid,吲哚乙酸);
2,4-D(2,4-Dichlorophenoxyacetic acid,2,4-二氯苯氧乙酸);
AS(Acetosringone,乙酰丁香酮);
CH(Casein Enzymatic Hydrolysate,水解酪蛋白);
HN(Hygromycin B,潮霉素);
DMSO(Dimethyl Sulfoxide,二甲基亚砜);
N6max(N6大量元素成分溶液);
N6mix(N6微量元素成分溶液);
MSmax(MS大量元素成分溶液);
MSmix(MS微量元素成分溶液)
(2)主要溶液配方
1)N6培养基大量元素母液(按照10倍浓缩液(10×)配制):
将上述试剂逐一溶解,然后室温下用蒸馏水定容至1000毫升。
2)N6培养基微量元素母液(按照100倍浓缩液(100×)配制
将上述试剂在室温下溶解并用蒸馏水定容至1000毫升。
3)铁盐(Fe2EDTA)贮存液(按照100×浓缩液配制)
将3.73克乙二铵四乙酸二钠(Na2EDTA·2H2O)和2.78克FeSO4·7H2O分别溶解,混合并用蒸馏水定容至1000毫升,至70℃温浴2小时,4℃保存备用。
4)维生素贮存液(按照100×浓缩液配制)
加蒸馏水定容至1000毫升,4℃保存备用。
5)MS培养基大量元素母液(MSmax母液)(按照10×浓缩液配制)
将上述试剂在室温下溶解,并用蒸馏水定容至1000毫升。
6)MS培养基微量元素母液(MSmin母液)(按照100×浓缩液配制)
将上述试剂在室温下溶解,并用蒸馏水定容至1000毫升。
7)2,4-D贮存液(1毫克/毫升)的配制
称取2,4-D 100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,于室温下保存。
8)6-BA贮存液(1毫克/毫升)的配制
称取6-BA 100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,室温保存。
9)萘乙酸(NAA)贮存液(1毫克/毫升)的配制
秤取NAA 100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,4℃保存备用。
10)吲哚乙酸(IAA)贮存液(1毫克/毫升)的配制
秤取IAA 100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,4℃保存备用。
11)葡萄糖贮存液(0.5克/毫升)的配制
称取葡萄糖125克,然后用蒸馏水溶解定容至250毫升,灭菌后4℃保存备用。
12)AS贮存液的配制
称取AS 0.392克,加入DMSO 10毫升溶解,分装至1.5毫升离心管内,4℃保存备用。
13)1N氢氧化钾贮存液的配制
称取氢氧化钾5.6克,用蒸馏水溶解定容至100毫升,室温保存备用。
(3)用于水稻遗传转化的培养基配方
1)诱导培养基
加蒸馏水至900毫升,1N氢氧化钾调节pH值到5.9,煮沸并定容至1000毫升,分装到50毫升三角瓶(25毫升/瓶),封口后按常规方法灭菌(例如121℃下灭菌25分钟,下述的培养基灭菌方法与本培养基的灭菌方法相同)。
2)继代培养基
加蒸馏水至900毫升,1N氢氧化钾调节pH值到5.9,煮沸并定容至1000毫升,分装到50毫升三角瓶(25毫升/瓶),封口,按上述方法灭菌。
3)预培养基
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.6,封口,按上述方法灭菌。
使用前加热溶解培养基并加入5毫升葡萄糖贮存液和250微升AS贮存液,分装倒入培养皿中(25毫升/皿)。
4)共培养基
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.6,封口,按上述方法灭菌。
使用前加热溶解培养基并加入5毫升葡萄糖贮存液和250微升AS贮存液,分装倒入培养皿中(25毫升/每皿)。
5)悬浮培养基
加蒸馏水至100毫升,调节pH值到5.4,分装到两个100毫升的三角瓶中,封口,按上述方法灭菌。
使用前加入1毫升无菌葡萄糖贮存液和100微升AS贮存液。
6)选择培养基
加蒸馏水至250毫升,调节pH值到6.0,封口,按上述方法灭菌。
使用前溶解培养基,加入250微升HN(50毫克/毫升)和400微升CN(250毫克/毫升)分装倒入培养皿中(25毫升/皿)。(注:第一次选择培养基羧苄青霉素浓度为400毫克/升,第二次及以后选择培养基羧苄青霉素浓度为250毫克/升)。
7)预分化培养基
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.9,封口,按上述方法灭菌。
使用前溶解培养基,250微升HN(50毫克/毫升)250微升CN(250毫克/毫升),分装倒入培养皿中(25毫升/皿)。
8)分化培养基
加蒸馏水至900毫升,1N氢氧化钾调节pH值到6.0。
煮沸并用蒸馏水定容至1000毫升,分装到50毫升三角瓶(50毫升/瓶),封口,按上述方法灭菌。
9)生根培养基
加蒸馏水至900毫升,用1N氢氧化钾调节pH值到5.8。
煮沸并用蒸馏水定容至1000毫升,分装到生根管中(25毫升/管),封口,按上述方法灭菌。
实施例1基因OsGBP1的克隆
提取水稻品种日本晴的DNA(引物序列为:上游引物5′-AGCCTCTGGATCATTCGC-3′和下游引物5′-GGCAAATGGCCTCTTCGA-3′)进行聚合酶链式反应(PCR),将得到的PCR产物进行测序得到基因OsGBP1的基因序列,由6040个碱基组成,核苷酸序列见SEQ ID NO:1。PCR程序:94℃预变性5分钟;35个循环(94℃变性30秒;55℃退火30秒;72℃延伸6分钟),72℃延伸10分钟。抽取水稻品种日本晴叶片的RNA,反转录成cDNA,用引物(引物序列为:上游引物5′-GGTACCCCTCTCCCACCCCCAACA-3′和下游引物5′-GGATCCCTACCGGATGGTGATGTACCG-3′)进行聚合酶链式反应(PCR),扩增产物大小为1095bp(含99bp 5’非编码序列),将得到的PCR产物进行测序分析得到基因OsGBP1的编码序列(CDS),由996个碱基组成,核苷酸序列见SEQ IDNO:2。PCR程序:94℃预变性5分钟;30个循环(94℃变性30秒;55℃退火30秒;72℃延伸1分钟),72℃延伸7分钟。利用Primer3软件(http://frodo.wi.mit.edu/)翻译编码序列(CDS)获得氨基酸序列,编码331个氨基酸,序列见SEQ ID NO:3。
上述引物由上海生工合成,序列测定由华大基因测定。DNA、RNA抽提,PCR及试剂配方参照J.萨姆布鲁克等,分子克隆实验指南,第三版,金冬雁等(译),科学出版社,2002。
实施例2重组载体的构建和转化农杆菌的建立
(1)将实施例1扩增获得的包含OsGBP1基因CDS(SEQ ID NO:2)的序列用Kpn I和BamH I双酶切,分离回收目标产物,与用Kpn I和BamH I酶切过的pCAMBIA1301S载体,用T4连接酶连接形成超表达载体。上述引物由上海生工合成,限制性内切酶BamH I、Kpn I及T4连接酶均购于Takara公司。
(2)根据图1的载体构建技术路线,将实施例1获得的日本晴叶片cDNA为模板用引物(引物序列为:上游引物5′-AAAGAGCTCGGATCCGCTTCGCCAATGCTACAA-3′和下游引物5′-AAAACTAGTGGTACCTGATCTTCCCCATCTTTCC-3′)进行聚合酶链式反应(PCR),分离得到基因OsGBP1的一段303个碱基的cDNA片段,其序列为SEQ ID NO:4所示。PCR程序:94℃预变性5分钟;30个循环(94℃变性30秒;55℃退火30秒;72℃延伸30秒),72℃延伸7分钟。将目标片段先用BamH I和Kpn I酶切,分离回收目标产物,与用BamH I和Kpn I酶切过的pDS1301载体用T4连接酶连接形成中间载体1,再将目标片段用Sac I和Spe I酶切,分离回收后,与用Sac I和Spe I酶切过的中间载体1用T4连接酶连接形成抑制表达载体。上述引物由上海生工合成,限制性内切酶(BamH I、Kpn I、Sac I和Spe I)和T4连接酶均购于Takara公司。
(3)将超表达载体和抑制载体分别转化农杆菌EHA105(Takara公司产品)中,OsGBP1超表达载体转化后的菌株命名为FOX;RNA抑制载体转化后的菌株命名为FR。
上述RNA抽提,RNA反转录成cDNA,PCR,酶切连接等分子克隆方法及试剂配方参照J.萨姆布鲁克等,分子克隆实验指南,第三版,金冬雁等(译),科学出版社,2002。
实施例3农杆菌介导的遗传转化
(1)诱导:将成熟的水稻品种(中花11和日本晴)种子去壳,然后依次用75%体积比的乙醇处理1分钟,0.15%浓度的氯化汞(HgCl2)种子表面消毒18分钟;用灭菌水洗种子4-5次;将种子放在粳稻诱导培养基上;将接种后的培养基置于黑暗处培养4周,温度25±1℃。
(2)继代:挑选亮黄色、紧实且相对干燥的胚性愈伤,放于粳稻继代培养基上黑暗下培养2-3周,温度25±1℃。
(3)农杆菌培养:
在带有卡那霉素抗性(上海生工公司产品)选择的LA培养基(LA培养基的配制参照J.萨姆布鲁克等,分子克隆实验指南,第三版,金冬雁等(译),科学出版社,2002)上预培养农杆菌株FOX和FR两天,温度28℃;刮取农杆菌至悬浮培养基中悬浮培养30min,温度28℃。
(4)侵染:将预培养的愈伤转移至灭好菌的瓶子内;调节农杆菌FOX和FR的悬浮液至OD600为0.8-1.0;将愈伤在农杆菌悬浮液中浸泡30分钟;转移愈伤至灭菌好的滤纸上吸干;然后放置在粳稻共培养基上培养3天,温度19-20℃。
(5)筛选:用灭菌水洗涤愈伤8遍;浸泡在含400毫克/L羧苄青霉素(CN)(上海生工公司产品)的灭菌水中30分钟;转移愈伤至灭菌好的滤纸上吸干;转移愈伤至含有250mg/L羧苄青霉素(CN)、50mg/L潮霉素(Hn)(Roche公司产品)粳稻选择培养基上选择培养2-3次,每次2周。
(6)分化:将抗性愈伤转移至粳稻分化培养基上,光照下培养,温度26℃。
(7)生根:剪掉再生苗分化时产生的根;然后将其转移至生根培养基中光照下培养2-3周,温度26℃。
(8)移栽:洗掉再生植株根上的残留培养基,移入钵中盆栽,同时在最初的几天保持水分湿润,待植株存活健壮后移入大田。
实施例4OsGBP1过表达转基因水稻植株的鉴定
由实施例2和实施例3获得的OsGBP1超量表达T0代转基因植株共18株,分别命名为FOX1至FOX18,取T0代转基因植株叶片抽提DNA,用OsGBP1基因上跨内含子的引物(引物序列为:上游引物5′-TGTGATAATGGACAACCT-3′和下游引物5′-CAACCAGACATCCCGACA-3′)进行PCR检测阳性转化植株,PCR程序:94℃预变性5分钟;30个循环(94℃变性30秒;56℃退火30秒;72℃延伸40秒),72℃延伸7分钟)能扩增出约600bp大小条带的单株即为阳性转化植株;抽提叶片RNA,进行荧光定量PCR,以内参基因UBQ(引物序列为:上游引物5′-AACCAGCTGAGGCCCAAGA-3′和下游引物5′-ACGATTGATTTAACCAGTCCATGA-3′)为对照,检测OsGBP1基因(引物序列为:上游引物5′-CAAGCAAATGTGATAATGGAC-3′和下游引物5′-ATCATTCATCAGTGCCAAGAG-3′)的表达量变化,转基因阳性单株中OsGBP1的表达量显著上升,其中FOX5、FOX8、FOX9、FOX16和FOX18这5个转化单株中被超量表达的丰度较高(图2);收获转基因单株自交种子。
以上引物序列均由上海生工合成。DNA抽提、RNA抽提、RNA反转录成cDNA和PCR反应体系等相关技术参照J.萨姆布鲁克等,分子克隆实验指南,第三版,金冬雁等(译),科学出版社,2002。
实施例5水稻基因OsGBP1在水稻品种中花11开花时间改良中的应用
在实施例4中获得了将基因OsGBP1在水稻品种中花11中超表达的转基因株系后,根据转基因植株生长状态和结实情况,从实施例4水稻基因OsGBP1表达量显著上升的阳性植株中,选取FOX5、FOX8和FOX4这三个转基因单株种植成T1代转基因家系,分别命名为FOX5T1、FOX8T1和FOX4T1,进一步利用PCR(方法同实施例4)检测各家系中的阳性单株,并同时从三个家系中挑选阳性单株,做转基因拷贝数鉴定及T-DNA插入的侧翼序列分离,获得单拷贝的纯合转基因单株,并通过分离的侧翼序列发现三个家系单拷贝转基因单株的T-DNA插入分别位于第8染色体18226134bp,第2染色体20271187bp和第7染色体28752634bp的位置,均位于基因间隔区。继续种植T2代家系,以每个家系分离的转基因阴性单株为对照(CK),考察田间表型,发现三个家系中阳性单株在自然长日照下开花显著迟于阴性对照(表2)。通过设置田间遮光的短日照(10h光照/14h黑暗)发现,阳性单株的开花仍然显著迟于阴性对照(表2)。水稻基因OsGBP1在水稻品种中花11中超量表达后,抽穗期延迟。
抽穗期:单株调查。单株主穗抽出2cm以上的时间与播种时间之间的天数,即为抽穗期。
表2 OsGBP1超量表达家系FOX5、FOX8和FOX4的抽穗期分析
注:**,T测验P<0.01。
实施例6水稻基因OsGBP1在水稻品种中花11粒型改良中的应用
考察实例5中OsGBP1超量表达家系FOX8T、FOX4T1中转基因阳性单株种子的粒长和粒宽性状,以分离的转基因阴性单株为对照。两个转基因家系中阳性单株的粒长与阴性对照相比均显著降低,粒宽没有显著差异(表3)。水稻基因OsGBP1在水稻品种ZH11中超量表达之后,水稻品种ZH11粒长减小。
表3 OsGBP1超量表达家系FOX8和FOX4的粒型分析
实施例7 OsGBP1抑制表达转基因水稻植株的鉴定
从实施例2和3中获得OsGBP1抑制表达T0代转基因植株共17株,命名FR1至FR17,取T0代转化单株叶片提取DNA,用抑制载体pDS1301上检测外源正向插入片段的引物PMCGF1/R1(引物序列为:上游引物5′-CTGCTCCACACATGTCCATT-3′和下游引物5′-CCCACCATCTTGTGGAGCTA-3′),检测外源反向插入片段引物PMCGF2/R2(引物序列为:上游引物5′-GGCTCACCAAACCTTAAACAA-3′和下游引物5′-CTGAGCTACACATGCTCAGGTT-3′)进行PCR扩增;PCR程序:94℃预变性5分钟;35个循环(94℃变性30秒;55℃退火30秒;72℃延伸40秒),72℃延伸7分钟;检测阳性转化植株,两组引物分别能扩增出约700bp和500bp大小条带的单株即为阳性转化单株(图3B)。抽提叶片RNA,进行荧光定量PCR,以内参基因UBQ(引物序列为:上游引物5′-AACCAGCTGAGGCCCAAGA-3′和下游引物5′-ACGATTGATTTAACCAGTCCATGA-3′)为对照,检测OsGBP1基因(引物序列为:上游引物5′-CAAGCAAATGTGATAATGGAC-3′和下游引物5′-ATCATTCATCAGTGCCAAGAG-3′)的表达量变化,研究结果发现转基因阳性单株中基因OsGBP1的表达量显著下降(图3A)。
DNA抽提、RNA抽提、RNA反转录成cDNA和PCR反应体系等相关技术参照J.萨姆布鲁克等,分子克隆实验指南,第三版,金冬雁等(译),科学出版社,2002。
实施例8水稻基因OsGBP1在水稻品种日本晴中粒型改良中应用
在实施例7中得到水稻基因OsGBP1在水稻品种日本晴中的抑制表达转基因植株后,结合转基因植株生长状态和结实情况,将水稻基因OsGBP1表达量显著下降的转基因单株FR1、FR2和FR6的种子,种植成T1代家系,继续利用PCR(方法同实施例7)检测各家系中的阳性单株,考察三个家系中转基因阳性单株种子的粒长和粒宽性状,以分离的转基因阴性单株为对照。三个转基因家系中阳性单株的粒长与阴性对照相比均显著增加,粒宽没有显著差异(表4)。水稻基因OsGBP1在水稻品种日本晴中抑制表达之后,水稻品种日本晴粒型得到改良。
表4 OsGBP1抑制转基因家系的粒型分析
注:**,T测验P<0.01。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
参考文献
1、Fan,C.,Xing,Y.,Mao,H.,Lu,T.,Han,B.,Xu,C.,Li,X.and Zhang,Q.(2006)GS3,a major QTL for grain length and weight and minor QTL for grain width andthickness in rice,encodes a putative transmembrane protein.Theor ApplGenet.6,1164-1171.
2、Zhang,X.,Wang,J.,Huang,J.,Lan,H.,Wang,C.,Yin,C.,Wu,Y.,Tang,H.,etal.(2012)Rare allele of OsPPKL1associated with grain length causes extra-large grain and a significant yield increase in rice.Proc Natl Acad Sci U SA,109,21534-21539.
3、Si,L.,Chen,J.,Huang,X.,Gong,H.,Luo,J.,Hou,Q.,Zhou,T.,Lu,T.,et al.(2016)OsSPL13controls grain size in cultivated rice.Nat Genet.4,447-456.
4、Song,X.,Huang,W.,Shi,M.,Zhu,M.and Lin H.(2007)A QTL for rice grainwidth and weight encodes a previously unknown RING-type E3ubiquitinligase.Nat.Genet.39,623-630.Shomura,A.,Izawa,T.,Ebana,K.,Ebitani,T.,Kanegae,H.,Konishi,S.and Yano,M.(2008)Deletion in a geneassociated with grain sizeincreased yields during rice domestication.Nat Genet,2008,40,1023-1028.
5、Weng,J.,Gu,S.,Wan,X.,Gao,H.,Guo,T.,Su,N.,Lei,C.,Zhang,X.,et al.(2008)Isolation and initial characterization of GW5,a major QTL associatedwith rice grain width and weight.Cell Res,18,1199-1209.
6、Wang,S.,Wu,K.,Yuan,Q.,Liu,X.,Liu,Z.,Lin,X.,Zeng,R.,Zhu,H.,et al.(2012)Control of grain size,shape and quality by OsSPL16in rice.Nat Genet,2012,44,950-954.
7、Doi,K.,Izawa,T.,Fuse,T.,Yamanouchi,U.,Kubo,T.,Shimatani,Z.andYoshimura,A.(2004)Ehd1,a B-type response regulator in rice,confers short-daypromotion of flowering and controls FT-like gene expression independently ofHd1.Genes and Development,18,926-936.
8、Xue,W.,Xing,Y.,Weng,X.,Zhao,Y.,Tang,W.,Wang,L.and Zhang,Q.(2008)Natural variation in Ghd7is an important regulator of heading date and yieldpotential in rice.Nature Genetics,40,761-767.
9、Wei,X.,Xu,J.,Guo,H.,Jiang,L.,Chen,S.,Yu,C.,Zhou,Z.,Hu,P.,Zhai,H.andWan,J.(2010)DTH8suppresses flowering in rice,influencing plant height andyield potential simultaneously.Plant Physiol.153,1747-1758.
10、Yan,W.,Wang,P.,Chen,H.,Zhou,H.,Li,Q.,Wang,C.,Ding,Z.,Zhang,Y.etal.(2011)A major QTL,Ghd8,plays pleiotropic roles in regulating grainproductivity,plant height,and heading date in rice.Mol.Plant,4,319-330.
序列表
<110> 华中农业大学
<120> OsGBP1基因在调控水稻开花及粒型中的应用
<130> KHP171119253.0
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 6040
<212> DNA
<213> 水稻(Oryza sativa)
<400> 1
agcctctgga tcattcgcgg gaggatgaga atgattttgt tccatgtcaa ggtgtagggt 60
gccgcgtggc agtgtggcac tcgcattggg gcattgggca agctgatgaa ctgcaaaaga 120
cgcactgtag gttggatgag gacggccggt gtgtgctgac tgctgaagtg ctgagtgact 180
cgcggtggct gtcacgattg gtgtgatgat attttgcatc tgatccttct tcattatctg 240
tgccccacta aagcgtcatt ttgatttttg atttctgcta aggttgtgtg gaatcaatag 300
gctggtttgg tttgagacat aaattagact taccatggca attttaataa tgtttagtgt 360
ctatttggtt tgaagccaaa ttttggtatg tctaagaaaa tataccattt caatagtgaa 420
cttagactat tttagcttta atttaaacat aattttatct tactaaaatt agttacgcta 480
aaacttgtca aaatttagta aggtcaaacc accccaacat tcgttcggct ctgcatctgt 540
ccaccgttgt ctctttatgc tgtgcctgtg tgtttactag ggagaaattg gaatttaatc 600
agatttaaca ctaaattcaa catgatacta tatgtccaac atttaattta ttgtatacta 660
ctataaataa atttaatatg aaatattgca acaaatttaa tatcgagtat tgcaatagat 720
ttaatgcgaa gtattgaaaa aaatacaaat ttagtagcgt acttatcaca aaactgaagg 780
tctaatgaca atttaacaaa atcttcgttt ataacttaga aataacatta gtgacacgat 840
ttaagccaca aacttatagt tttggaataa ttttattatt aaatatttag ttttatgata 900
tttagtctta aacctataat attgtgataa ttttttaaaa tatgtagctt tgtgatgcat 960
caccttaaat ttgcggtttt ataataattt gatcaaaata tctaaatatc tataactttg 1020
tgtgaaatgt actctatgtt tttgtaaaaa atagcaagct aaatgattcc acgcttctga 1080
taattcataa tacagttttt cgttaaagga atctgaaata cagtattcaa aatcgatatt 1140
gtaatttaaa tttaaaactc ggttgtattg gaagttccgg agcaggagaa gatgacctca 1200
acaactttca gcgtagtata tgcaaatctc aaattcacaa tttacaataa taatcattaa 1260
attgttctaa atactcttga tctgtgccac gttaaatttc agcagtttca cggaagtaac 1320
acaagaatac acaaataata atctttgctt cactagagac tagaatttac taaaccattt 1380
gagatggggt taccgtcacc ttacgattta acagttaaca tatgtaccgt atttttaaaa 1440
taaaaggatt atcatacgtg ataaacaaaa caatatcacg gttttataaa ccttgccgga 1500
gagacaacca gcaaataatc catccctccc ctctccccat caagccgccc ccatctgcta 1560
tctacccgca agcactcatg tgtcactgaa ccgtgggcca ccacctcctc ccctccccaa 1620
cgcaatcccg gtcgctgcta ccctcctctt gctcccccca accctcgcca aaaaaaaaaa 1680
aaaaaaaaaa cagaaaaaac agtagcggtg gcggcatcat cagcagcagc agcagcagcg 1740
gtggtggtgg tcgccgtagc ggctgccagc tttgaccccc acctcacccg cctccggcgg 1800
cgccgccgct cccgttcctg cgctcgccgg cggcgcggcg ggtcctcctc ctttccctct 1860
ggcgcgcggg gccccgcccc ctctcccacc cccaacatgg aagcctctag aaggagggga 1920
agctgctgat actgtagggt aaactctctc cctctctctc tatttccgca aattgaggag 1980
tggtttcccc ccagattttt cgggtggttt cgcgcattgg ataagggagc tcccgccgcg 2040
agcgagggcg cgcgcgtttt tttggcggcg gtgttgctcg gtgagtgggt gggtgatcta 2100
gggtttagcg gaatccgatt tgggcttaga cgtgggtttt tccagcgtcg ggtttggagt 2160
tcctgctgca attaagccag cggaggaaaa ggtttgattt ggagctccaa attacttcgt 2220
cttgcttcaa agcgctgaat gcacatgcat gtgatgtgag gtagtacttg gatgatggag 2280
tggtagtagc agtgttcatg tttgataaga tcgttttggt ggtgtgattc gagcatgcgc 2340
gttgggatga cgagcgtgtg agtgcttctg cttgactgct tccatggtag tagtggagcc 2400
agaatcaggt gctatagtca ctcatagcca gttttggtgt ggattatgga tatgcgagtt 2460
gaaattttgt gttcctcttt aatgattgtt gaacttgttg cgtatttatc tttccaaaat 2520
ggcgtggaac tattgcacta attgtttgtg acttcgtgca tcttagatgt aacggctggt 2580
ttgtcgatta tctaaaaagt cagtttagtg tggatgctct tctctatgcc gtgctggctc 2640
aagctccata cattttctgc tgagcatgag ctttgtctgt ttagatatct acctttggtc 2700
gaatcaacct ctgtaaagta ggaagcagct ggagataggg caaagctagc ttcaatgctg 2760
tcgtcatgtg cggcttgagt gtataaaact ttgcagattt gtttctgagg attcggttaa 2820
ggtgtttgaa cactgggcta tgatcaggaa atcatgtact agtgtattca gtttcagtat 2880
catgtagtaa tttgaatagc caaggctttg gtgatcctca cattgcttct ttgctcagta 2940
cttgtgcact ggttgtggag ccaatgcata aatctatttc ttctagagct ttaaagggat 3000
aatccgcaca attgacttat tgcttgttta taaccatgaa ccaaatcatg ccttattatt 3060
actggactcg tttttacctt aatacttctc tagaatttta ctgtaccctt ttttccttgt 3120
atacctgtca actttaaagt ctctgcatgg ctatcctata ccgaacagtt ataggcagat 3180
acatcttgcc tgaagaagtc attcctcttc ctcttgggtt caaaagtcaa ccctctctag 3240
actctatcct atactgaatt gtctctgtcg tctatcctct atcgcatttt ctttagttcc 3300
cccttgagcc ccaagcttgg tcctgaccta gctagtttac cattggcatt tggcacatac 3360
cttccctgga gtaacatttg cggtaccatt tatctttgtt tcttttctta tttttcaggt 3420
gatcgaataa ttgccccttt ttctgttaca agcaaatgtg ataatggaca accttggcca 3480
tagagaaaat gggaggcaaa ggccagacca atataaagga cttcataccc aggtttgtgc 3540
atcataagaa tgcaggcatg attttagatt tatttatatt agtatggcac atgcaatatc 3600
taccattgtt taatatattt gctacgatgt tcaattggat tatttcccta gatgaatact 3660
caaaatgtgc atatatgttt tggttagata aaagactgct taaattctga ctgcaaaagt 3720
gcaaatcaaa acattatcta aaaaaaggtg caaatcaaac aaattgaaag atggggatat 3780
cagctgtcct gctttgctgt actgcgtgac aaaggcatat acatgtcaaa gtacagaaca 3840
ccttctgcta cggcacttag ataaaactta tgtgtgctgt ccagtcaaaa gttccacata 3900
tgcaagtttt taatgagtgt attacgctca cattgttggt attttggaaa ataaccgaat 3960
actcaaatta tggagatgac aaattttgat gggtgggaac tgttttggta caacatatcc 4020
aatcagccgc aatcatttat aactgttcat gtatgttcta cttttctgta cttattcctg 4080
tattatggtg cgtgtggtat ttaactgctt tccatgttgg aaattaatta ctgcgggtcc 4140
aatgtaatta tgtcaatcat gattttaaga aaatagacct tttggtgtag cttgcgttta 4200
gcatgcattc gtagcactat tgtttacata ggctttacct atcttattct ttgtcaataa 4260
gatatctcac ataagtgctc tagatggtcc tagttctctt gcaatttaca ggataactca 4320
gttctgttag attgtaattt atgctttaca agtgtgaatg ctggcttgca gggaacatgc 4380
atttcttgtg gaacatttgt gttatgtctg tgtctgtgtc caatctgagt tttatgaact 4440
agcttcaggc tgatgtatct tttcatgttg cgagcttttt ttgtcctttt cttctacgtt 4500
ttctgtgcta tgtatgtcct tgttatagca ggaggtggat attgcaacct ccaaaagatc 4560
tttcagaaat gtgcactgtt cagctttaaa tgtataactt ttcagctaga tcacaaacaa 4620
aacaaataac attatgaact gatttaccag catgtattga tttcatttat gaaagttctc 4680
tgaagatagt tgttataaag aatcattctc taaaagaatg tgccaaccat gtcaactaat 4740
atatccactc aatgtttttt tcagtggatg atgccccaga cccaaaggca tctgaaggac 4800
catcaaagta tgaatctctt ggcactgatg aatgatagag ataatgccat ccgagaaagg 4860
gaccatgctc tggctgagaa gaaggcagcc atagctgagc gcgatatggc gtttactcaa 4920
cgggatgctg caatggctga gcgtaatgct gcagtcgtgg aaagggacaa tgcccttgct 4980
gctcttgagt tagcacgtac aaacggattg aacatgaata acgggaatgg attcccccaa 5040
ggatctctca gcggatcaaa gaacatccac caccacgacc agctttctca tgctcagtca 5100
tcaccgctgc aactggcaga ttctccatat gatcatgcta gagaaatgca catatcagaa 5160
gcatacccta tctcaacagc tccagggagt gctggaaaag caaagaggcc aaagaagaat 5220
agttcccaag cctctccatt gaagaggcca tcaggtgtgc tccggaaaac caagaaacct 5280
tctggtgact ggaagaatgt cgggatgtct ggttgtggag atgattctgc tcatgcttct 5340
gtgatgaaga acgagtggaa ggaccaaaac cttggtctga atcaagttgc gtttgatgat 5400
tccacgatgc ccgcgcctgc ctgttcatgc acggggaagc ttcgccaatg ctacaagtgg 5460
ggaaacgggg gatggcaatc atcatgttgc accatgaaca tttccatgta cccactccca 5520
gtgatgccga acaagcggca tgctcgcatg gggggacgga agatgagcgg cggtgccttc 5580
acaaagctgc tgagccgact agcggccgaa ggtcatgatc tctcgacgcc ggtcgacctc 5640
aaggaccact gggctaagca tggtacaaac cggtacatca ccatccggta gcttgctgat 5700
gaacgcggat gtgattcaag ctggaaagat ggggaagatc aggcaaatct tgcttctcct 5760
gcattcccta aaccctttgc tagggccagt ctttgtaagg ttgtcattgg tttgtagcgg 5820
atgtaggtag aattttgtgt ttaaagttct gtaggttctt ctctcccgtt ctgaactctg 5880
aattttctcg tggctctaga acgctgcagc ccacgagaat taaaaaatgt aaccgtagtc 5940
tgcaggtatt catcgtcaga tcattgtata gtttgacaac cagatttatg tggtagtaga 6000
ccagtagtga atggcatatt tgtcgaagag gccatttgcc 6040
<210> 2
<211> 996
<212> DNA
<213> 水稻(Oryza sativa)
<400> 2
atggacaacc ttggccatag agaaaatggg aggcaaaggc cagaccaata taaaggactt 60
catacccagt ggatgatgcc ccagacccaa aggcatctga aggaccatca aagtatgaat 120
ctcttggcac tgatgaatga tagagataat gccatccgag aaagggacca tgctctggct 180
gagaagaagg cagccatagc tgagcgcgat atggcgttta ctcaacggga tgctgcaatg 240
gctgagcgta atgctgcagt cgtggaaagg gacaatgccc ttgctgctct tgagttagca 300
cgtacaaacg gattgaacat gaataacggg aatggattcc cccaaggatc tctcagcgga 360
tcaaagaaca tccaccacca cgaccagctt tctcatgctc agtcatcacc gctgcaactg 420
gcagattctc catatgatca tgctagagaa atgcacatat cagaagcata ccctatctca 480
acagctccag ggagtgctgg aaaagcaaag aggccaaaga agaatagttc ccaagcctct 540
ccattgaaga ggccatcagg tgtgctccgg aaaaccaaga aaccttctgg tgactggaag 600
aatgtcggga tgtctggttg tggagatgat tctgctcatg cttctgtgat gaagaacgag 660
tggaaggacc aaaaccttgg tctgaatcaa gttgcgtttg atgattccac gatgcccgcg 720
cctgcctgtt catgcacggg gaagcttcgc caatgctaca agtggggaaa cgggggatgg 780
caatcatcat gttgcaccat gaacatttcc atgtacccac tcccagtgat gccgaacaag 840
cggcatgctc gcatgggggg acggaagatg agcggcggtg ccttcacaaa gctgctgagc 900
cgactagcgg ccgaaggtca tgatctctcg acgccggtcg acctcaagga ccactgggct 960
aagcatggta caaaccggta catcaccatc cggtag 996
<210> 3
<211> 331
<212> PRT
<213> 水稻(Oryza sativa)
<400> 3
Met Asp Asn Leu Gly His Arg Glu Asn Gly Arg Gln Arg Pro Asp Gln
1 5 10 15
Tyr Lys Gly Leu His Thr Gln Trp Met Met Pro Gln Thr Gln Arg His
20 25 30
Leu Lys Asp His Gln Ser Met Asn Leu Leu Ala Leu Met Asn Asp Arg
35 40 45
Asp Asn Ala Ile Arg Glu Arg Asp His Ala Leu Ala Glu Lys Lys Ala
50 55 60
Ala Ile Ala Glu Arg Asp Met Ala Phe Thr Gln Arg Asp Ala Ala Met
65 70 75 80
Ala Glu Arg Asn Ala Ala Val Val Glu Arg Asp Asn Ala Leu Ala Ala
85 90 95
Leu Glu Leu Ala Arg Thr Asn Gly Leu Asn Met Asn Asn Gly Asn Gly
100 105 110
Phe Pro Gln Gly Ser Leu Ser Gly Ser Lys Asn Ile His His His Asp
115 120 125
Gln Leu Ser His Ala Gln Ser Ser Pro Leu Gln Leu Ala Asp Ser Pro
130 135 140
Tyr Asp His Ala Arg Glu Met His Ile Ser Glu Ala Tyr Pro Ile Ser
145 150 155 160
Thr Ala Pro Gly Ser Ala Gly Lys Ala Lys Arg Pro Lys Lys Asn Ser
165 170 175
Ser Gln Ala Ser Pro Leu Lys Arg Pro Ser Gly Val Leu Arg Lys Thr
180 185 190
Lys Lys Pro Ser Gly Asp Trp Lys Asn Val Gly Met Ser Gly Cys Gly
195 200 205
Asp Asp Ser Ala His Ala Ser Val Met Lys Asn Glu Trp Lys Asp Gln
210 215 220
Asn Leu Gly Leu Asn Gln Val Ala Phe Asp Asp Ser Thr Met Pro Ala
225 230 235 240
Pro Ala Cys Ser Cys Thr Gly Lys Leu Arg Gln Cys Tyr Lys Trp Gly
245 250 255
Asn Gly Gly Trp Gln Ser Ser Cys Cys Thr Met Asn Ile Ser Met Tyr
260 265 270
Pro Leu Pro Val Met Pro Asn Lys Arg His Ala Arg Met Gly Gly Arg
275 280 285
Lys Met Ser Gly Gly Ala Phe Thr Lys Leu Leu Ser Arg Leu Ala Ala
290 295 300
Glu Gly His Asp Leu Ser Thr Pro Val Asp Leu Lys Asp His Trp Ala
305 310 315 320
Lys His Gly Thr Asn Arg Tyr Ile Thr Ile Arg
325 330
<210> 4
<211> 303
<212> DNA
<213> 水稻(Oryza sativa)
<400> 4
gcttcgccaa tgctacaagt ggggaaacgg gggatggcaa tcatcatgtt gcaccatgaa 60
catttccatg tacccactcc cagtgatgcc gaacaagcgg catgctcgca tggggggacg 120
gaagatgagc ggcggtgcct tcacaaagct gctgagccga ctagcggccg aaggtcatga 180
tctctcgacg ccggtcgacc tcaaggacca ctgggctaag catggtacaa accggtacat 240
caccatccgg tagcttgctg atgaacgcgg atgtgattca agctggaaag atggggaaga 300
tca 303

Claims (10)

1.OsGBP1基因在调控水稻开花及粒型中的应用,其特征在于,所述OsGBP1基因是编码如下蛋白质(a)或(b)的基因:
(a)由SEQ ID NO:3所示的氨基酸序列组成的蛋白质;
(b)SEQ ID NO:3所示序列经取代、缺失或添加一个或几个氨基酸且具有同等功能的由(a)衍生的蛋白质。
2.根据权利要求1所述的应用,其特征在于,所述调控是指在水稻中过表达所述OsGBP1基因,推迟水稻抽穗期,减小种子粒长;在水稻中抑制所述OsGBP1基因表达,增加种子粒长。
3.一种推迟水稻抽穗期的方法,其特征在于,将OsGBP1基因的CDS序列构建到植物表达载体上,转化水稻,获得过表达OsGBP1基因的阳性转基因植株,抽穗期延迟。
4.一种缩短水稻种子粒长的方法,其特征在于,将OsGBP1基因的CDS序列构建到植物表达载体上,转化水稻,获得过表达OsGBP1基因的阳性转基因植株,结实留种,粒长减小。
5.根据权利要求3或4所述的方法,其特征在于,所述OsGBP1基因的CDS序列如SEQ IDNO:2所示,所述植物表达载体为pCAMBIA1301S,所述水稻为中花11。
6.一种增加水稻种子粒长的方法,其特征在于,利用基因工程技术抑制OsGBP1基因在水稻中的表达,从而增加水稻种子粒长;
其中,所述基因工程技术是指构建靶向OsGBP1基因的抑制子,并导入水稻植株中;所述抑制子选自shRNA、siRNA、dsRNA、miRNA、cDNA、反义RNA/DNA、低分子化合物、肽、抗体中的至少一种。
7.根据权利要求6所述的方法,其特征在于,将如SEQ ID NO:4所示的cDNA双链片段构建到植物表达载体上,转化水稻,获得阳性转基因植株,结实留种,粒长增加。
8.根据权利要求7所述的方法,其特征在于,所述植物表达载体为pDS1301。
9.根据权利要求7或8所述的方法,其特征在于,所述水稻为日本晴。
10.OsGBP1基因在水稻育种中的应用。
CN201711481149.6A 2017-12-29 2017-12-29 OsGBP1基因在调控水稻开花及粒型中的应用 Active CN108034001B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711481149.6A CN108034001B (zh) 2017-12-29 2017-12-29 OsGBP1基因在调控水稻开花及粒型中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711481149.6A CN108034001B (zh) 2017-12-29 2017-12-29 OsGBP1基因在调控水稻开花及粒型中的应用

Publications (2)

Publication Number Publication Date
CN108034001A true CN108034001A (zh) 2018-05-15
CN108034001B CN108034001B (zh) 2021-02-09

Family

ID=62098887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711481149.6A Active CN108034001B (zh) 2017-12-29 2017-12-29 OsGBP1基因在调控水稻开花及粒型中的应用

Country Status (1)

Country Link
CN (1) CN108034001B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021051299A1 (en) * 2019-09-18 2021-03-25 Sinobioway Bio-Agriculture Group Co. Ltd. Flowering time genes and methods of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077161A2 (en) * 2000-04-07 2001-10-18 Basf Plant Science Gmbh Gtp binding stress-related proteins and methods of use in plants
CN101906426A (zh) * 2009-06-02 2010-12-08 李文滨 采用大豆赤霉素结合蛋白基因调节植物光周期的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077161A2 (en) * 2000-04-07 2001-10-18 Basf Plant Science Gmbh Gtp binding stress-related proteins and methods of use in plants
CN101906426A (zh) * 2009-06-02 2010-12-08 李文滨 采用大豆赤霉素结合蛋白基因调节植物光周期的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN ZHAO等: "Overexpression of a GmGBP1 ortholog of soybean enhances the responses to flowering, stem elongation and heat tolerance in transgenic tobaccos", 《PLANT MOL BIOL》 *
崔延春等: "一个水稻多逆境响应基因OsMsr3 克隆与表达分析", 《武汉植物学研究》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021051299A1 (en) * 2019-09-18 2021-03-25 Sinobioway Bio-Agriculture Group Co. Ltd. Flowering time genes and methods of use
CN114502733A (zh) * 2019-09-18 2022-05-13 未名生物农业集团有限公司 花期基因及其使用方法

Also Published As

Publication number Publication date
CN108034001B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Liu et al. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability
CN103374578B (zh) 一种调控水稻谷粒粒长和粒重的基因Gl3及应用
US8802929B2 (en) MIR164 gene that controls plant root system development and fertility and use thereof
CN109369789B (zh) ZmDRR206蛋白质及其编码基因在调控植物抗病性与生长发育中的应用
CN108164590B (zh) OsGBP3基因在调控水稻株高、粒型及千粒重中的应用
CN112481276B (zh) 玉米基因ZmSCL14在调控植物开花期中的应用
CN110872598B (zh) 一种棉花抗旱相关基因GhDT1及其应用
CN109022451B (zh) 一种水稻基因OsPGSIP1及其应用
CN104745599B (zh) 一种水稻粒型基因qSS7及制备方法和应用
WO2013060074A1 (zh) 一种水稻组蛋白脱乙酰化酶基因hdt701启动子及其应用
CN102144568B (zh) 一种改良水稻籽粒氨基酸品质的方法
CN106701778A (zh) 一种利用水稻snb基因来增加穗粒数和降低株高的方法
CN101358193B (zh) 水稻叶片衰老特异性启动子的鉴定及应用
CN108794607A (zh) 一种调控水稻开花期和每穗颖花数的产量基因OsAFB6及应用
CN103421802B (zh) 控制水稻粒重、粒长和每穗颖花数的多效性基因gds7
CN114540357A (zh) 玉米长链非编码RNA lncRNA25659及其用途
JP2009540822A (ja) 植物の構造及び成長を調節するための植物クロマチンリモデリング遺伝子の使用
CN112280786B (zh) 一种养分高效利用耐除草剂玉米连hh2823转化事件及其特异性鉴定方法和应用
CN101892246B (zh) 控制水稻谷物产量,开花期及植株高度的多效性基因Ghd8的克隆及应用
CN108034001A (zh) OsGBP1基因在调控水稻开花及粒型中的应用
CN114134159B (zh) 水稻基因OsWOX3B在调控根系形态中的应用
CN104830871B (zh) 一种水稻基因OsAP2‑6及制备方法和应用
CN101831429B (zh) 水稻胚乳特异表达基因的启动子及表达模式鉴定
CN107099534B (zh) 一种在植物生长的特定时期内表达的水稻种子特异性启动子
CN110904131A (zh) 一种棉花GhGlu19基因及其在提高棉花产量中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant