CN114540357A - 玉米长链非编码RNA lncRNA25659及其用途 - Google Patents

玉米长链非编码RNA lncRNA25659及其用途 Download PDF

Info

Publication number
CN114540357A
CN114540357A CN202210224393.9A CN202210224393A CN114540357A CN 114540357 A CN114540357 A CN 114540357A CN 202210224393 A CN202210224393 A CN 202210224393A CN 114540357 A CN114540357 A CN 114540357A
Authority
CN
China
Prior art keywords
plant
long
coding rna
transgenic
crispr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210224393.9A
Other languages
English (en)
Inventor
王益军
杜文慧
李维
陈煜东
王珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202210224393.9A priority Critical patent/CN114540357A/zh
Publication of CN114540357A publication Critical patent/CN114540357A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • C12N15/8297Gibberellins; GA3
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种来源于玉米的长链非编码RNA lncRNA25659及其用途,所述的lncRNA25659的核苷酸序列如SEQID NO.1所示,本发明通过RT‑PCR证实lncRNA25659的表达被赤霉素处理所抑制;通过CRISPR/Cas9技术,编辑lncRNA25659的转基因株系,与转基因受体相比,其株高、第2叶鞘长、内源赤霉素含量显著增加。这表明lncRNA25659通过应答赤霉素诱导影响植物的株高。

Description

玉米长链非编码RNA lncRNA25659及其用途
技术领域
本发明涉及分子生物学技术领域,具体涉及一种玉米长链非编码RNAlncRNA25659及其在株高改良方面的用途。
背景技术
RNA聚合酶II转录产生两种类型的RNA,包括编码RNA和非编码RNA。根据成熟产物的大小,非编码RNA可进一步分为非编码小RNA和长链非编码RNA(long noncoding RNA,lncRNA)(Kim and Sung,2012)。lncRNA的长度超过200bp,具有较低的蛋白编码潜能,不具有可读框(open reading frame,ORF)。lncRNA可以在基因组的多个区域产生,包括启动子、增强子、基因间区域转录均可产生lncRNA(Wu et al.,2017)。
长链非编码RNA lncRNA通过与靶标互作,调控基因表达、RNA加工、染色质重排、蛋白活性等(Chekanova,2015)。相比于动物lncRNA研究领域,植物中lncRNA的功能研究较少。拟南芥lncRNA cold induced long antisense intragenic RNA(COOLAIR)与polycomb复合体互作,对春化途径基因FLOWERING LOCUS C(FLC)进行抑制(Swiezewski et al.,2009)。水稻成花激活基因OsSOC1反义转录产生lncRNA Early flowering-completelydominant(Ef-cd),lncRNA Ef-cd变异可以促进水稻提早开花(Fang et al.,2019)。过表达番茄lncRNA lncRNA39026诱导病程相关基因表达,调控番茄晚疫病抗性(Hou et al.,2020)。
植物激素赤霉素调控种子萌发、植株株高、花粉育性等(Wang et al.,2017)。赤霉素代谢基因semidwarf1(sd1)、信号调控因子Reduced height(Rht)变异导致的矮秆性状,是“绿色革命”期间矮秆品种培育的突破点。基于突变体分析等方法,赤霉素合成、代谢、信号转导的通路被解析。前体trans-geranylgeranyl diphosphate(GGPP)通过多步酶促反应,合成赤霉素。GA 2-oxidase(GA2ox)参与赤霉素代谢。赤霉素、GA INSENSITIVE DWARF1(GID1)受体、DELLA蛋白形成的GA–GID1–DELLA模块被用来解释赤霉素信号转导过程(Blázquez et al.,2020)。
长链非编码RNA lncRNA在转录及转录后水平调控多个生物学过程,但调控玉米株高相关的lncRNA未见报道。
发明内容
针对上述现有技术,本发明的目的是提供一种来源于玉米的长链非编码RNAlncRNA25659,探索其在植物激素赤霉素响应中的机制,进而利用该长链非编码RNA改良玉米的株高,创制株高改良的玉米新品种。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供一种来源于玉米的长链非编码RNA,命名为lncRNA25659,具有:
1)SEQ ID NO.1所示的核苷酸序列;或
2)与SEQ ID NO.1所示的核苷酸序列具有90%以上序列同源性,且功能上与SEQID NO.1所示的核苷酸序列等同。
进一步的,本发明还提供用于扩增上述玉米长链非编码RNA lncRNA25659的引物对,其核苷酸序列分别如SEQ ID NO.2和SEQ ID NO.3所示。
本发明的第二方面,提供含有上述玉米长链非编码RNA的植物CRISPR/Cas9载体。
进一步的,本发明还提供包含上述植物CRISPR/Cas9载体的重组菌。
本发明的第三方面,提供上述玉米长链非编码RNA、植物CRISPR/Cas9载体或重组菌在如下a)-c)至少一项中的用途:
a)促进玉米株高增加;
b)促进玉米第2叶鞘变长;
c)促进玉米植株内源赤霉素GA3含量增加。
本发明的第四方面,提供上述长链非编码RNA、植物CRISPR/Cas9载体或重组菌在植物育种中的用途。所述植物育种为培育株高改良的品种。
本发明的第五方面,提供一种改良植物株高的方法,包括:将本发明第二方面所述的植物CRISPR/Cas9载体导入受体植物;优选地,所述植物为玉米。
本发明的有益效果:
本发明首次从玉米叶鞘组织中分离到一个与植物株高相关的长链非编码RNAlncRNA25659。本发明的lncRNA25659可以为株高性状种质改良、培育株高改良品种提供新的选择思路与靶标。
附图说明
图1:RT-PCR分析长链非编码RNA lncRNA25659的表达。M表示DNA marker,DNA分子量标准为DL2000,water表示水处理的样品,GA3表示赤霉素GA3溶液处理的样品。取样三叶期第2叶鞘提取RNA进行检测。箭头表示目的条带位置。
图2:转基因株系基因型检测PCR产物凝胶电泳图谱。提取单株叶片DNA,根据长链非编码RNA lncRNA25659序列设计引物进行基因型检测。M表示DNA marker,DNA分子量标准为DL2000,剩余泳道为检测的转基因株系DNA样品。扩增目的产物的大小468bp。箭头表示目的条带位置。
图3:转基因受体、lncRNA25659转基因T3代株系苗高。根据PCR产物测序鉴定的结果,选择基因型纯合的lncRNA25659转基因T3代株系与转基因受体测定苗高,进行差异显著性分析。A)转基因受体、lncRNA25659转基因T3代株系幼苗表型,标尺为5cm。B)转基因受体、lncRNA25659转基因T3代株系苗高显著性测验,**表示P<0.01。WT表示转基因受体,GARR2KO表示lncRNA25659转基因T3代株系。
图4:转基因受体、lncRNA25659转基因T3代株系第2叶鞘长。根据PCR产物测序鉴定的结果,选择基因型纯合的lncRNA25659转基因T3代株系与转基因受体测定第2叶鞘长,进行差异显著性分析。A)转基因受体、lncRNA25659转基因T3代株系第2叶鞘,标尺为1cm。B)转基因受体、lncRNA25659转基因T3代第2叶鞘长显著性测验,**表示P<0.01。WT表示转基因受体,GARR2KO表示lncRNA25659转基因T3代株系。
图5:转基因受体、lncRNA25659转基因T3代株系内源赤霉素含量。根据PCR产物测序鉴定的结果,选择基因型纯合的lncRNA25659转基因T3代株系与转基因受体测定内源赤霉素含量,进行差异显著性分析。**表示P<0.01,WT表示转基因受体,GARR2KO表示lncRNA25659转基因T3代株系。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
正如背景技术部分所介绍的,长链非编码RNA在转录与转录后水平调控多个生物学过程,在植物的生长发育中发挥重要作用,但与玉米株高相关的长链非编码RNA还未见报道。基于此,本发明提供一种与玉米株高相关的长链非编码RNA,并将其用于玉米株高改良的育种工作。
本发明将玉米自交系Mo17用水、10-4M赤霉素GA3溶液处理,采用链特异性去核糖体文库测序。根据链特异性去核糖体文库测序的结果,发现了长链非编码RNA lncRNA25659。lncRNA25659位于玉米第五染色体,长度2809bp,其核苷酸序列如SEQ ID NO.1所示。
由于核苷酸序列的特殊性,任何SEQ ID NO.1所示多核苷酸的变体,只要其与该核苷酸具有90%以上同源性,且具有相同的功能,则均属于本发明保护范围之列。所述多核苷酸的变体是指一种具有一个或多个核苷酸改变的多核苷酸序列。此多核苷酸的变体可以是包括取代变异体、缺失变异体和插入变异体。
转录组测序结果表明赤霉素处理后,lncRNA25659表达量降低。本发明进一步使用RT-PCR技术检测了lncRNA25659在水、赤霉素处理样品中的表达,实验结果证实赤霉素处理后lncRNA25659的表达降低。
在获得上述长链非编码RNA lncRNA25659之后,发明人将其转入受体植物玉米中,获得lncRNA25659的CRISPR/Cas9转基因株系。测定转基因受体、lncRNA25659纯合转基因株系的株高、第2叶鞘长、内源赤霉素含量等农艺生理指标,结果发现与转基因受体相比,lncRNA25659 CRISPR/Cas9转基因株系的株高、第2叶鞘长、内源赤霉素GA3含量显著增加。
综上,本发明克隆出一个新的玉米长链非编码RNA,并将其命名为lncRNA25659,其核苷酸序列如SEQ ID NO.1所示。赤霉素处理后该长链非编码RNA的表达降低;与转基因受体相比,lncRNA25659CRISPR/Cas9转基因株系株高、第2叶鞘长、内源赤霉素GA3含量显著增加。结果表明,长链非编码RNA lncRNA25659参与赤霉素响应进而影响株高,由此提出了本发明。
基于本发明的玉米长链非编码RNA的性能,可以用于改良玉米的株高。在本发明的一种实施方案中,给出了改良植物株高的方法,包括下列步骤:
(1)根据玉米长链非编码RNA lncRNA25659设计guide RNA(gRNA);
(2)将gRNA连接至植物CRISPR/Cas9载体上;
(3)将带有gRNA质粒的农杆菌转入目标植物,获得lncRNA25659的CRISPR/Cas9转基因植物。
综上所述,本发明所提供的长链非编码RNA lncRNA25659的表达受到赤霉素处理抑制,利用植物CRISPR/Cas9载体,编辑lncRNA25659,可以改良植物的株高。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。未注明详细条件的实验方法是按照常规试验方法或按照供应商所建议的操作说明书进行的。
实施例1:lncRNA25659的鉴定
将玉米自交系Mo17的种子进行表面灭菌,将灭菌的种子放在滤纸上发芽。将发芽的种子转移至营养土,进行水、赤霉素(10-4M)处理。每天用蒸馏水或赤霉素GA3溶液喷洒幼苗。生长两周后,取样第2叶鞘组织,提取RNA,RNA样品检验合格后,用Ribo-zero试剂盒去除rRNA。随后采用高温和金属离子作用实现mRNA的片段化,然后逆转录成cDNA并纯化cDNA。纯化的双链cDNA先进行末端修复、加A尾并连接测序接头,用VAHTSTM DNA Clean Beads进行片段大小分选。用UDG酶降解含有U的cDNA第一链,进行PCR富集,用VAHTSTM DNA CleanBeads纯化PCR产物,得到链特异性cDNA文库。构建好的文库用Agilent 2100Bioanalyzer进行文库质检。合格的文库在Illumina HiSeq平台以150bp成对模块进行测序。使用Cuffmerge软件将各个样品测序得到的转录本组装结果合并到一起,然后利用Cuffcompare将转录本组装结果进行分类。从组装结果中选择长度≥200bp、类型为“i,j,x,u,o”的转录本用于lncRNA鉴定。利用TransDecoder和Pfam软件从筛选过的转录本中预测潜在的可读框,可读框长度超过300bp的转录本被剔除。使用CPC软件进行转录本序列编码潜能预测,过滤掉可能具有编码潜能的转录本,得到lncRNA。通过计算FPKM值,分析赤霉素处理后,差异表达的lncRNA,根据基因表达和序列特征分析挑选出与玉米株高关联且赤霉素处理响应的lncRNA,即lncRNA25659,其位于玉米第五染色体,长度2809bp,其核苷酸序列如SEQ IDNO.1所示。
实施例2:lncRNA25659的RT-PCR检测
采用转录组测序的RNA样品,将RNA样品用无RNase的DNase I处理,使用M-MLV逆转录酶将RNA逆转录为cDNA,进行RT-PCR反应,结果发现在赤霉素处理后的样品中,lncRNA25659的表达被抑制,验证了转录组测序的结果,也说明lncRNA25659的表达受到赤霉素调控(图1)。
其中进行RT-PCR实验所用的引物序列如下:
上游引物:5’-TCTATCAGCCAATTCGCCTA-3’,其核苷酸序列如SEQ ID NO.2所示;
下游引物:5’-CCGGTTTGACTCTATCTCG-3’,其核苷酸序列如SEQ ID NO.3所示。
RT-PCR反应体系:
Figure BDA0003538631850000041
RT-PCR反应程序:
Figure BDA0003538631850000042
实施例3:lncRNA25659 CRISPR/Cas9转基因玉米株系获得
根据lncRNA25659的序列,进行靶标设计,选取中靶率高,脱靶率低的靶标序列。选择的靶标序列为TAACTGAATTTGTTCCCGCGCGG,其核苷酸序列如SEQ ID NO.4所示。根据同源重组法,将载体pCPB-ZmUbi-hspCas9通过限制性内切酶Hind III线性化,在20bp基因特异性靶标连接的引物两端加上同源臂,最后将PCR扩增的片段整合到载体pCPB-ZmUbi-hspCas9。将载体质粒通过电击法转入农杆菌EHA105,PCR鉴定。以新鲜剥离的1mm左右的玉米幼胚为材料,将剥取的玉米胚放入含有1.8ml悬浮液的2ml塑料离心管中,30分钟内处理未成熟幼胚150个;吸去悬浮液,余下玉米胚留在管中然后加入1ml农杆菌悬浮液,放置5分钟。将离心管中的幼胚悬浮后倒入共培养基,用移液器吸去表面多余的农杆菌菌液,于23℃暗培养3天。共培养后,将幼胚转移到休息培养基中,于28℃暗培养6天,放至含双丙氨膦的筛选培养基上,筛选培养两周,然后在新的筛选培养基上筛选培养2周。将抗性愈伤组织转移至分化培养基中,25℃,5000lx,光照培养3周;将分化生出的小苗转移至生根培养基上,25℃,5000lx,光照培养直到生根;将小苗转入小盆中生长,一定生长阶段后移栽于温室中,3-4个月后收获转基因T0代种子。
实施例4:lncRNA25659转基因阳性植株的鉴定
提取转基因受体、转基因T0代种子后代玉米单株叶片DNA,根据lncRNA25659序列设计引物进行PCR扩增,PCR产物使用琼脂糖凝胶电泳进行检测(图2)。PCR产物测序,分析转基因受体、转基因T0代种子后代序列变异,筛选纯合的lncRNA25659转基因株系。纯合的lncRNA25659转基因株系经过自交、PCR产物测序的循环,获得lncRNA25659转基因T3代种子。
其中PCR扩增所用的引物序列如下:
上游引物:5’-CCTAGAAACCAAACACCCCCTT-3’,其核苷酸序列如SEQ ID NO.5所示;
下游引物:5’-CTATTGAGTGAAGGAGCCGGT-3’,其核苷酸序列如SEQ ID NO.6所示。
PCR反应程序:
Figure BDA0003538631850000051
实施例5:lncRNA25659转基因植株的表型鉴定
根据PCR产物测序鉴定的结果,选择基因型纯合的lncRNA25659转基因T3代株系。同等生长条件下,三叶期,对转基因受体、长链非编码RNA lncRNA25659转基因T3代株系的幼苗表型、三叶期株高、第2叶鞘长等性状进行测定,结果发现与转基因受体相比,长链非编码RNA lncRNA25659转基因T3代株系的株高极显著增加(图3)、第2叶鞘长极显著增加(图4)。以上实验结果表明lncRNA25659调控植物的株高。
实施例6:lncRNA25659转基因植株的内源赤霉素含量测定
根据PCR产物测序鉴定的结果,选择基因型纯合的lncRNA25659转基因T3代株系。同等生长条件下,三叶期,取样转基因受体、长链非编码RNA lncRNA25659转基因T3代株系约1g,加80%甲醇8ml,冰上研磨成匀浆,4℃下浸提12h,4℃5000rpm离心15min,取上清,37~40℃蒸干浓缩,加入5ml 1M NaAc洗蒸馏瓶,洗液用等体积石油醚萃取脱色,经振荡器振荡后弃去石油醚相,保留水相,用等体积乙酸乙酯萃取。吸取乙酸乙酯相,用等体积乙酸乙酯萃取,合并有机相和乙酸乙酯相,于37~40℃下蒸干,用4ml 50%甲醇洗蒸馏瓶,收集样品洗液,样品洗液过Sep-Pak C18小柱,用100%甲醇洗脱,收集过柱液在浓缩仪上浓缩,用1ml流动相[乙腈-甲醇-0.6%乙酸(体积比为5:50:45)]溶解浓缩物,溶液过0.45μm滤膜,20μl进样。采用高效液相色谱法测定赤霉素含量。色谱条件:Dubhe C18 4.6×250,5μm,流动相:5%(v/v)乙腈、50%(v/v)甲醇、0.6%(v/v)冰乙酸,流速:0.8ml/min,采用梯度洗脱法,检测波长254nm;柱温30℃,进样量20μl。每一个样品至少重复4次,外标法定量。结果发现,与转基因受体相比,长链非编码RNA lncRNA25659转基因T3代株系内源赤霉素GA3含量极显著增加(图5)。以上实验结果表明lncRNA25659调控内源赤霉素含量影响植物的株高。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
序列表
<110> 扬州大学
<120> 玉米长链非编码RNA lncRNA25659及其用途
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2809
<212> RNA
<213> 玉米(Zea mays)
<400> 1
cgtcgatttg gcgccaaaca ctagtatgaa tctcgaagtg gtgctctcta caggagcgca 60
gacggtccac aatctcgttg caggagctgc tcctctctgc gttattccag aaggttcgca 120
caaaccttaa tctcgcctct cagaagggac cccatcggaa ggagaaatcc tagcgttgcc 180
ttaagatcac cagaccaacc aagatgcatc tagatgacgt agagccgaag agaggtgacg 240
attaaggttg gagaaggcta aactaaagag gtgtttggtt tctaaggact aatttttagt 300
tcttttattt tatttcattg tagtctctaa attgctaaat acgaaaaata aaactctatt 360
tcaatttcca tatctggcaa tttaggtact aaaatggaat aaaatggagg gagtaaaaat 420
tagtccctag aaaccaaaca cccccttaag gctaaattac tcctactctt aatgcatgaa 480
aagaataagg caaataagat aaattggttt catacatttg attgtggttg tgttacggtc 540
gtaccccttc atttatataa ggggaagtct agacccattc atagttggtt ctcaaacaaa 600
tctcgtagag tttgctaaca aattccacaa gaaattagga tccctaactg aatttgttcc 660
cgcgcggacc atacgcaccg ccacgccgaa ccgtccaagc tataaggcaa gaccgcccga 720
ccatatttgg tgttcaatat atgcccctgc cttctgatgg agcttgacga accagcaaca 780
catgtactat cagtaccttt cgagaaacaa tagaactcac aagtcatttt gttcccaaaa 840
ataagaactc aactcgatgc aagtcactag tcaccggctc cttcactcaa taggataatc 900
attcaataag atttcaatgc ataaatgtcg tttaagattg catctttctc ggccatgact 960
acttgatgaa cggtagacac aaaattgtgg tgcccctagc ccgaatagac aaagggatta 1020
tttgtgcata taaatatagg tttaccgctt cactatccca tgtttgaaca agacaatata 1080
tatcggtgat gagtaagctg ttgaaaagta ccatgtcatc actagagatg gatgaacatg 1140
caacacttgt tacgtcgcct tttggaccat tttcatagac cgtgatactt ttgtgggtgg 1200
ttgggattgc tttgttggcc gatcatgtga atcgacctcc ttactagcat atttagagag 1260
taatcgatca aaagtaggag caactttaac tagtcaacca gatgatttaa atgtattttg 1320
cttccacgta ccaacttctg gttgtcgagg ctcgaagatg cgtagatgtt gtggtctcta 1380
gttggtgtcg gatcgtccgg ttgagtcaat tggaccatct gcgtggacac caaaccattc 1440
gcatgcaggt gttgaaccgt ctgtgatatg caggacatgg agcttcaatc ggctagccga 1500
tcgttcttgt cccctagtac ctttgatcct agtggtgatc ttcaaggtct cccccattgg 1560
ggtgtctttt gtgcaacaat atccatagaa gcgacccgtc tgacctcatc gaggacgcga 1620
tggtcacaga tgacgacact tttgcctttg cctttatcgg ccacatttgg tcgaactaac 1680
cttctttgtc ctagatctat tatattgaca ggaaatgaca gcttgttact ttgtatctct 1740
tggaagctta accgaccttc atttatagtc gattgtattc gtccacggaa aatattgcaa 1800
tcattagtgg catggaaaaa ggaattatgc cacttgagga ggaatagtat gagttaccat 1860
aatgttgcca ctttttaata gttcatcaaa tattttgtca cattggacga cactaaaagt 1920
aaatttaact tcgtcttact ggttcttttg aatcaactgt aaagaagaac atgacaaagg 1980
ttcgaccttc gttggccaaa taagttcaac agtatatact tccgcggatt catcatctaa 2040
actgctttgg tcgcgttcca ctatatgcac attatgcgaa gttaattttg atatctcttt 2100
actttggctt tcacaagaca aagctcgctg gtgtagttgt gttattgaaa agaacttggt 2160
gccatctaat ttttctttta agtaagattg caacccatta aaatccagcc ttgctagttg 2220
tttgtatgca acatagattt ggaagcatta attgttagtg tctcaaaatc tttggatata 2280
gtcattaacc gattcttcgt gtccttgtcg gagtcaagct aaatcaacta aattcaattc 2340
atactccccg aaaaataaat gctaatggag tttactctct aaattgttct aggaattaat 2400
ggaattataa tacagtggta taccatgcaa aagcagtacc agtaagggat aaggaaaaca 2460
aacgaacacg gaaagcctct atcagccaat tcgcctatct acgctaagaa gtagcctagg 2520
tgttcatgta tgcttttacc acactcacct gaaaatttgg agaaatctgg tatcctagtc 2580
ccatgtgggt acgagataga gtcaaaccgg tgatcatatg gcttttggta ttgattgcac 2640
taatccggtt acacttactc tgagtttttc ttggaacaat tcaaccattt cctccctaat 2700
gttttttctc tataatgcca gatggtaact caccggccct tcggatacgg ggctcagttg 2760
gctgggcatt gttataccaa ccttctgccc atgatcgatc gaaaacaat 2809
<210> 2
<211> 20
<212> DNA
<213> 人工序列()
<400> 2
tctatcagcc aattcgccta 20
<210> 3
<211> 19
<212> DNA
<213> 人工序列()
<400> 3
ccggtttgac tctatctcg 19
<210> 4
<211> 23
<212> RNA
<213> 玉米(Zea mays)
<400> 4
taactgaatt tgttcccgcg cgg 23
<210> 5
<211> 22
<212> DNA
<213> 人工序列()
<400> 5
cctagaaacc aaacaccccc tt 22
<210> 6
<211> 21
<212> DNA
<213> 人工序列()
<400> 6
ctattgagtg aaggagccgg t 21

Claims (8)

1.一种来源于玉米的长链非编码RNA,其为lncRNA25659,其特征在于,所述lncRNA25659的核苷酸序列如SEQ ID NO.1所示。
2.用于扩增权利要求1所述的长链非编码RNA lncRNA25659的引物对,其核苷酸序列分别如SEQ ID NO.2和SEQ ID NO.3所示。
3.含有权利要求1所述长链非编码RNA lncRNA25659的植物CRISPR/Cas9载体。
4.含有权利要求3所述植物CRISPR/Cas9载体的重组菌。
5.权利要求1所述的长链非编码RNA lncRNA25659、权利要求3所述的植物CRISPR/Cas9载体或权利要求4所述的植物CRISPR/Cas9载体重组菌在如下a)-c)至少一项中的用途:
a)促进植物株高增加;
b)促进植物第2叶鞘变长;
c)促进植物内源赤霉素GA3含量增加。
6.权利要求1所述的长链非编码RNA lncRNA25659、权利要求3所述的植物CRISPR/Cas9载体或权利要求4所述的植物CRISPR/Cas9载体重组菌在改良植物株高中的用途。
7.根据权利要求6所述的用途,其特征在于,所述植物为玉米。
8.一种株高改良作物品种的培育方法,其特征在于,包括以下步骤:
(1)构建SEQ ID NO.1的植物CRISPR/Cas9载体;
(2)将步骤(1)的植物CRISPR/Cas9载体转化至植株中,编辑长链非编码RNAlncRNA25659,筛选得到株高改良的植株。
CN202210224393.9A 2022-03-09 2022-03-09 玉米长链非编码RNA lncRNA25659及其用途 Pending CN114540357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210224393.9A CN114540357A (zh) 2022-03-09 2022-03-09 玉米长链非编码RNA lncRNA25659及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210224393.9A CN114540357A (zh) 2022-03-09 2022-03-09 玉米长链非编码RNA lncRNA25659及其用途

Publications (1)

Publication Number Publication Date
CN114540357A true CN114540357A (zh) 2022-05-27

Family

ID=81664536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210224393.9A Pending CN114540357A (zh) 2022-03-09 2022-03-09 玉米长链非编码RNA lncRNA25659及其用途

Country Status (1)

Country Link
CN (1) CN114540357A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807128A (zh) * 2022-03-24 2022-07-29 四川农业大学 一种lncRNA-BTRL及其应用
CN116555144A (zh) * 2023-04-24 2023-08-08 南京师范大学 表征赤霉素含量的生物传感器、重组菌株和筛选赤霉素生产菌的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807128A (zh) * 2022-03-24 2022-07-29 四川农业大学 一种lncRNA-BTRL及其应用
CN114807128B (zh) * 2022-03-24 2023-09-01 四川农业大学 一种lncRNA-BTRL及其应用
CN116555144A (zh) * 2023-04-24 2023-08-08 南京师范大学 表征赤霉素含量的生物传感器、重组菌株和筛选赤霉素生产菌的方法
CN116555144B (zh) * 2023-04-24 2024-04-30 南京师范大学 表征赤霉素含量的生物传感器、重组菌株和筛选赤霉素生产菌的方法

Similar Documents

Publication Publication Date Title
Placido et al. The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat
US20200354735A1 (en) Plants with increased seed size
CN113151297B (zh) 一个同时改良棉花纤维长度、强度、伸长率的b3转录因子基因及其应用
WO2019038417A1 (en) METHODS FOR INCREASING GRAIN YIELD
US20140101791A1 (en) Resistance Genes
CN114540357A (zh) 玉米长链非编码RNA lncRNA25659及其用途
CN110872598B (zh) 一种棉花抗旱相关基因GhDT1及其应用
WO2008025097A1 (en) Salt tolerant plants
US8716553B2 (en) NAC transcriptional activators involved in abiotic stress tolerance
US20230323384A1 (en) Plants having a modified lazy protein
CN106701895B (zh) 与玉米抗旱性相关的单体型及其分子标记
CN117025626A (zh) 烟草硝酸盐转运蛋白NtNPF7.4及其编码基因、基因编辑载体和应用
CN115851824B (zh) 一种降低大白果糯株高、提高产量并缩短生育期的方法以及sd1基因核心启动子和应用
CN114395566B (zh) 甘薯ERF转录因子IbERF4在促进植物绿原酸类物质合成中的用途
CN108456683B (zh) 一个调控水稻抽穗期基因sid1的功能及应用
CN108795944A (zh) 棉花长链非编码RNA-lnc973及其在植物耐盐性中的应用
AU2020103419A4 (en) Application of AtSRT2 gene in improving salt tolerance of plants
CN106978499A (zh) 转基因大豆事件gc1‑1外源插入片段旁侧序列及其应用
CN112626085A (zh) 水稻窄叶基因nal13及其应用
CN105734064B (zh) OsCCT6基因在控制水稻产量、开花期和株高的应用
CN117986339B (zh) 提高小麦穗发芽抗性及耐干旱的转录因子TaMYB7A-CS及其应用
CN114516906B (zh) 玉米与菌根真菌共生相关蛋白及其编码基因与应用
CN114908106B (zh) 一种玫瑰耐盐基因RrLBD40及其应用
CN109811006B (zh) 番茄miR482基因在控制植物分枝上的应用方法
CN115927330A (zh) 桃MIR6288b在调控植物分枝数量中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination