CN1080078C - 越区切换的方法和蜂窝无线系统 - Google Patents

越区切换的方法和蜂窝无线系统 Download PDF

Info

Publication number
CN1080078C
CN1080078C CN96190706A CN96190706A CN1080078C CN 1080078 C CN1080078 C CN 1080078C CN 96190706 A CN96190706 A CN 96190706A CN 96190706 A CN96190706 A CN 96190706A CN 1080078 C CN1080078 C CN 1080078C
Authority
CN
China
Prior art keywords
terminal equipment
base station
signal
antenna
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96190706A
Other languages
English (en)
Other versions
CN1158208A (zh
Inventor
阿尔卡·科斯奇塔洛
彼特·姆斯金斯基
佩奇·乔尔玛
加纳·莱豪-斯蒂芬斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Telecommunications Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Telecommunications Oy filed Critical Nokia Telecommunications Oy
Publication of CN1158208A publication Critical patent/CN1158208A/zh
Application granted granted Critical
Publication of CN1080078C publication Critical patent/CN1080078C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Radio Relay Systems (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

本发明涉及蜂窝无线系统和改进蜂窝系统中切换的可靠性的方法,在系统的各单元中均至少包括一个与其覆盖区域内的终端设备通信的基站,基站根据终端设备的方向角和距离计算终端设备在基站覆盖区域中的位置,终端设备测量在其维护的相邻基站列表中的基站的信号强度,以便确定是否需要进行切换。为了能够进行快速的测量和可靠的切换,根据计算出的终端设备位置更新终端设备维护的相邻基站列表。

Description

越区切换的方法和蜂窝无线系统
本发明涉及一种蜂窝无线系统,该系统在每个单元中包括至少一个与分布在其覆盖区域内的终端设备进行通信的基站,而这种基站则包括测量各终端设备相对于基站的方向角度和距离的装置和根据终端设备的方向角度和距离计算基站覆盖区域内的各个终端设备的位置的装置,终端设备则包括维护一张有关相邻基站的列表的装置和测量在终端设备所保持的列表中的基站的信号强度的装置,这样,终端设备可以确定是否需要进行越区切换。
本发明适用于使用任何多址方法的数据传输系统,尤其适用于使用码分多址的蜂窝系统。码分多址(CDMA)是一种除当前的FDMA和TDMA方法之外的,基于扩频技术并且近来已被用在蜂窝无线系统中的多址方法。与当前的方法相比CDMA具有几种优点,例如频谱效率高和频率规划简单。已知的CDMA系统的一个例子是在EIA/TIA暂行标准:针对双工模式宽带扩展频谱蜂窝系统的移动站-基站兼容性标准,TIA/EIA/IS-95,1993年7月,EIA/TIAIS-95被公开,这里参考引用了该标准。
在CDMA方法中,通过具有比数据信号宽得多的带宽的扩展码把用户的窄带数据信号多路复用到一个相当宽的带宽上。在已知的测试系统中使用了诸如1.25MHz,10MHz和25MHz的带宽。通过多路复用,数据信号被扩展到所使用的整个频带上。所有的用户通过同时使用相同的频率带宽来进行传输。在基站和移动站的各个连接上使用不同的扩展码,而根据各用户的扩展码在接收器中可以彼此区分不同的用户信号。
接收器中提供的匹配滤波器同步于所期望的、根据一个扩展码来识别的信号。通过在传输过程中使用的相同扩展码再次对数据信号进行多路复用可以在接收器中把该数据信号恢复到初始频带上。用某些其它的扩展码多路复用的信号在一种理想情况下互不相关,并且不被恢复到窄带上。这样相对于所期望的信号它们表现为噪声。最好是以这样的方式选择系统的扩展码,即扩展码是相互正交的,也就是说它们彼此互不相关。
在CDMA蜂窝无线系统中,在基站到用户设备的传输方向,即在下行链路方向上可以使用一个所谓的导频信道。导频信道是一种用特定的扩展码发送并与实际传输信道所处的频带相同的频带的信号,只能根据扩展码把它们与导频信号相区分。导频信号是一个被单元区域内所有用户所知并监听的信道,它被用于功率测量和产生相干相位参考。系统的各个基站发送其本身的导频信号,根据该信号用户设备可以彼此区分不同基站的传输。
在常见的移动电话环境中,基站与终端设备之间的信号沿着发送器和接收器之间的几个路径传播。造成这种多路径传播的主要原因是来自环绕表面的信号反射。由于不同的传输延迟,沿着不同路径传播的信号在不同的时刻到达接收器。在CDMA中,当接收信号时可以用和分集同样的方式进行多路径传播。通常在CDMA系统中使用的接收器具有一种多分支接收器结构,其中各分支均与一个沿着单一路径传播的信号部件同步。各个分支均是一个独立的接收器单元,其功能是合成和解调一个接收的信号部件。在传统的CDMA接收器中,最好是以相关或非相关的方式混合不同接收器单元的信号,这样可以获得高质量的信号。
CDMA系统也可以使用软切换,其中一个移动站通过使用宏分集同时与几个基站进行通信。这样在切换期间移动站的连接水平可以保持在高水平上,而用户不会注意到连接的中断。
在期望的连接上由其它连接导致的干扰在接收器中表现为噪声,该噪声是平均分布的。当在一个角度域内检查信号时也是这样,其中该角度域是基于在接收器中检测到的信号的输入方向的。在期望的连接上由其它连接导致的干扰在接收器中也分布在角度域中,即干扰平均地分布在不同的输入方向上。
利用扇区化可以进一步改进能够通过频谱效率来衡量的CDMA容量。单元被分成具有期望大小的由有向天线服务的扇区。这样在基站接收器中可以显著降低由移动站产生的互噪声水平。这基于这样的事实,即平均起来干扰均匀地分布在不同的输入方向之间,而通过扇区化可以减少输入方向的数量。当然可以在两个传输方向上实现扇区化。扇区化在容量方面带来的好处是与扇区数成比例的。
一个被扇区化的单元也可以使用一种更软的切换,其中一个移动站通过同时与两个扇区进行通信来完成从一个扇区到另一个扇区的切换。尽管软切换改进了连接质量并且扇区化增加了系统容量,但移动站的移动自然导致移动站进行几次从一个扇区到另一个扇区的切换。这就消耗了基站控制器的处理容量。几次软切换也导致了一种情况,即几个移动站同时与多于一个的(通常是两个)扇区通信,这样当在一个宽扇区内可听到一个移动站的信号时便损失了通过扇区化而增加的容量。
通过各种已知的多址干扰消除(IC)方法和多用户控制(MUD)也可以减少CDMA系统的多址干扰。这些方法非常适于减少在用户自己的单元内产生的干扰,而与未采用干扰消除所实现的系统相比系统容量可以增加大约两倍。但是这些方法并不能显著增加基站的覆盖区域的大小。而且IC/MUD技术是难以实现的,所以只是在上行链路方向上开发了这种技术,而在相反的传输方向上则与传输的CDMA系统类似。
已开发的另一种方法是SDMA(空分多址)方法,其中根据用户的位置来区分用户。上述方法是以这样的方式来实现的,即根据移动站的位置把基站的接收器天线射束调整到期望的方向上。为此,系统使用自适用天线组,即相控天线,并处理接收的信号,其中系统通过处理接收的信号来跟踪移动站。
配合CDMA使用SDMA有几个胜过前面的诸如扇区化的方法的优点。如果在扇区化中缩小扇区射束以增加频谱效率,则从一个扇区到另一个扇区的切换次数也会增加。这样相应过多地增加了在基站控制器中所需的计算容量。
针对SDMA的应用,在这里参考引用的A.F.Naguib,A.Paulraj:带有基站天线阵列的CDMA蜂窝网络的性能(Proc.International ZurichSeminar on Digital Communications,PP.87-100,Zurich,Switzerland,March 1994)中说明了有关背景领域。在SDMA中通过一个天线组来接收信号,然后通过数字信号处理。以下述方式对接收的信号加以整形,即使得天线的方向模式适合于接收器中的整形之后的阶段。在当前领域的方案中,对接收的信号加以整形以便使期望信号的信噪比最大。于是以这样的方式对接收的信号加以整形,即天线组的模式使其它连接在期望信号中产生的干扰最小。在基于前面参考资料的方案中,各个检测出的信号部件均从属于单独的射束整形,即在整形之前必须知道脉冲响应。
用户设备连续测量它们从基站接收的信号的强度。在CDMA系统中,所进行的信号测量通常就是对导频信号的测量。为了减少终端设备的测量负载,在当前领域的系统中终端设备保持一张有关基站和导频信号的相应的扩展码的列表,这些基站位于终端设备附近并且是用于切换或呼叫建立的可能候选基站。这张表将在一张测试表下面被调用。终端设备以最高优先权监视那些在测试表中出现的基站的导频信号。对其它被检测的导频信号的测量则放在次要地位上。
在一个终端设备移动时,必须根据需要更新测量表。在当前领域的系统中是根据终端设备所进行的导频信号强度测量来进行更新的,即如果根据终端设备的测量检测到所接收的由某基站发送的导频信号具有足够的强度,则把基站加到测量表中,相应地如果来自某基站的信号强度不够,则从表中去掉该基站。
为了能够进行快速切换,测量表应当尽可能的短并且应当只包含那些针对终端设备只能移动到的区域的基站。在这样的情况下,终端设备能够进行快速的测量。测量表的更新也应当是快速的。在单元尺寸与终端设备的移动速度相比显得相当小的系统中尤其这样。
在如前所述的EIA/TIA IS-95中的当前领域的方案中,是根据所接收的信号的测量强度来维护测量表的。为了保证不把必要的基站排除在表外,则不能使测量表变得非常短。因而切换速率不是尽可能最快的,对于小的宏单元尤其是这样。
在图1中说明了一个当前领域的方案,图中描述了一个系统,该系统包括一组覆盖区域均被分成三个扇区的基站164到168,和一个位于基站167的区域内并在扇区162内与基站167通信的用户设备102。用户设备不仅接收来自其本身的基站扇区162的信号,而且还接收来自周围扇区的信号。各终端设备的列表通常包括大多数的周围扇区,例如在图1的例子中的扇区150到160,而且终端设备连续监视这些扇区的信号。
本发明的目的是使得能够维护一个短的测量表,该表只包含针对终端设备最可能移动到的区域的基站。本发明的另一个目的是使终端设备能够快速地从一个基站切换到另一个基站。
通过前面所述类型的蜂窝无线系统可实现本发明,该系统的特征在于其中的终端设备包括根据各终端设备的位置更新由各终端设备维护的相邻基站列表的装置。
本发明也涉及一个改进蜂窝无线系统中的切换的可靠性的方法,其中在各单元中包括至少一个与其覆盖范围内的用户设备进行通信的基站,基站测量各终端设备到基站的距离和从终端设备接收的信号相对于基站的方向角度,基站根据终端设备方向的方向角度和距离计算基站的覆盖区域内各个终端设备的位置,终端设备则为了确定是否需要进行切换而测量来自终端设备维护的相邻基站列表中的基站的信号的强度。基于本发明的方法的特征在于根据基站计算出的各终端设备的位置来更新各终端设备所维护的相邻基站列表。
在基于本发明的方案中,可以使各终端设备的测量表保持尽可能的短,而且使得能够进行快速测量并从一个单元快速切换到另一个单元。尤其是在某种环境下基于本发明的方法具有某些优点,其中在针对快速移动的终端设备的几个微单元构成的区域内也有一个所谓的伞形单元。可以用一个自适应天线组来实现伞型单元,这样的话,由于本发明使得快速测量成为可能,所以终端设备在与一个宏单元通信时也可以测量微单元的强度,并且能够在需要时灵活地切换到一个微单元。
在本发明的第一个最优实施例中,在基带上对被发送和接收的信号进行数字化处理,于是天线射束可以直接沿着期望的方向以和信号同相的方式定向。在本发明的第二个最优实施例中,以模拟的方式进行信号定相,于是提供了一组固定天线射束,并且从这些射束中选择提供最好的连接的射束来进行接收和发送。
下面,将参考基于附图的例子更详细地描述本发明,其中
图1说明了有关当前领域构成一个测量表的方式的例子,
图2说明了基于本发明的一个蜂窝无线系统和在终端设备与基站之间的信号的多路径传播,
图3a在时域上说明了由信号的多路径传播导致的散射,
图3b在入射角域上说明了由信号的多路径传播导致的散射,
图4说明了将基站天线射束定向到移动站的可能性,
图5说明了自适应天线组的一种可能实现,
图6说明了在基于本发明的一个蜂窝无线系统中的角度分集的实现,
图7a说明了在基于本发明的一个系统中构成一个测量表的一个例子,
图7b说明了在基于本发明的一个系统中构成一个测量表的另一个例子,
图8是一个说明基于本发明接收器的一种可能结构的模块图,
图9是说明一个单独的信道单元的结构的例子的模块图,
图10是说明在基于本发明的蜂窝无线系统中的一个用户设备的例子的模块图,
图11是说明基于本发明的接收器的另一个可能的例子的模块图,
图12说明了有关一个单独的信道单元的结构的另一个例子,
图13更详细地说明了有关一个单独的信道单元的结构的一个例子,
下面,通过把CDMA系统当作一个例子,将更详细地描述基于本发明的方法和接收器,但是正如本领域的技术人员从下面的描述中所看到的,由于本发明也可用于其它的多址方法,所以这里的描述并不仅限于此。
图2说明了基于本发明的一个蜂窝无线系统。该系统包括一个基站100和一个与基站100进行无线通信的用户设备102。基站被数字传输线路189连接到一个基站控制器188,基站控制器188则与网络其它部分和固定网相连。
图2说明了在蜂窝系统中常见的被发送信号的多路径传播。蜂窝无线系统的一个特性是移动站被反射和散射无线电波的表面所环绕。这样的表面可以是由诸如山脉和山丘的自然物构成的建筑物和墙壁。移动站通常以全向天线模式进行发送。该图说明了一些从移动站发出的射线112,114和116。在移动站102邻近的表面104,108反射所发送的信号,因而这些信号沿着几个不同的方向到达基站100的天线,但不同信号部件之间的延迟相当小。在图中由数字106表示的离移动站更远的反射表面产生信号部件114,该信号部件滞后几个或几十个微秒就达到了基站100。也会存在防碍在移动站和基站之间建立直接连接的地面障碍物110。
图3a在时域上说明了有关在基站接收器那里由信号的多路径传播导致的信号部件瞬间延迟的一个例子。模式图的水平轴200表示时间,而垂直轴202表示接收信号的功率。在图3a的例子中,基站接收器检测到三组在不同的时刻到达计数器的信号部件204,206和208,其中部件208与其它部件相比到达得最晚。
如图2的例子所示,不同的信号部件以不同的时刻和不同的方向到达。也就是说信号在时域和角度域中均会散射,信号的入射角(AOA)可以描述在角度域中的散射。图3b说明了有关在基站接收器那里由信号的多路径传播导致的瞬时散射的一个例子,其中瞬时散射是关于入射角的一个函数。图3b的垂直轴202表示接收的信号部件的功率,水平轴210表示入射角。在图3b的例子中,信号部件212,214从两个方向到达。
在称为宏单元的大单元内,信号部件通常只以不多的几种入射角到达天线,其中基站天线设得比较高,而入射角通常接近移动站和基站之间的直接射线。在基站天线通常位于建筑物顶端下面的规模较小的微单元内,由于基站同移动站一样经常被几个邻近得反射面所包围,所以信号部件得入射角会更加发散。
前面已针对上行链路传输方向描述了多路径传播。显然在相反的下行链路方向上也会出现对应的现象。由于散射和反射并不严重依赖于频率,可以说在两个方向上多路径传播通路基本上是对称的。但是,应指出快速信号衰减在不同的传输方向上是相互依赖的。因而,如果基站检测到一个从移动站以入射角α到达的信号部件,则除了快速衰减之外通过以同样的角度α发送信号使信号保持在移动站的方向上。
根据前面的描述可以肯定在蜂窝系统中常见的多路径传播环境在基站中引导着信号接收,其中该信号在时间上分布的几个具有不同延迟的部件,而在角度域上则分布为从几种不同方向到达的部件。由于用户设备的移动,两种分布随时间不断变化,但这种变化相当地慢,即在若干秒的范围内,而且这种分布是能够被同步并监视的。
这样可以把接收的信号部件的特征总结为前面描述的类型的多维性,在前面用时间-角度域,即(α,τ)域说明了这种类型多维性,而且这种类型多维性可被用在基于本发明的基站中以便改进对要接收的信号的检测。在基于本发明的方法中,在多维信号域中寻找接收的信号的最佳信号部件,并且利用该部件以这样的方式来控制接收器,即能够以最优方式混合并检测所检测的部件。衡量信号质量最简单的标准可以是接收功率水平,但也可以使用其它的标准,例如信噪比。
基于本发明的接收器使用一个自适应天线组,即一个包含几种不同的单元的天线组。图5说明了自适应天线组的一种可能的实现,这种实现可以结合本发明的第一个最优实施例来使用。天线组包括L天线单元400,402,404,这些单元可以是全向天线。各天线单元均与射频部分406,408,410相连,这些射频部分把接收的信号转换成中频并把信号采样成基于已知技术的(I,Q)部件。接着用对应的复合加权因子Wi倍增所获取的复合样本,其中在多路复用器412,414,416中i=1,...,L通过加法器418可把已被倍增的样本422,424,426用到接收器的其它部分上。
根据一种通常是自适应的算法以保证获得期望形状的天线模式的方式选择复合加权因子Wi。由于是针对在基带上数字化的信号而进行的,这种对接收信号进行整形的方式可以被称作信号的数字锁相,但是由于这种整形,接收的信号天线增益可被定向在期望的方向上。这样的天线组可以包括有向或全向天线单元。对从不同天线获取的信号锁相并混合锁相在期望的方向上产生了虚拟类型的天线射束。对于要发送的信号也可以进行相应的处理,这样就可以获得期望的发射模式。
图4说明了一个天线组是如何产生强有向射束310的,其中天线组包括一个平均分割的线性组,该线性组包含四个单元300,302,304,306,射束310对于移动站308具有入射角α。其中也构成了一组较小的边缘射束。这样,在没有有向天线的情况下通过信号锁相也可以实现这种方向性。
在基于本发明的方案中,通过天线射束减少了接收器的多址干扰,其中在角度域内定向天线射束并通过一种新的应用了时间-角度分集的接收器来产生天线射束。在基于本发明的方案中,在传输方向上也可以使用根据接收信号测出的入射角,这样在两个传输方向上均改进了连接质量。
下面,首先描述本发明的第一个最优实施例,该实施例涉及在CDMA系统中应用信号数字锁相。
在基站上使用的应用了时间-角度分集的接收器包括数字接收器装置,该装置可以在二维(α,τ)域上监视接收的信号部件并解调所期望的信号部件。在解调之前,对接收的数字化信号样本进行锁相,通过锁相,接收的信号的天线增益被定向到期望信号输入方向上。在最优实施例中,锁相所产生的天线射束是具有预定波形的射束,这种波形是由加权因子Wi和天线几何形状决定的。如果天线射束的波形保持固定,则可以针对具有最大增益的各个角度轻易计算出这些因子。因此,由于锁相只依赖于一个参数,即入射角α,那么可以快速地调整锁相。
在基于本发明的方法中,不需要使用已知的诸如MUSIC的估测入射角的复杂技术或诸如LMS和DMI的自适应算法。尽管这些算法能够计算出最优的针对要接收信号的射束波形,并通过把天线模式的零点指向干扰源来最大化期望信号的信噪比,但是由于在CDMA中在不知道干扰源准确方向的情况下将干扰信号四散分布以模拟噪声,所以针对CDMA没有必要采取上述做法。总之,在干扰平均分布的环境中,把具有预定波形的天线射束的最大增益角度定到接收最佳信号部件的方向上就足够了。
在基于本发明的方法中,接收器在(α,τ)域中寻找期望的信号部件。通过互相关所接收的扩展频谱信号和期望的扩展码并把所获取的测量结果与给定的阀值相比较可以完成寻找工作。寻找可以被理解为一个天线射束在整个区域上扫描,同时测量信道脉冲响应并采集从各个方向收到的终端设备信号能量。接收器检测最佳信号接收的方向和码相位并分配所需数量的解调装置以便同步于和接收这些信号部件。最好在接收器中混合所接收的解调信号部件。这种最佳信号部件搜索是连续进行的,并且在必须时可改变解调装置的分配。
这样接收器自始至终都知道接收来自移动站的最佳信号部件的方向。在下行链路方向上也可以把这种信息用于基于本发明的基站设备。例如通过让发送接收器的控制器向发送单元通知已检测到有效信号部件的方向就可做到这点。通过把天线射束最大增益角度定在期望的方向上,发送器单元可以锁定通过自适应天线组发送的信号的相位。可以有一个或多个发送射束,并且其数量因接收器射束的数量而有所不同。
这种方法在下行链路方向上也提供了有效的干扰消除。用于发送的天线组可以和用于接收的天线组相同。也可以使用独立的天线组。信号锁相与采用加权因子的接收过程中使用的信号锁相方式相同。
在基于本发明的方案中,基站测量终端设备与基站之间的距离,通过本领域技术人员所知的方式,例如根据在连接上检测的传输延迟可以进行这种测量。根据测量的距离和通过自适应天线获取的信号输入方向,基站计算出终端设备在覆盖区域中的位置。
根据这个位置,可以较好的估计终端设备最可能移动到的区域所属的基站。
在基于本发明的第一个最优实施例方案中,在基站上用于发送接收信号的天线射束方向在测量的期望方向为αi的环境下偏离了小角度Δαi。这就在信号中产生了角度分集,于是通过分集可以减少衰减的可能性,在移动站不移动时尤其是这样。
在图6中说明了这种方法,其中基站100使用两个射束580,582向移动站102发送信号,在图示的例子中这两个射束是从地面障碍物584,586反射出来的。在基于本发明的方案中,基站在期望方向的环境下把各个天线射束偏移了某个角度Δαi和αi,于是天线射束沿着588a到588b和590a到590b的不同路径即时传播。偏移在给定的频率上连续进行,于是在移动站接收的信号中产生了期望的变化,通过这种变化则减少了长衰减的可能性。利用变化可以为衰减带来随机特性,因而通信信道编码和交叉能够较好地防止发生衰减效应。
当把方案用于接收来自移动站的信号时,在测量的期望方向为αi的环境下用于接收信号的天线射束方向角偏移了微小角度Δαi。在这种方式下,在沿着这个传输方向接收的信号中产生了微小的变化。由于实际的天线射束通常比使用的偏移角度宽得多,所以这种偏移不会影响接收的信号的功率水平。例如天线射束的宽度可以是10度等级的,而偏移角度可以是1度。所使用的天线射束的宽度和偏移角度自然会因应用的不同而有所变化。
基站监视来自终端设备的信号的入射角变化和终端设备与基站之间的传输延迟变化,基站可以根据这些参数估计出终端设备的位置和移动方向。可以在等间隔上进行入射角和延迟测量,测量结果可被加以过滤,而根据通过已知的预测算法获取的数值则能够预测终端设备将来的行为。
根据终端设备的位置和移动方向可以相当精确的估计出终端设备要移动到的区域所属的基站,于是在没有因基站选择失败导致的连接中断的风险的情况下可以保持尽量短的测量表。
当终端设备在一个街角附近移动并同时从一个覆盖区域改变到另一个区域时,基于本发明的方法能够进行更可靠的切换,对于在街角上的微单元尤其是这样。在这样的情况下,终端设备的信号水平实然改变,通常会增加或减少15到20dB。利用基于本发明的方法,根据终端设备的位置可以预测终端设备到达一个街角的时间。
在基站控制器188中通常可以作出更新测量表的决定,有关信息可以被传递给终端设备102,而终端设备102则根据这种控制更新其测量表。
图7a说明了关于一种情况的例子,其中蜂窝系统的一个终端设备102位于扇区162中的基站167的区域之中,基站采用基于本发明的自适应天线组技术。基站167用一或几个移动天线射束183监视终端设备102。基站167利用上述方法已确定终端设备102的位置与移动方向,而终端设备的测量表可被认为只包含终端设备102可能移动到的扇区。在图7a的情况下,假定的扇区是181和182。虽然终端设备也可能接收来自扇区184的信号,但根据其位置假定不移动到此扇区的区域。
图7b说明了关于另一种情况的例子,其中蜂窝系统的终端设备102在扇区162中的基站167的区域内,基站使用基于本发明的自适应天线组技术。基站167用一或几个移动天线射束183监视终端设备102。以和上述同样的方式,基站167确定出终端设备的位置和移动方向,仍然可以认为终端设备的测量表只包含终端设备102可能移动到的扇区。在图7b的情况下,唯一假定的扇区是181。根据其位置和移动方向,假定终端设备不移动到例如182的扇区。
图7c说明了关于一个蜂窝无线系统的例子,该系统包括一个用户设备102,一组相当小的微单元251到254,和一个与微单元重叠的伞形单元255。在需要高传输容量和快速移动终端设备需要在大的伞形单元内提供的服务以便避免几次从一个微单元到另一个微单元的切换的区域内经常可以发现这种实现,其中高传输容量是由微单元提供的。
图中所示的伞形单元是以基于本发明的方式实现的,其中基站100使用被锁相的天线组,该天线组产生指向终端设备的方向的天线射束250。利用基于本发明的方法,终端设备102的测量表可以包含和终端设备处于同一区域的微单元。控制基站100的基站控制器(图中未给出)知道在伞形单元的区域内的微单元并且能够根据设备的位置和移动方向更新终端设备的测量表,从而使测量表包含位于同一区域内的微单元。
也可以以这样的方式使用基于本发明的更新测量表的方法,即根据终端设备的位置和移动方向划分测量表中的基站的优先权。
下面,将描述基于本发明的第一个实施例的接收器的结构。图8是说明基于本发明的接收器的结构的模块图。接收器包括一个含有L个单独的天线单元的天线组500。天线组可以是线性的,平面的(二维的)或全方向的。天线组500接收多路径传播信号,进行前置放大,把信号转换成中频并把所有L个信号数字化,其中多路径传播信号在来自各个具有L个单元的移动站,具有几种不同的方向的不同的路径上被延迟了。所获取的L个数字复合I,Q样本514被提供给信道单元504,506和508的一个输入端。
每个活动的与基站通信的移动站由一个信道单元提供服务,正如下面所要详细描述的,信道单元对接收的信号和要发送的信号进行数字信号处理。各个信道单元均包含一个(α,τ)接收器和一个相应的发送器。在一个信道单元中在发送方向和接收方向上均进行通过锁相来实现的天线射束数字整形功能。
在接收方向上,信道单元在角度-空间域上对信号进行滤波,解调接收的信号部件并在一个分集混合器内混合这些信号部件,最后对已从移动站接收并混合的信号进行解码。所获取的用户数据位被提供给基带单元510,基带单元510把数据位传递到网络的其它部分。
在发送方向上,用户数据位从网络的其它部分到达基带单元510,基带单元510把数据位传递到正确的信道单元504到508,在信道单元内用一个扩展码对信号进行编码,调制并锁定要发送的信号的相位,锁相确定要发送的天线射束的方向。所获取的L个信号被提供给天线组502的L个单元。实际上,接收和发送天线组500,502可以是单独的,也可以通过同一个物理天线组来实现,在这个物理天线组中用适当的双工过滤来分隔发送和接收方向。
在发送天线组502中,已从各信道单元到达的信号和要送往各天线单元的信号被转换成模拟形式,通过天线单元被转换到射频并发送出去。
在基于本发明的方案中,发送和接收天线组可以包括不同数量的天线单元,尽管前面的描述为了简便公开了在各组中都有同样的L个单元的情况。图中也给出了一个控制模块512,该模块控制设备的不同单元的操作,例如根据来自基站控制器的消息控制为不同的连接分配信道单元。
图9是说明在基于本发明的第一个实施例的接收器中的信道单元的结构的模块图。信道单元包括一个或几个数字接收器单元600,602,一个或几个搜寻器单元604,一个分集混合器608,一个解码器610和控制装置612,其中图上给出了数字接收器单元600,602和搜寻器单元604,分集混合器608的输入包括来自接收器单元的信号,而在分集混合器608的输出端可见的信号被连接到解码器610的输入端。L个从天线到达的数字复合l,Q样本514被提供给所要数字接收器单元600,602和搜寻器单元604的输入端。如果基于本发明的方案被用在发送接收器中,则基于本发明的发送接收器也包含一个编码器614和一个数字发送单元606。
首先参照图9查看数字搜寻器604的操作。与常规的分离多路径接收器一样,搜寻器单元的功能是从接收的信号中寻找期望的信号部件。在基于本发明的方案中,一种新型的搜寻器单元在(α,τ)域内连续监视接收的信号并把它们的参数,即入射角(AOA)和延迟分布提供给控制装置612,该装置接着分配所需数量的接收器单元以便解调最优部件。以下述方式也可以实现基于本发明的接收器,即信道单元不包含单独的控制装置612,但搜寻器单元604直接向接收器分支600,602传送有关要监视的信号部件的信息。
搜寻器单元包括装置634和装置636,装置634锁定从天线组的射频部分提供的信号相位,而装置636检测从锁相装置634的输出端获取的信号是否包含以给定延迟接收的信号部件并测量该信号部件的质量。搜寻器单元还包括装置638,该装置以能够测量接收的信号的输入方向和延迟的方式控制上述锁相装置634和测量装置636。
通过具有上述类型并在图5中给出的设备可以实现锁定从天线组的射频部分提供的信号的相位的装置634,这种设备包括用复合因子Wi(i=1,...,L)来倍增信号,而通过倍增信号则可以确定在锁相装置的输出信号中被明显放大的信号的入射角。如上所述,每个因子组合均与天线上述组合相对应。装置638控制锁相装置(634)以便能够检查所有必要的信号输入方向。
根据装置638的控制锁相装置的输出端给出与从给定方向接收的信号相对应的信号。测量装置636以不同的延迟对在锁相装置的输出端可见的信号进行测量,测量的目的是检测具有不同延迟的信号部件。用上述的装置638设置每次测量的延迟。在测量装置中,针对装置的输入端上的信号进行解扩展,复合信号能量测量和在信道相关时间上的能量方波形成这样的处理,并且比较获取的测量值和给定阀值。具有超过给定阀值的强度的被测信号部件的参数,即入射角,延迟和功率被提供给信道单元的控制装置612。
装置638控制锁相装置634和测量装置的操作。装置638对应于一个在常规分离多路径接收器的搜寻器分支中提供的同步回路,尽管在具有本发明的方案中该装置以一种新方式进行操作。在装置638的控制下可以用许多方式实现从(α,τ)域中搜寻期望的信号部件。如上所述,可以用某些其它的信号质量检测来取代信号功率测量。
通过给定的角度间隔改变最大增益方向角,在锁相装置634中可以逐步地对天线组接收的数字化信号进行锁相。从可能的输入方向中选择一组具有代表性的入射角αj,其间具有期望的角度间隔,并且在每个输入方向上用不同的延迟值进行几次能量测量,这样就得到了针对输入方向的延迟分布τk。
另一种方式是控制测量装置636首先测量具有天线模式的接收信号的延迟分布tk。这样就检测出接收信号部件的可能延迟。然后控制锁相装置634用一个窄向射束扫描不同的方向角,同时控制装置用上述在第一次测量中检测到的延迟值进行测量。这样就得到了以不同延迟到达的部件的输入方向αj。
所检测的信号部件的参数被提供给信道单元的控制装置612。通过把信号部件的输入方向和延迟通知给接收器单元,控制装置分配接收器单元600,602以接收并解调最佳检测的信号部件。如上所述,在不需单独的控制装置的情况下也可以由搜寻器单元604直接控制接收器单元。
在基于本发明的方案中,信道单元包括计算终端设备到基站的距离的控制装置612,根据传输的延迟可以计算出距离。相应的利用信号的方向角和距离也可以计算出终端设备的位置。计算出的数据被发送给基站控制器188,该控制器更新测量表,可选地,也可以在控制装置612中确定是否需要更新测量表。
下面参照图9查看数字接收器单元600,602的操作。和常规的分离多路径接收器一样,接收器单元的功能是接收并解调给定的信号部件。假定信道单元的控制装置612已分配了一个接收器单元来接收具有入射角αj和延迟τk的参数的具体信号部件。
接收器单元600,602包括监视装置624,632,信道单元的控制装置612把有关被监视的信号部件的相位和输入方向的信息传递给监视装置624,632。监视装置控制接收器单元的第一锁相装置,第一锁相装置的输入是从天线组得到的数字化信号。锁相装置618,626具有和搜寻器单元中提供的锁相装置634类似的结构。根据涉及入射角αj的信息和从控制单元接收的信息,监视装置以这样的方式设置复合加权因子Wi(i=1,...,L),即从期望输入方向到达的信号在锁相装置的输出端是可见的。这可以理解成一个指向期望的方向并且具有预定形状的接收器天线射束。
接收器单元600,602还包括解调装置620,628。该装置的输入包含从锁相装置618,626得到的信号。监视装置624,632控制解调装置和以给定延迟τk到达的信号部件同步。在解调装置中,根据已知的把给定的τk用作码相位的技术对信号进行扩展和解调。得到的符号和延迟数据一起被提供给信道单元的其它部分。
接收器单元600,602还包括第二锁相装置622,630,该装置的输入包括从天线组得到的数字化信号。第二锁相装置的输出信号被提供给监视装置624,632。监视装置通过用装置测量分配给接收器的信号部件的当前参数(αj,τk)环境来控制第二锁相装置的操作,以便检测在接收的信号部件的输入方向和延迟发面的变化。为此,第二锁相装置包括类似于第一锁相装置的用于锁定信号相位的复合因子,和类似于搜寻器单元的测量装置636的用于测量脉冲相应的装置。如果监视装置利用第二锁相装置检测出在期望信号部件的输入方向αj或延迟τk方面的变化,那么监视装置把这种数据更新到第一锁相这种和解调装置上。
当前领域公开了几种在扩展频谱系统中可以实现监视装置624,632的方式,例如超前-滞后门可被用在基于本发明的方案中。这些电路通过用给定的时间差Δτk进行两个能量测量来估测码定时错误,在当前设置点tk的环境下Δτ通常是扩展码的分片时间的小数部分。能量测量是利用第二锁相装置622,630的测量装置来进行的,第二锁相装置在延迟变化时提供主设置点τk所需的校正数据。
相应地,利用第二锁相装置可以监视信号入射角αj的变化。例如利用给定的延迟τk通过天线射束可以进行两次或更多次的能量测量,经过锁相天线射束在两个方向上已从当前入射角αi偏移了一个角度Δα。所使用的偏移度Δα通常是天线射束宽度的小数部分。
这样,监视装置624,632就控制了第二锁相装置622,630所进行的能量测量,因而在任意时刻都应当以最大的能量接收信号。监视装置把有关改变了的参数(αj,τk)的数据更新到第一锁相装置,解调装置和信道单元的控制装置612,所以在需要时发送方向上也可以使用该数据。
可以把上述接收信号的最大化与常规系统中使用的接收器天线分集相比较,其中用两个或多个彼此距离等于接收信号的几个波长的天线接收信号。在基于本发明的接收器中,如果在出现深度衰减的情况下捕捉到以入射角αi接收的信号,则通过把接收射束的角度改变一个小角度Δα则可以消除这种衰减。这样就不需要有两个单独的彼此相距给定距离的天线。
根据上述的偏移,在控制装置612中也可以计算出终端设备102的移动方向,而且这种信息可被用于更新测量表。
信道单元的分集混合器608和解码器610的操作与当前领域中的分集接收器的操作类似。通过累计和补偿其不同的延迟τk并根据其信噪比权衡不同的符号序列,混合器608混合从不同的接收单元到达的符号序列以获取最大比值混合。所获取的混合符号序列被提供给解码器610,解码器610通常首先进行解交叉并把符号解码成用户数据位。CDMA应用一般使用强卷积编码,而用于强卷积编码的最佳检测方法是提供软判决的Viterbi算法。
显然上述信道单元也可被用于监视和接收一个访问信道。由于不知道发送呼叫建立消息的移动站的确切位置,那么在接收方向上使用的天线射束具有较宽的天线模式,即可以是120度宽。
下面参照图9描述数字发送单元606的操作。用户数据位首先被提供给编码器614,编码器614通常用卷积码对数据位编码并在编码符号上进行交叉。所获得的交叉符号被提供给扩展频谱调制器642,调制器642完成常规的调制工作。利用已知技术可以完成所有上述功能。
在本发明中,发送单元包括装置644,640,该装置根据接收的信号控制并数字式地锁定要发送的信号的相位。在基于本发明的发送单元中,调整发送射束的装置644在其输入端接收来自信道单元的控制装置612的,有关在不同的接收器单元600,602中使用的输入方向的信息,其中接收器单元600,602从移动站接收信号。控制装置612也可以报告由搜寻器单元604检测到的信号的其它输入方向,但是在信号接收中不必使用所有的方向。
调整发送射束的发送单元的装置644控制锁相装置640,锁相装置640根据预定的射束构成函数J×L计算出一个复合加权因子Wij(i=1,...,L;j=1 ,...,J),该加权因子利用L个天线单元产生J个天线射束。除了天线射束的方向和数量之外,装置644通过指示发送功率来控制锁相装置640,其中发送功率被用于各个射束,而且装置644从信道单元的控制装置612那里获得发送功率。
锁相装置640的结构可以类似于上述在接收方向上的锁相装置618,626,634。在锁相装置中,从调制装置624提供的外出信号的数字化(l,Q)样本被L个复合加权因子相乘如下,其中L是天线单元的数量:
V1=∑gJWηi=1,...,L
其中为天线组获取L个复合样本序列。复合倍增也使用一个真实定标因子gj(j=1,...,J),该因子也是从调整装置644获得并能用于每一天线束功率的独立调整,调整装置644也指示要使用的频率以便能够正确设置加权因子Wij。
调整发送上述的装置644根据从信道单元的控制装置获取的信息控制锁相装置640。通过以不同方式修改参数αj和gj(j=1,...,J)则可以许多方式进行调整。例如,可以独立调整用于某些天线射束的发送功率,或者可以使某些天线射束的方向角αj改变给定的角度Δα,或者可以改变所使用的天线射束的数量。通过这些测量可以补偿在无线路径上产生的,诸如衰减的信号质量退化。
在基于本发明的方案中,在给定方向角αj的环境下发送单元606的调整装置644可以一或几个所使用的天线射束的方向偏移一个小角度Δα。通过这种偏移可以减少移动站长时间处于深度衰减状态的可能性。由于天线射束的方向角度在主方向角αj周围连续改变,在无线路径上传播的信号不会连续使用同一通路。
在图10中通过一个关于接收端的模块图说明了在基于本发明的蜂窝无线系统中的一个可能的用户设备。终端设备也包括一个发送端,但为了简单这里不做描述,之所以这样是因为本领域技术人员所知的方式来实现基于本发明的发送功能。终端设备包括一个天线250,该天线接收被提供给射频部分251的信号并把信号放大和转换到中频上。射频部分251的输出端与转换器装置252相连,转换器装置252把信号转换成数字形式。
信号从转换器装置252被提供给一组相关器254,255,其中接收信号和期望扩展码的相关性被计算出来,于是通过期望的扩展码倍增的信号被恢复到其初始频带上以便进行解调。信号也从转换器装置252上被提供给搜寻相关器253,搜寻相关器的功能是从接收的信号中找出用期望的扩展码发送的信号部件的相位。终端设备还包括混合装置256,该装置相关或非相关地混合接收的信号部件。信号258从混合装置那里被提供给终端设备的其它部分。
终端设备也包括控制装置257,该装置控制设备的操作。控制装置257通常由一个信号处理器来实现。搜寻相关器253向控制装置257和接收相关器254,255指示它已发现的信号部件的延迟和强度,接收相关器则与最强的信号同步。搜寻相关器253也测量来自测量表上的基站的信号。控制装置257根据基站的控制更新测量表。
下面描述本发明的第二个最优实施例,其中在CDMA系统中提供对接收信号的模拟锁相。
图11是说明基于本发明第二个最优实施例的设备的例子的模块图。在接收方向上,该设备包括L个天线单元700到704,而在发送方向上该设备包括一组天线单元772到776。在发送接收器中,发送和接收天线可以是相同的,这样,双工过滤被用来彼此分离不同的传输方向。该图给出了用于不同传输方向的不同天线单元。由天线单元构成的天线组可以是线性的,平面的(二维的)或全方向的。天线组用L个单元从各个移动站接收多路径传播信号,该信号来自于几种不同的方向并以不同的方式被加以延迟。
天线单元与一个RX矩阵706相连,通过使矩阵输出708包括K个信号输出,RX矩阵706完成对天线单元接收的模拟信号的锁相,其中每个信号输出均对应于一个由天线射束接收的信号,而天线射束指向预定的信号输入方向。利用当前领域的方案可以实现该矩阵,Butler矩阵就是其中的一种方案,该矩阵是利用无源90度混合和移相器来实现的。用矩阵706产生的天线射束的数量K不必与天线单元的数量L对应。
通过锁定天线接收的信号的相位可以在接收方向上得到天线射束,而锁定通过天线要发送的信号的相位,则可以在发送方向上得到天线射束。所使用的天线射束是固定的,并且方向不变。天线射束的数量依赖于矩阵706的具体实现,可以用期望的角度间隔和期望的宽度设定并构成射束。
在必要时矩阵输出信号708被用在一组低噪声放大器710上,该放大器补偿有线衰减和其它损耗。以这种方式放大的L个信号被提供给射频部分712到716,射频部分把信号向下转换成中频并进行所需要的过滤。可以以一种基于已知技术的方式来实现射频部分。
射频信号被用在转换器装置718到722上面,转换器装置把模拟信号转换成数字样本。利用商用部件以基于已知技术的方式可以进行这种转换。通常,在装置中把信号复合采样成I和Q部件。
通过位于各个信道单元前面的RX开关732,734,730,转换器装置718,720,722的输出信号724,726,728被提供给一组信道单元738,740,742。转换器的所有输出信号被用在所有的RX开关上。每个RX开关均包括K个输入和一或几个被用在相应信道单元上的输出信号。RX开关的功能是根据信道单元的控制把期望的天线射束接收的信号送给信道单元的期望部件。
以下述方式也可以实现上述的接收器结构,即把一或几个上述的部分(天线单元700-704,放大器710,射频部分712-716和转换器装置718-722)集中或分散地定位。在这种情况下,正如本领域的技术人员所看到的,可以按下述方式来改变实现的细节,即在射频部分与一个天线组连在一起的情况下便不需要有放大器710。
下面,将通过图12的模块图来描述在基于本发明第二个实施例的接收器之中的信道单元的结构与操作。信道单元包括一或几个用于解调信号的装置804,806,808,一或几个搜寻器装置802,一个分集混合器608和一个解码器610,图中给出了三个解调装置和一个搜寻器装置,分集混合器的输入包含来自接收器单元的信号,在分集混合器608的输出端可见的信号被接收到解码器610的输入端。
RX开关732的输入In#1到In#K包含K个来自于转换器装置718到722的信号730。信道单元738包含一个搜寻器单元802,象针对第一个实施例的搜寻器单元所描述的那样,搜寻器单元的功能是从多维信号域中找出最佳信号部件。在本实施例中,通过测量RX开关的各个输入上的延迟分布,搜寻器单元802从RX开关的输入中寻找最佳信号部件,其中每个输入对应于一个沿某方向到达的信号部件。测量延迟分布的方式可以和常规分离多路径接收器的搜寻器分支的方式相同。作为测量的结果,搜寻器分支检测最佳信号部件的输入方向和延迟。通过向各个解调装置提供有关期望部件的延迟的信息并使用从RX开关到相应解调装置的信号,搜寻器对应控制解调装置804,806,808与最佳部件同步。
解调装置804,806,808解调给定信号,监视信号延迟和输入方向的变化并在需要时利用RX开关开始接收一个新的天线射束。解调装置的输出信号被用在分集混合器608上,分集混合器解调后的符号并检测被分送的信息。分集混合器的输出信号也被用于解码装置610,该装置解交叉符号并解码信息序列。
上述接收器结构利用模拟锁相实现了基于本发明的方案。在接收方面,通过锁相并从天线射束接收的部件中选出最强的信号部件进行解调,于是产生了一些(K)个固定天线射束。在终端设备移动和信号输入方向改变时,总是选择提供最佳信号强度的天线射束的信号以进行解调。
在基于第二个最优实施例的设备中,在单元802上根据传输延迟计算出终端设备到基站的距离,并且根据计算出的距离和具有已知方向角的天线射束计算出终端设备的位置。根据这种信息,可以估计是否需要更换终端设备的测量表。
下面参照图12查看基于本发明的第二个最优实施例的接收器结构。
用户数据位首先被提供给编码器614,编码器通常用一个卷积码对数据位编码并对编码后的符号进行交叉。所得到的交叉符号被提供给扩展频谱调制器642,该调制器进行常规的调制处理。根据已知技术可以实现上述的所有功能。
在本发明中,接收器实现还包括装置802,该装置根据接收的信号控制针对要分送的信号的模拟锁相。根据已进行的测量,搜寻器单元802知道接收最佳信号部件的方向角和相应的天线射束。搜寻器单元已分配了一组解调装置来接收这些部件。在实际的实现中,可以在搜寻器单元或单独一个控制单元内进行发送端的控制。为了简便,这里只描述第一种情况,但本发明并不仅限于此。不管怎样,在两种情况下本发明的思想是相同的。如上所述,在基于本发明的方案中当向相反的发送方向发送信号时使用检测出的含有好的信号水平的输入方向。
下面根据图11描述发送器部分的实现。发送器包括具有给定数量L的天线单元772,774,776,这些天线单元可以和接收方向上的天线单元相同。天线单元与TX矩阵770相连,该矩阵的功能是模拟锁定要发送到不同天线单元的信号的相位,从而使分集模式的主射束指向期望的方向。TX矩阵的输入包括K个信号756,在D/A转换器758到762中这些信号被转换成模拟形式,而在射频部分764到768中这些模拟信号又被转换成射频并加以放大。正如在有关接收端的描述中所提到的,本领域的技术人员能够理解实际上可以用集中或分开的方式来实现上述部件。
通过使天线提供K个不同方向的天线射束,TX矩阵锁定输入的K个信号的相位,其中天线射束的方向是固定的,而且射束共同覆盖期望的区域。TX矩阵770的实现类似于RX矩阵706的实现,并且可以用Bulter矩阵来实现,其中Bulter矩阵是用无源90度混合和移相器实现的。用矩阵770产生的天线射束的数量K不必与天线单元的数量L对应。
从信道单元738,740,742把来自搜寻器单元的调制数据信号和控制746提供给TX开关矩阵744,接着从TX开关矩阵把信号提供给加法装置754。在图13中会更详细地描述开关矩阵744和加法装置754的操作。
TX开关矩阵包括对应于各个信道单元的TX开关900,902,904,开关的输入包括来自信道单元并将要发送的调制数据信号和来自信道单元的搜寻器单元的控制信号746,748,750。TX开关的输出包括K个输出746a到746i,即和发送天线射束一样多。TX开关的功能是根据信道单元的控制把信号从信道单元接通到正确的发送射束,在发送射束中还加入了从其它信道单元到达和趋向同一射束的信号。根据信道单元的控制,即根据信号所趋向的天线射束,TX开关把输入数据信号引导到一个或几个输出Txout#1到Txout#K上。各输出是经过信号水平加权的二次数字样本。
开关的输出746a到746i被用在加法装置745的K个加法器906到910中的一个上面。各加法器以数字形式把来自不同信道单元并趋向一给定的天线射束的数据信号相加在一起。利用公式2*(log(n)+m)得到输出样本所需的数据位数,其中n是加法器的输入(信道单元)的个数,log是一个以2为底的对数,而m是样本的位数。
如上所述,TX开关的输出756a到756c被用在相应的转换器装置758到762上,并且通过模拟锁相矩阵还被用在天线上。
搜寻器单元802根据已测量的信息选则用于发送的天线射束。
虽然前面针对附图的例子描述了本发明,但是本发明并不仅限于此,在所附权利要求书公开的发明思想的范围内可以进行多种修改。
例如在垂直和水平方向上可以使用天线射束来调整,这样上述(α,τ)域可被理解成一个(α,β,τ)域,其中α是垂直角度,β是水平角度,而τ是延迟。
一种可能是在信道单元中使用相关,非相关或差分相关的调制和解调方法。例如为了能够在移动站进行相关解调,基站可以包括一个额外的作为相位参考的经过扩展编码的信号,其中在各天线射束上没有对该信号进行数据调制。可选地,可以把已知的参考符号用于同样的目的。
本发明的一个可选的实施例包括把信道单元的数字锁相装置618到634放在一个公开的锁相装置模块中,该模块为所有信道单元提供服务。

Claims (15)

1.改进蜂窝无线系统中切换的可靠性的办法,其中在蜂窝无线系统的各个单元中至少包括一个基站(100),该基站与其覆盖范围内的用户设备(102)进行通信,
基站(100)测量各终端设备(102)到基站的距离和来自终端设备的信号相对于基站的方向角,
基站根据终端设备的方向角和距离计算出终端设备在基站的覆盖区域中的位置,
而终端设备则测量基站的信号强度以确定是否需要切换,上述基站被记录在终端设备所维护的相邻基站列表中,其特征在于
根据基站为每一个终端设备计算的位置更新由每一个终端设备(102)维护的相邻基站列表。
2.如权利要求1所述的方法,其特征在于基站(100)以保证从天线组得到的增益在期望方向上最大的方式,利用包含几个单元的一个天线组(500,700-704,772-776),通过锁定接收和发送的信号的相位来发送和接收来自终端设备(102)的信号。
3.如权利要求2所述的方法,其特征在于基站(100)在假定的终端设备(102)的方向角的环境下偏转天线射束的最大增益角度,利用基站所用的天线射束偏转计算终端设备的移动方向,并根据终端设备的移动方向更新由终端设备维护的相邻基站列表。
4.如权利要求1所述的方法,其特征在于由终端设备(102)维护的相邻基站列表总是包含根据终端设备的位置而估测的终端设备最可能移动到的区域所属的基站。
5.如权利要求3所述的方法,其特征在于根据从终端设备接收的信号的方向角和延迟变化来计算终端设备(102)的移动方向。
6.如权利要求5所述的方法,其特征在于根据从终端设备接收的信号的方向角和延迟变化估测终端设备(102)以后的位置。
7.如权利要求1所述的方法,其特征在于基站(100)向基站控制器(188)发送有关在其覆盖区域内的终端设备的位置的信息,基站控制器通过基站(100)更新由终端设备维护的基站列表。
8.如权利要求1所述的方法,其特征在于根据终端设备(102)的位置,通过终端设备移动到基站区域的可能性划分终端设备维护的相邻基站列表中的基站的优先权。
9.如权利要求1所述的方法,其特征在于基站的单元在蜂窝无线系统中被划分成扇区,而终端设备则测试终端设备维护的列表中的扇区的信号强度。
10.如权利要求1所述的方法,其特征在于蜂窝无线系统包括相互重叠的微单元(251-253)和利用锁相的天线组实现的伞形单元(255),而且由一个与伞形单元通信的终端设备(102)维护的相邻基站列表中包含微单元基站。
11.一个蜂窝无线系统,在其各个单元中均至少包括一个与其覆盖区域内的终端设备(102)通信的基站(100),该基站包括
测量各终端设备相对于基站的方向角和距离的装置(612,802),
根据终端设备的方向角和距离计算终端设备在基站覆盖区域内的位置的装置(612,802)
而终端设备则包括维护相邻基站列表的装置,和
测量终端设备维护的列表中的基站信号强度的装置,用来确定是否需要切换,其特征在于系统中的终端设备包括根据终端设备的位置更新由终端设备维护的相邻基站列表的装置。
12.如权利要求11所述的蜂窝无线系统,其特征在于基站包括装置(612),该装置在假定的终端设备方向角的环境下通过测量信号强度并求出信号强度平均值来计算终端设备的移动方向,其中被测量的信号是在不同的天线射束方向上从终端设备那里接收的。
13.如权利要求11所述的蜂窝无线系统,其特征在于基站包括向基站控制器(BSC)发送有关的终端设备的位置和移动方向的信息的装置(612),和根据基站控制器的命令向相应的终端设备发送修改后的各个终端设备的基站列表的装置(606)。
14.如权利要求11所述的蜂窝无线系统,其特征在于系统包括覆盖区域被分成n个扇区(158,160,162)的基站(167),而终端设备(102)维护一个扇区列表,终端设备测试列表中的扇区的功率。
15.如权利要求11所述的蜂窝无线系统,其特征在于蜂窝无线系统包括相互重叠的微单元(251-253)和利用锁相天线组实现的伞形单元(255),并且在终端设备(102)维护的相邻基站列表中包含微单元基站。
CN96190706A 1995-05-24 1996-05-23 越区切换的方法和蜂窝无线系统 Expired - Fee Related CN1080078C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI952529 1995-05-24
FI952529A FI105515B (fi) 1995-05-24 1995-05-24 Menetelmä kanavanvaihdon nopeuttamiseksi sekä solukkoradiojärjestelmä

Publications (2)

Publication Number Publication Date
CN1158208A CN1158208A (zh) 1997-08-27
CN1080078C true CN1080078C (zh) 2002-02-27

Family

ID=8543472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96190706A Expired - Fee Related CN1080078C (zh) 1995-05-24 1996-05-23 越区切换的方法和蜂窝无线系统

Country Status (11)

Country Link
US (1) US5893033A (zh)
EP (1) EP0772950B1 (zh)
JP (1) JPH10503911A (zh)
CN (1) CN1080078C (zh)
AT (1) ATE216174T1 (zh)
AU (1) AU703201B2 (zh)
DE (1) DE69620543T2 (zh)
ES (1) ES2173296T3 (zh)
FI (1) FI105515B (zh)
NO (1) NO970298L (zh)
WO (1) WO1996038015A1 (zh)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98171C (fi) * 1995-05-24 1997-04-25 Nokia Telecommunications Oy Menetelmä pilottikanavien lähettämiseksi ja solukkoradiojärjestelmä
FI105513B (fi) * 1995-05-24 2000-08-31 Nokia Networks Oy Vastaanottomenetelmä sekä vastaanotin
FI106668B (fi) * 1995-05-24 2001-03-15 Nokia Networks Oy Tukiasemalaitteisto sekä menetelmä antennikeilan suuntaamiseksi
FI110645B (fi) * 1995-06-30 2003-02-28 Nokia Corp Vastaanottomenetelmä ja tukiasemavastaanotin
FI107851B (fi) * 1996-05-22 2001-10-15 Nokia Networks Oy Menetelmä antennikeilan valitsemiseksi, tukiasema ja solukkoradiojärjestelmä
FI105596B (fi) * 1996-05-27 2000-09-15 Nokia Networks Oy Menetelmä matkaviestimen sijainnin selvittämiseksi
US6493561B1 (en) 1996-06-24 2002-12-10 Fujitsu Limited Mobile communication system enabling efficient use of small-zone base stations
JP3204111B2 (ja) * 1996-08-28 2001-09-04 松下電器産業株式会社 指向性制御アンテナ装置
US6819927B1 (en) 1996-10-18 2004-11-16 Matsushita Electric Industrial Co., Ltd. Communication method for use by a mobile station in a mobile communication system of CDMA
JP3369063B2 (ja) * 1996-10-18 2003-01-20 松下電器産業株式会社 移動通信端末
FR2755565B1 (fr) * 1996-11-07 1999-01-08 France Telecom Procede d'emission par une station de base equipee d'une antenne a plusieurs capteurs vers un mobile
WO1998036471A1 (en) * 1997-02-13 1998-08-20 Nokia Telecommunications Oy Method and apparatus for directional radio communication
US6393303B1 (en) 1997-02-13 2002-05-21 Nokia Telecommunications Oy Method and apparatus for directional radio communication
DE69727245T2 (de) 1997-02-13 2004-11-18 Nokia Corp. Verfahren und vorrichtung zur gerichteten funkübertragung
FI970754A (fi) * 1997-02-21 1998-08-22 Nokia Telecommunications Oy Menetelmä häiriötason estimoimiseksi radiojärjestelmässä
US6353601B1 (en) * 1997-03-05 2002-03-05 Nokia Telecommunications Oy Method for selecting a signal, and a cellular radio system
US6999766B1 (en) * 1997-05-19 2006-02-14 Qualcomm Incorporated Method and apparatus for optimization of a cellular network
US6512934B2 (en) * 1997-06-02 2003-01-28 Ntt Mobile Communications Network, Inc. Adaptive array antenna
JP3585701B2 (ja) * 1997-06-12 2004-11-04 富士通株式会社 セルラ移動通信システム無線基地局
FI105307B (fi) * 1997-06-18 2000-07-14 Nokia Networks Oy Kanavanvaihto tukiasemassa
SE509776C2 (sv) 1997-07-04 1999-03-08 Ericsson Telefon Ab L M Anordning och förfarande vid antennlobsstyrning i radiokommunikationssystem
US6400966B1 (en) * 1997-10-07 2002-06-04 Telefonaktie Bolaget Lm Ericsson (Publ) Base station architecture for a mobile communications system
US6275482B1 (en) * 1997-10-28 2001-08-14 Qwest Communications International Inc. Combined angular, spatial, and temporal diversity for mobile radio system
US6694154B1 (en) * 1997-11-17 2004-02-17 Ericsson Inc. Method and apparatus for performing beam searching in a radio communication system
US6580910B1 (en) * 1997-12-19 2003-06-17 Telefonaktiebolaget L M Ericsson (Publ) Method and system for improving handoffs in cellular mobile radio systems
KR100269861B1 (ko) * 1997-12-20 2000-10-16 김영환 인트라 주파수간 하드 핸드오프 시점 결정방법(the method for decide the timing of a intra-frequency hard hand off)
JP3156768B2 (ja) * 1998-01-21 2001-04-16 日本電気株式会社 セルラ基地局およびそれに搭載される位置標定装置
JPH11215538A (ja) * 1998-01-26 1999-08-06 Matsushita Electric Ind Co Ltd 移動局装置及び基地局装置、並びに移動通信システム
JP3406831B2 (ja) * 1998-03-19 2003-05-19 富士通株式会社 無線基地局のアレーアンテナシステム
FI980725A (fi) * 1998-03-31 1999-10-01 Nokia Networks Oy Menetelmä parantaa radioyhteyden laatua solukkoradioverkossa
JPH11298400A (ja) * 1998-04-10 1999-10-29 Nec Saitama Ltd 適応アンテナの指向性制御回路及び指向性制御方法
US6438376B1 (en) * 1998-05-11 2002-08-20 Nortel Networks Limited Wireless communications management and control system using mobile station position and movement information
US6034969A (en) * 1998-05-26 2000-03-07 Motorola, Inc. Method and system for cross frame transmit combining of transmit signals
US6161015A (en) * 1998-05-28 2000-12-12 Motorola, Inc. Method for improving communication coverage in multi-cell communication systems using location information
US6201969B1 (en) * 1998-06-02 2001-03-13 Lucent Technologies Inc. Control of handoff in CDMA cellular systems
US6253094B1 (en) * 1998-07-09 2001-06-26 Airnet Communications Corporation Sectorized cell having non-redundant broadband processing unit
US6989797B2 (en) * 1998-09-21 2006-01-24 Ipr Licensing, Inc. Adaptive antenna for use in wireless communication systems
US6404386B1 (en) * 1998-09-21 2002-06-11 Tantivy Communications, Inc. Adaptive antenna for use in same frequency networks
WO2000028757A1 (en) * 1998-11-11 2000-05-18 Nokia Networks Oy Method and apparatus for directional radio communication
JP3196747B2 (ja) * 1998-12-18 2001-08-06 三菱マテリアル株式会社 移動無線機、基地局無線機、及び、その記録媒体
JP3001570B1 (ja) * 1999-02-22 2000-01-24 埼玉日本電気株式会社 適応アンテナ指向性制御方法及びそのシステム
US6259918B1 (en) 1999-02-26 2001-07-10 Telefonaktiebolaget Lm (Publ) Preservation of cell borders at hand-off within a smart antenna cellular system
US6240290B1 (en) * 1999-03-04 2001-05-29 Harris Corporation Base station hand-off mechanism for cellular communication system
EP1073305A1 (en) * 1999-07-29 2001-01-31 Alcatel A method of transferring an established call between a mobile terminal and a first base station in a cellular communications network to a second base station of the network
US6587689B1 (en) * 1999-08-19 2003-07-01 Texas Instruments Incorporated Multi-sensor assisted cellular handoff technique
US7161912B1 (en) * 1999-10-18 2007-01-09 Lucent Technologies Inc. Multi-carrier/multi-sector channel pooling in a wireless communication system base station
US6788661B1 (en) * 1999-11-12 2004-09-07 Nikia Networks Oy Adaptive beam-time coding method and apparatus
JP3416597B2 (ja) * 1999-11-19 2003-06-16 三洋電機株式会社 無線基地局
GB9927517D0 (en) * 1999-11-23 2000-01-19 Motorola Ltd Adaptive antenna and network incorporating same
WO2001039320A1 (en) * 1999-11-24 2001-05-31 Metawave Communications Corporation Remote stations with smart antenna systems and method for controlling beam directions
CA2325644A1 (en) * 1999-11-24 2001-05-24 Lucent Technologies Inc. Network enhancement by utilizing geolocation information
JP2001203617A (ja) * 2000-01-18 2001-07-27 Matsushita Electric Ind Co Ltd アレーアンテナ基地局装置およびアレーアンテナ受信方法
CN1107358C (zh) * 2000-02-24 2003-04-30 信息产业部电信科学技术研究院 分布式智能天线系统
JP3461150B2 (ja) * 2000-03-01 2003-10-27 双葉電子工業株式会社 スペースホッピング受信方式と受信電波推定方法
US8467821B1 (en) 2000-08-16 2013-06-18 International Business Machines Corporation System and method for anticipating transmit power requirements in wireless mobile units communicating with a base station
US6954644B2 (en) 2000-12-04 2005-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
US6980803B2 (en) * 2000-12-04 2005-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Using statistically ascertained position for starting synchronization searcher during diversity handover
GB0102316D0 (en) * 2001-01-30 2001-03-14 Koninkl Philips Electronics Nv Radio communication system
US7020463B2 (en) * 2001-03-09 2006-03-28 The Directv Group, Inc. Methodology for mobile user terminals in broadband systems
US7110440B2 (en) 2001-03-14 2006-09-19 Mercury Computer Systems, Inc. Wireless communications systems and methods for multiple processor based multiple user detection
US7376175B2 (en) 2001-03-14 2008-05-20 Mercury Computer Systems, Inc. Wireless communications systems and methods for cache enabled multiple processor based multiple user detection
US7103382B2 (en) * 2001-07-10 2006-09-05 Kyocera Wireless Corp. System and method for receiving and transmitting information in a multipath environment
TW595857U (en) * 2001-11-29 2004-06-21 Us 091219345
WO2003063526A1 (fr) * 2002-01-18 2003-07-31 Fujitsu Limited Procede et dispositif pour commander la retroaction dans la diversite de transmission en boucle fermee
KR20050103315A (ko) * 2002-07-19 2005-10-28 인터디지탈 테크날러지 코포레이션 수신 다이버시티를 갖는 블록 전송을 위한 그룹형 직렬간섭 제거
US8213994B2 (en) * 2002-08-07 2012-07-03 Interdigital Technology Corporation Mobile communications system and method for providing common channel coverage using beamforming antennas
US8861466B2 (en) 2002-08-07 2014-10-14 Interdigital Technology Corporation Mobile communication system and method for providing common channel coverage using beamforming antennas
TW200507671A (en) * 2002-09-27 2005-02-16 Interdigital Tech Corp Mobile communications system and method for providing mobile unit handover in wireless communication systems that employ beamforming antennas
US7742788B2 (en) * 2002-10-01 2010-06-22 Motorola, Inc. Method and apparatus for using switched multibeam antennas in a multiple access communication system
US7453860B2 (en) * 2002-10-15 2008-11-18 Motorola, Inc. Scheduling method for supplemental channel resource
US7295811B2 (en) * 2004-02-05 2007-11-13 Interdigital Technology Corporation Method for performing measurements for handoff of a mobile unit operating with a switched beam antenna in a wireless communication system, and corresponding system
US7274936B2 (en) * 2004-02-06 2007-09-25 Interdigital Technology Corporation Method and apparatus for measuring channel quality using a smart antenna in a wireless transmit/receive unit
US7359718B2 (en) * 2004-04-30 2008-04-15 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Location determination and location tracking in wireless networks
EP2421296B1 (en) * 2005-02-14 2020-06-17 Mitsubishi Electric Corporation Frequency sharing method
JP4600079B2 (ja) * 2005-02-18 2010-12-15 沖電気工業株式会社 無線通信装置及び無線通信ネットワークシステム
JP4374334B2 (ja) * 2005-08-16 2009-12-02 Okiセミコンダクタ株式会社 無線端末装置の位置情報入手方法
KR20070060796A (ko) * 2005-12-09 2007-06-13 한국전자통신연구원 Ofdma-tdma 기반 휴대인터넷 시스템에서 액티브세트의 관리 기법
US7314786B1 (en) * 2006-06-16 2008-01-01 International Business Machines Corporation Metal resistor, resistor material and method
JP5186748B2 (ja) * 2006-09-29 2013-04-24 富士通株式会社 無線通信装置および無線通信方法
US20080165736A1 (en) * 2007-01-05 2008-07-10 Shengjie Zhao Macro Diversity Handover and Fast Access Station Switching in Wireless Multi-User Multi-Hop Relay Networks
CN101370249B (zh) * 2007-08-15 2012-06-06 电信科学技术研究院 用户终端移动区域列表的分配方法及装置
EP2227056B1 (en) 2009-03-02 2019-04-24 Alcatel Lucent Method for enhancing the handover of a mobile station and base station for carrying out the method
JP2011130252A (ja) * 2009-12-18 2011-06-30 Fujitsu Ltd 基地局装置及び通信方法
CN103119999A (zh) * 2010-10-06 2013-05-22 索尼爱立信移动通讯有限公司 对其位置进行低功率识别的移动装置及方法
CN102045797B (zh) * 2010-12-14 2013-03-06 迈普通信技术股份有限公司 车辆高速移动环境中加速小区切换的方法及系统
KR101728371B1 (ko) * 2011-01-07 2017-04-19 삼성전자주식회사 분산 안테나 시스템에서 고속의 이동 단말을 지원하기 위한 방법 및 장치
US8494533B2 (en) * 2011-07-28 2013-07-23 Telefonaktiebolaget L M Ericsson (Publ) Beamforming for cell edge capacity improvement in a heterogeneous network
KR20130018079A (ko) * 2011-08-10 2013-02-20 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법
KR101955521B1 (ko) 2011-10-17 2019-03-07 한국전자통신연구원 통신 시스템에서 데이터 송수신 장치 및 방법
KR101933445B1 (ko) * 2011-10-17 2018-12-28 한국전자통신연구원 통신 시스템에서 데이터 송수신 장치 및 방법
US9264912B2 (en) 2012-01-19 2016-02-16 Telefonaktiebolaget L M Ericsson (Publ) Fractional frequency re-use and beamforming in relay nodes of a heterogeneous network
KR101904951B1 (ko) 2013-11-13 2018-10-08 삼성전자주식회사 무선 통신 시스템에서 핸드오버를 위한 타겟 셀 검색 장치 및 방법
KR102128400B1 (ko) * 2014-01-16 2020-06-30 한국전자통신연구원 무선전송 장치의 전파 빔 방향 조정 방법
JP6415688B2 (ja) * 2014-12-15 2018-10-31 華為技術有限公司Huawei Technologies Co.,Ltd. 高周波通信を実施するための処理方法及び装置、並びにデバイス
CN107592977B (zh) * 2015-05-08 2021-04-02 索尼公司 对波束形成进行控制的方法和无线电通信装置
EP3345425B1 (en) 2015-09-02 2019-05-29 Telefonaktiebolaget LM Ericsson (publ) Radio network nodes and methods for enabling mobility between said nodes
US10403960B2 (en) * 2016-03-31 2019-09-03 Dell Products L.P. System and method for antenna optimization
CN108736161B (zh) 2017-04-14 2021-10-01 京东方科技集团股份有限公司 移动设备以及移动设备定向天线调节方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002105A1 (en) * 1990-07-25 1992-02-06 British Telecommunications Public Limited Company Location determination and handover in mobile radio systems
WO1993012590A1 (en) * 1991-12-12 1993-06-24 Arraycomm, Incorporated Spatial division multiple access wireless communication systems
US5293642A (en) * 1990-12-19 1994-03-08 Northern Telecom Limited Method of locating a mobile station
WO1995009513A1 (en) * 1993-09-30 1995-04-06 Koninklijke Ptt Nederland N.V. Method for determining base station locations, and device for applying the method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215932A (en) * 1988-03-26 1989-09-27 Gec Traffic Automation Radio position finding system
EP0530165A3 (en) * 1991-08-23 1993-08-11 Telefonaktiebolaget L M Ericsson Mobile station-controlled handoff
US5327575A (en) * 1992-03-23 1994-07-05 Motorola, Inc. Directional handover control in digital mobile radio systems employing MAHO
US5513380A (en) * 1992-09-23 1996-04-30 Siemens Aktiengesellschaft Mobile speed dependent handover techniques in hierarchical mobile radio networks
EP0593822B1 (en) * 1992-10-19 1996-11-20 Nortel Networks Corporation Base station antenna arrangement
US5432843A (en) * 1993-08-02 1995-07-11 Motorola Inc. Method of performing handoff in a cellular communication system
US5509051A (en) * 1993-09-09 1996-04-16 Hughes Aircraft Company Prioritization of neighboring cells
US5640676A (en) * 1995-05-11 1997-06-17 Motorola, Inc. Method for generating a handoff candidate list

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002105A1 (en) * 1990-07-25 1992-02-06 British Telecommunications Public Limited Company Location determination and handover in mobile radio systems
US5293642A (en) * 1990-12-19 1994-03-08 Northern Telecom Limited Method of locating a mobile station
WO1993012590A1 (en) * 1991-12-12 1993-06-24 Arraycomm, Incorporated Spatial division multiple access wireless communication systems
WO1995009513A1 (en) * 1993-09-30 1995-04-06 Koninklijke Ptt Nederland N.V. Method for determining base station locations, and device for applying the method

Also Published As

Publication number Publication date
EP0772950A1 (en) 1997-05-14
WO1996038015A1 (en) 1996-11-28
FI952529A (fi) 1996-11-25
FI105515B (fi) 2000-08-31
CN1158208A (zh) 1997-08-27
NO970298L (no) 1997-03-20
DE69620543T2 (de) 2002-10-02
JPH10503911A (ja) 1998-04-07
AU5820796A (en) 1996-12-11
AU703201B2 (en) 1999-03-18
DE69620543D1 (de) 2002-05-16
NO970298D0 (no) 1997-01-23
US5893033A (en) 1999-04-06
ES2173296T3 (es) 2002-10-16
EP0772950B1 (en) 2002-04-10
FI952529A0 (fi) 1995-05-24
ATE216174T1 (de) 2002-04-15

Similar Documents

Publication Publication Date Title
CN1080078C (zh) 越区切换的方法和蜂窝无线系统
CN1147061C (zh) 基站设备以及控制天线射束方向的方法
CN1152484C (zh) 基站设备以及控制天线射束的方法
CN1099169C (zh) 一种接收方法和一种接收机
CN1088947C (zh) 发送导频信道的方法和蜂窝无线系统
CN1097362C (zh) 提供角度分集的方法,以及基站设备
US7639984B2 (en) Wireless communication system
CN1663133B (zh) 分时双工系统中天线适应
EP0926843B1 (en) Method and system for operating a cellular system having beamforming antennas
CN100459727C (zh) 移动通信系统中的通信控制方法及移动站
EP0772918B1 (en) Method for transmitting a pilot signal, and a cellular radio system
US7310537B2 (en) Communication on multiple beams between stations
EP1537676B1 (en) Vertical dynamic beam-forming
CN1305230C (zh) 用于提高码分多址通信容量的实用的空间-时间无线电方法
US6985466B1 (en) Downlink signal processing in CDMA systems utilizing arrays of antennae
KR100323567B1 (ko) 무선 통신 시스템에서 트래픽 채널을 최적화하기 위한 방법 및그 시스템
EP1068754B1 (en) Communication system with a beamformed control channel and method of system control
KR20060119986A (ko) 무선 송/수신 유닛에서 지향성 빔 안테나를 이용하기 위한방법 및 장치
JP2005531987A (ja) セクタ化されたセルのカバレージを効率よく提供するシステム
US8831684B2 (en) Base transceiver station with radiation beam steering and active antenna
EP1453331A2 (en) Radio communication method and base station
CN1413039A (zh) 移动通信系统中的信号路径搜索方法及其设备
CN1488205A (zh) 无线接收装置和定向接收方法
EP1069706B1 (en) Radio communications apparatus and method with a steerable directional beam antenna
KR19990036104A (ko) 셀 방식의 jd-cdma 무선 시스템에서의 공통 채널 간섭을 감소시키기 위한 방법 및 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee