CN108002364B - 透明导电层的制备方法 - Google Patents
透明导电层的制备方法 Download PDFInfo
- Publication number
- CN108002364B CN108002364B CN201610942312.3A CN201610942312A CN108002364B CN 108002364 B CN108002364 B CN 108002364B CN 201610942312 A CN201610942312 A CN 201610942312A CN 108002364 B CN108002364 B CN 108002364B
- Authority
- CN
- China
- Prior art keywords
- carbon nanotubes
- nanotube film
- transparent conductive
- conductive layer
- carbon nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 121
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 121
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 111
- 239000002238 carbon nanotube film Substances 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 6
- 229910021404 metallic carbon Inorganic materials 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 238000001020 plasma etching Methods 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 claims description 2
- 239000005416 organic matter Substances 0.000 claims 1
- 239000002071 nanotube Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0036—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/20—Changing the shape of the active layer in the devices, e.g. patterning
- H10K71/231—Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/621—Providing a shape to conductive layers, e.g. patterning or selective deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2813—Scanning microscopes characterised by the application
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/32056—Deposition of conductive or semi-conductive organic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/62—Electrodes ohmically coupled to a semiconductor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Non-Insulated Conductors (AREA)
Abstract
一种透明导电层的制备方法,其包括以下步骤:提供一碳纳米管膜,该碳纳米管膜包括多个碳纳米管;提供一导电基底,该导电基底上设置一层绝缘层;将所述碳纳米管膜设置在所述绝缘层上;将碳纳米管膜放置在扫描电镜下,调整扫描电镜的加速电压为5~20千伏,驻留时间为6~20微秒,放大倍数为1万~10万倍,采用扫描电镜对所述碳纳米管膜拍摄照片;获得碳纳米管膜的照片,照片中碳纳米管分布在衬底上,比衬底颜色浅的碳纳米管为金属型碳纳米管,比衬底颜色深的碳纳米管为半导体型碳纳米管;按照和照片相同的比例,在实物上相同的位置对半导体型的碳纳米管进行标识,并除去半导体型的碳纳米管。
Description
技术领域
本发明涉及一种透明导电层的制备方法,尤其设置一种基于碳纳米管的透明导电层的制备方法。
背景技术
碳纳米管膜作为透明导电层,被越来越多的领域应用。现有技术中,碳纳米管膜通过一定方法获得之后,便直接拿来用作透明导电层。然而,由于碳纳米管可以分为金属型和半导体型两种类型,半导体型的碳纳米管导电性能差,因此,在采用碳纳米管膜作为透明导电层时,碳纳米管膜中的半导体型的碳纳米管影响了透明导电层的导电性能。因此,采用传统方法获得的碳纳米管透明导电膜的导电性能不好,需要进一步改善。
发明内容
有鉴于此,确有必要提供一种透明导电层的制备方法,该透明导电层的制备方法可以克服以上缺点。
一种透明导电层的制备方法,其包括以下步骤:提供一碳纳米管膜,该碳纳米管膜包括多个碳纳米管;提供一导电基底,该导电基底上设置一层绝缘层,将所述碳纳米管膜设置在所述绝缘层上;将碳纳米管膜放置在扫描电镜下,调整扫描电镜的加速电压为5~20千伏,驻留时间为6~20微秒,放大倍数为1万~10万倍,采用扫描电镜对所述碳纳米管膜拍摄照片;获得碳纳米管膜的照片,照片中碳纳米管分布在衬底上,比衬底颜色浅的碳纳米管为金属型碳纳米管,比衬底颜色深的碳纳米管为半导体型碳纳米管;按照和照片相同的比例,在实物上相同的位置对半导体型的碳纳米管进行标识,并除去半导体型的碳纳米管。
相较于现有技术,本发明所提供的透明导电层的制备方法中,包括一除去半导体型碳纳米管的步骤,使得透明导电层中的碳纳米管均为金属型碳纳米管,因此,获得的透明导电层的导电性能良好。
附图说明
图1为本发明第一实施例提供的透明导电层的制备方法的流程示意图。
图2为本发明第一实施例提供的碳纳米管类型的判断方法所获得的碳纳米管的照片。
图3为图2的示意图。
图4为现有技术中,采用扫描电镜获得的碳纳米管照片。
图5为图4的示意图。
主要元件符号说明
无
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图对本发明的提供的透明导电层的制备方法进一步的详细说明。
请参阅图1,本发明第一实施例提供透明导电层的制备方法,其包括以下步骤:
S1:提供一碳纳米管膜,该碳纳米管膜包括多个碳纳米管;
S2:提供一导电基底,该导电基底上设置一层绝缘层,将碳纳米管膜设置于所述绝缘层上;
S3:将碳纳米管膜放置在扫描电镜下,调整扫描电镜的加速电压为5~20千伏,驻留时间为6~20微秒,放大倍数为1万~10万倍,采用扫描电镜对所述碳纳米管膜拍摄照片;
S4:获得碳纳米管膜的照片,照片中碳纳米管分布在衬底上,比衬底颜色浅的碳纳米管为金属型碳纳米管,比衬底颜色深的碳纳米管为半导体型碳纳米管;以及
S5:按照和照片相同的比例,在实物上相同的位置对半导体型的碳纳米管进行标识,并除去半导体型的碳纳米管。
在步骤S1中,所述碳纳米管膜包括多个碳纳米管。该碳纳米管可以为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。该碳纳米管可以为金属型或者半导体型。碳纳米管的直径不限,可以为0.5纳米~150纳米,在某些实施例中,碳纳米管的直径可以为1纳米~10纳米。所述多个碳纳米管的排列方向不限,可以交叉排列或平行排列。本实施例中,碳纳米管膜中的多个碳纳米管相互平行,并且平行于绝缘层的表面。
在步骤S2中,所述导电基底的材料不限,只要是导电材料即可,可以为金属、导电有机物或掺杂的导电材料。本实施例中,选用掺杂的硅作为导电基底材料。所述绝缘层的材料为绝缘材料,可以为氧化物或者高分子材料。本实施例中,选用氧化硅材料。所述绝缘层的厚度为50-300纳米。所述碳纳米管膜设置于绝缘层上之后,碳纳米管膜中的碳纳米管平行于绝缘层的表面。
在步骤S3中,优选地,加速电压为15-20千伏,驻留时间为10-20微秒。本实施例中,加速电压为10千伏,驻留时间为20微秒,放大倍数为2万倍。
在步骤S4中,获得碳纳米管膜的照片如图2所示,其示意图如图3所示。图2/图3中包括衬底以及形成在衬底上的碳纳米管的影像。从图2/图3可以看出,一部分碳纳米管的颜色比衬底的颜色浅,一部分碳纳米管的颜色比衬底的颜色深。比衬底颜色浅的碳纳米管为金属型碳纳米管;比衬底颜色深的碳纳米管为半导体型碳纳米管。
本发明所提供的透明导电层的制备方法中,采用扫描电镜对碳纳米管膜中的碳纳米管进行区分,对比现有技术中采用扫描电镜表征碳纳米管的方法所获得的碳纳米管的照片图4/图5,和采用本发明实施例区分碳纳米管类型的方法所获得的碳纳米管照片图2/图3,可以得出以下区别:
第一,采用传统方法获得的碳纳米管扫描电镜照片中,碳纳米管的导电性能与照片中的颜色有关,颜色越浅,导电性能越好,但是,碳纳米管的颜色都是比衬底的颜色浅。当照片中同时存在金属型碳纳米管和半导体型碳纳米管时,对于处于中间色的碳纳米管,如灰色的碳纳米管,在判断这些碳纳米管的种类时,常会发生错误。因此,传统的扫描电镜区分碳纳米管的方法在辨识碳纳米管种类时,准确度不够高,常常会出现误判或者难以判断。而采用本发明实施例所获得的碳纳米管照片中,金属型碳纳米管比衬底的颜色浅,半导体型的碳纳米管比衬底的颜色深,因此在判断碳纳米管属于金属型还是半导体型时,便可以一目了然。
第二,采用传统方法获得的碳纳米管扫描电镜照片中,由于无论金属型还是半导体型的碳纳米管,在照片中显示的颜色均比衬底颜色浅,当照片中只存在一种类型的碳纳米管时,难以区分照片中的碳纳米管是金属型还是半导体型。而采用本发明所提供的碳纳米管区分方法所获得的碳纳米管照片中,金属型碳纳米管比衬底的颜色浅,半导体型的碳纳米管比衬底的颜色深,即使照片中只存在一种类型的碳纳米管,也可以快速区分其类型。
第三,相对于图2/图3,图4/图5的对比度更高,视觉上更容易观察碳纳米管,而且照片比较美观,而本发明实施例所获得的扫描电镜照片图2中,分辨率相对较低,照片也不够美观,所以现有技术中均是采用低加速电压对碳纳米管进行表征和区分。但是现有技术中区分碳纳米管类型的方法所获得的照片难以准确地区分碳纳米管的种类。本发明提供的区分碳纳米管类型的方法,能够快速而准确的判断碳纳米管的种类,克服了技术偏见。
第四,相对于图4/图5,图2/图3中碳纳米管成像的宽度较小,因此,对于密度较高的多个碳纳米管,本发明所提供的碳纳米管类型的判断方法更加适合。
步骤S5的具体步骤可以为:
S51:在照片上建立一坐标系,并读出半导体型碳纳米管的具体坐标值;
S52:按照和照片相同的比例,在实体碳纳米管膜上建立坐标系,根据半导体型碳纳米管的坐标值标识出半导体型的碳纳米管,并将半导体型的碳纳米管除去。
本实施例中,用电子束曝光的方法,将该金属型的碳纳米管进行保护,将半导体型的碳纳米管露出,采用等离子体刻蚀的方法将半导体型的碳纳米管去除。
本发明所提供的透明导电层的制备方法由于采用了上述方法区分碳纳米管膜中的碳纳米管,因此,可以准确快速的判断出碳纳米管的类别,从而除去半导体型的碳纳米管,得到仅包括金属型碳纳米管的透明导电层,因此,制备出的透明导电层的导电性好。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
Claims (10)
1.一种透明导电层的制备方法,其包括以下步骤:
提供一碳纳米管膜,该碳纳米管膜包括多个碳纳米管;
提供一导电基底,该导电基底上设置一层绝缘层,将所述碳纳米管膜设置在所述绝缘层上;
将碳纳米管膜放置在扫描电镜下,调整扫描电镜的加速电压为5~20千伏,驻留时间为6~20微秒,放大倍数为1万~10万倍,采用扫描电镜对所述碳纳米管膜拍摄照片;
获得碳纳米管膜的照片,照片中碳纳米管分布在衬底上,比衬底颜色浅的碳纳米管为金属型碳纳米管,比衬底颜色深的碳纳米管为半导体型碳纳米管;
按照和照片相同的比例,在实物上相同的位置对半导体型的碳纳米管进行标识,并除去半导体型的碳纳米管。
2.如权利要求1所述的透明导电层的制备方法,其特征在于,所述导电基底的材料为金属、导电有机物或掺杂的导电材料。
3.如权利要求1所述的透明导电层的制备方法,其特征在于,所述绝缘层的材料为氧化物或者高分子材料。
4.如权利要求1所述的透明导电层的制备方法,其特征在于,所述绝缘层的厚度为50-300纳米。
5.如权利要求1所述的透明导电层的制备方法,其特征在于,所述碳纳米管膜包括多根碳纳米管,该多根碳纳米管包括金属型碳纳米管和半导体型碳纳米管。
6.如权利要求1所述的透明导电层的制备方法,其特征在于,所述碳纳米管膜包括多根碳纳米管,所述多根碳纳管平行于绝缘层的表面。
7.如权利要求1所述的透明导电层的制备方法,其特征在于,所述扫描电镜的加速电压为15-20千伏。
8.如权利要求1所述的透明导电层的制备方法,其特征在于,所述驻留时间为10-20微秒。
9.如权利要求1所述的透明导电层的制备方法,其特征在于,所述按照和照片相同的比例,在实物上相同的位置对半导体型的碳纳米管进行标识的步骤包括:在照片上建立一坐标系,并读出半导体型碳纳米管的具体坐标值;按照和照片相同的比例,在实体碳纳米管膜上建立坐标系,根据半导体型碳纳米管的坐标值标识出半导体型的碳纳米管。
10.如权利要求1所述的透明导电层的制备方法,其特征在于,所述除去半导体型的碳纳米管的步骤包括:用电子束曝光的方法,将该金属型的碳纳米管进行保护,将半导体型的碳纳米管露出,采用等离子体刻蚀的方法将半导体型的碳纳米管去除。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610942312.3A CN108002364B (zh) | 2016-10-31 | 2016-10-31 | 透明导电层的制备方法 |
TW105138579A TWI616899B (zh) | 2016-10-31 | 2016-11-24 | 透明導電層的製備方法 |
US15/662,251 US10121564B2 (en) | 2016-10-31 | 2017-07-27 | Method for making transparent conductive layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610942312.3A CN108002364B (zh) | 2016-10-31 | 2016-10-31 | 透明导电层的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108002364A CN108002364A (zh) | 2018-05-08 |
CN108002364B true CN108002364B (zh) | 2019-12-17 |
Family
ID=62021791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610942312.3A Active CN108002364B (zh) | 2016-10-31 | 2016-10-31 | 透明导电层的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10121564B2 (zh) |
CN (1) | CN108002364B (zh) |
TW (1) | TWI616899B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220084777A1 (en) * | 2018-12-31 | 2022-03-17 | Asml Netherlands B.V. | Apparatus for obtaining optical measurements in a charged particle apparatus |
CN113120881B (zh) * | 2020-01-15 | 2022-10-18 | 清华大学 | 半导体型碳纳米管的获取方法 |
CN113120882B (zh) * | 2020-01-15 | 2022-10-18 | 清华大学 | 金属型碳纳米管的获取方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI364058B (en) * | 2005-11-28 | 2012-05-11 | Megica Corp | Cabon allotropy of circuit structure and fabrication method thereof |
CN101009222A (zh) * | 2007-01-26 | 2007-08-01 | 北京大学 | 一种制备碳纳米管电子器件的方法 |
CN101308889B (zh) * | 2007-05-16 | 2010-08-18 | 中国科学院半导体研究所 | 提高半导体型碳纳米管发光效率的方法 |
TW200902437A (en) * | 2007-07-06 | 2009-01-16 | Kuender & Co Ltd | Sorting method of single-walled carbon nanotubes |
EP2053495A3 (en) * | 2007-10-23 | 2011-04-27 | Tsinghua University | Touch panel, method for making the same, and display device adopting the same |
CN102019224B (zh) * | 2010-09-29 | 2013-01-16 | 中国科学院苏州纳米技术与纳米仿生研究所 | 金属性和半导体性碳纳米管的分离方法 |
CN103482607A (zh) * | 2013-10-08 | 2014-01-01 | 上海理工大学 | 一种半导体型碳纳米管的富集方法 |
-
2016
- 2016-10-31 CN CN201610942312.3A patent/CN108002364B/zh active Active
- 2016-11-24 TW TW105138579A patent/TWI616899B/zh active
-
2017
- 2017-07-27 US US15/662,251 patent/US10121564B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108002364A (zh) | 2018-05-08 |
TW201818430A (zh) | 2018-05-16 |
US10121564B2 (en) | 2018-11-06 |
TWI616899B (zh) | 2018-03-01 |
US20180122530A1 (en) | 2018-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bauer et al. | Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits | |
CN108002364B (zh) | 透明导电层的制备方法 | |
Pacakova et al. | Mastering the wrinkling of self-supported graphene | |
Hong et al. | Monolithic integration of arrays of single-walled carbon nanotubes and sheets of graphene | |
CN108017048B (zh) | 半导体层的制备方法 | |
CN108023016B (zh) | 薄膜晶体管的制备方法 | |
CN108020573B (zh) | 区分碳纳米管类型的方法 | |
Clericò et al. | Electron beam lithography and its use on 2D materials | |
Neubeck et al. | Scanning probe lithography on graphene | |
Mackenzie et al. | Graphene antidot lattice transport measurements | |
CN108020572B (zh) | 碳纳米管的表征方法 | |
Thodkar et al. | Probing the Intrinsic Strain in Suspended Graphene Films Using Electron and Optical Microscopy | |
JP7060742B1 (ja) | 物性分析方法、物性分析試料及びその作製方法 | |
CN100437120C (zh) | 单根一维纳米材料的测试电极的制作方法 | |
Henrichsen et al. | Graphene electrodes for n-type organic field-effect transistors | |
CN105699702B (zh) | 一种测量石墨烯与金属表面间距的方法 | |
Song et al. | Influence of an Electron Beam Exposure on the Surface Plasmon Resonance of Gold Nanoparticles | |
Logan | Fabrication of carbon nanoscrolls from patterned CVD-grown graphene | |
CN105023911A (zh) | 标记分段方法及应用其的半导体结构制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |