TWI364058B - Cabon allotropy of circuit structure and fabrication method thereof - Google Patents

Cabon allotropy of circuit structure and fabrication method thereof Download PDF

Info

Publication number
TWI364058B
TWI364058B TW095143682A TW95143682A TWI364058B TW I364058 B TWI364058 B TW I364058B TW 095143682 A TW095143682 A TW 095143682A TW 95143682 A TW95143682 A TW 95143682A TW I364058 B TWI364058 B TW I364058B
Authority
TW
Taiwan
Prior art keywords
substrate
wafer
layer
disposed
carbon nanotube
Prior art date
Application number
TW095143682A
Other languages
Chinese (zh)
Other versions
TW200725690A (en
Inventor
Mou Shiung Lin
Chien Kang Chou
Hsin Jung Lo
Ping Jung Yang
Original Assignee
Megica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megica Corp filed Critical Megica Corp
Publication of TW200725690A publication Critical patent/TW200725690A/en
Application granted granted Critical
Publication of TWI364058B publication Critical patent/TWI364058B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond

Description

MEGA 06-020TW-P05014 •九:、發明說.明:· • · . · 【發明所屬之技術領域】 • ,*.··· . · . 本發明係關於一種線路元件結構及其製程,特別是關 於一種以奈米碳管取代金屬線路之半導體線路元件之.結 構及其製程。 【先前技術】 奈米碳管是一種由碳原子組成之直徑為奈米量級 之管狀物,奈米破管係在1991年由Iijima在電弧放電 之產物中首次被發現的,具體參見文獻 Natiire,V〇1.354,P.56,奈米碳管具有質輕、高強度、高 财熱性、可撓曲、高表面積、表面曲度大、高熱導度、 導電性特異等特性,隨著奈米碳管之長度、直徑及螺 ' 施方式之變化,奈米碳管可呈現出金屬性或半導體性 質,其中,金屬型奈米碳管本身可作為一種分子型金 屬導線而在奈米電子學、材料科學等領域發揮重要作 用。 然而現今半導體元件皆是使用金屬作為線路材 料,並且依照半導體界最著名的摩爾定律,每單位晶 圓上電晶體的密度每2年大約增加1倍,因此近年來 半導體元件從次微米製程進入了奈米製程,進入此奈 米製程必須要有奈米級顯影科技和製作技術,且半導 體元件進入奈米製程後,每單位面積所能設置的電晶 體數量大幅提升,因此代表電晶體和晶片都可以縮的. 更小,目前奈米製程也從最初90奈米製程依序發展 1364058 • * MEGA 06-020TW-P05014 60奈米及45奈米,然而當半導體元件發展至45奈米 .. 製程後,也到達一定程度的技術瓶頸,而要克服此技 '·: 術瓶頸,目前業界皆是將「奈米碳管」.係作為重要指 -. -· . 標之一,如何將奈米碳管應用在現今的半導體元伴是 ^ 各界所期望的。 有鑑於此,本發明係針對上述被動半導體元件各種技 術,提出一種奈米碳管線路元件結構及其製程連續電鍍製 作線路元件之方法及線路元件結構,用以應用在半導體被 動元.件領域上。 【發明内容】 • 本發明之主要目的,係在提供一種奈米碳管線路元件 . 結構及其製程,其係以導電性奈米碳管作為半導體元件線 路之材質,利用奈米碳管導電特性、可撓曲及高強度,使 半導體元件的線路更細、更密集。 本發明之另一目的,係在提供一種奈米碳管線路元件 結構及其製程,奈米碳管設置在半導體元件上,利用奈米 (Φ ^ 碳管的高導熱性,使半導體元件的散熱效能更佳。 為了本發明上述之目的,提出一種線路元件結構,包 . .括一半導體基底;一細連線結構,位.在該半導體基底上’ . 該細連線結構具有至少一接墊;一保護層,位在該細連線 ; 結構上,該接墊暴露在該保護層之一開口内;至少一奈米 ; 碳管層,位在該細連線結構及該保護層上,該奈米碳管.層 電連接該接墊;一第一金屬層,位在該奈米碳管層上。 MEGA06-020TW-P05014 · 為了本發明上.述之目的,提出一種線路元件結構,包 括1 一半導邊基底,一 連線結.構’也在該半導體基底上,.. 一保乘層,位在i該細連線結構上;至少一第一奈米碳管層-位在該保護層上,該第二奈米碳管層包括一第一線圏.。.: 為了本發明上述之目的,提出一種線路元件結構,.包 - _ ' · · · 括一丰導讀基底, 細連線結構,位在該半導體基底上.’ 該細連線結構具有盖少二接墊;一保護層,位在該細連線 結構上,該二接墊分別暴露在該保護層之二開口内;.一奈 米碳管層,位在該保護層上並連接該二開口,該奈米碳管 層電連搔該二接墊。 為了本發明上述之目的,提出一種線路元件結構,包 括一半導體i底;一保護層,位在該半導體基底上;一奈 米碳管層,位在該保護層上。 為了本發明上述之自的,提出一種線路元件結構,包 括一半導體基底,具.有一第一表面及一第二表®,複數半. 導體元件位在該第一表面上;一細連線結構,位在該半導 體基底之該第一表面上,該細連線結構包括至少一操墊; 一保護.層,位在該細連線結構上;一奈米碳管層,位在該 第二表面上。 底下藉由具體實施例配合所附的圖式詳加說明,當更 容易瞭解本發明之目的、技術内容、特點及其所達成之功 效〇 . 【實施方式】 1364058 MEGA 06-020TW-P05014 a .····_·· . 一. ·, 本發明係為奈'米礙管線路元件結.構及其製程,其中,在 .· 此發明之中揭露數種不同類型半.導體元件結構,每一類型 之半導'聽元件内皆有一部分線路係;.奈米碳管做為材質。?. • 第7實施例之第1態樣: 請參閲第la-圖所示,提供一基底(substrate)1〇,基底 10通常是.為一砍基底(silicon stibstrate)’此节基底可以是 .一本.質(intrinsic)矽基底、一 p,型矽基底或是一 η型梦基 底。.對於高性.能.的晶片則是使用梦錯(SiGe)或絕緣層.上. , 覆石夕(Silicon-On-Insulator,SOI)基底。其中,石夕鍺基底包 括一矽鍺附生層(epitaxial layer)在矽基底的表面上,另絕 緣層上覆梦基底則包括一絕緣層(較佳為氧化石夕)在一石夕基 • 底上,且一矽或矽鍺附生層形成在絕緣層上。 接著請參閱第lb圖所示,在此基底1〇上形成一元件 層(device layer)l2 ’此元件層.12通常包括至少一半導體元: 件(semiconductor device),且此元件層12是在基底1〇的 表面内以及/或是表面上。其中’半導體元件可以是一金氧 C® 半電體(MOS transistor) 14,例如N型,金氧半電晶體 (NMOS transistor,n_chai;nel MOS transistor)或 P 型金氧半 電晶體(PMOS transistor,ρ-channel MOS transistor),且此 ' 金氧半電晶體14包括一源極16、一汲極18與一閘極20, " 而閘極.2〇通常是為多晶梦.(poly silicon)、一.複晶金屬碎 - 化鶴(tungsten polycide)、一石夕化鎢(tungsten silicide)、一 梦化鈦(titanium silicide)、一#化梦(cobalt silicide)或一石夕 .化物閘極(salicide gate)。另,半導體元件亦可以是雙載子 1364058 MEGA06-020TW-P05014 (· c· 電晶體(bipolar . transistor).、擴散金屬氧化物半導體 (Difhised’MOS / DMOS)、橫向擴'散金屬氣化物半導體 (Lateral Diffused :: ivte)S ; t0MOS)、電荷耦合元件 (Chafged-Coupled Device,CCD)、互補式金層氧化物半導 體(CMOS)感測元件、光敏二極體(photo-sensitive diode)、 電阻元:件(由在矽基底内之多晶矽層或擴散區所形戒)。利 用這些半導體充件可以形成各種電路,例如互補式金屬氧 化物半導體(CMOS)電路、N型金氧半導體電路、P型金氧 半導體€4、雙載子互補式金屬氧化物丰導體(BiCMOS) 電路、互補式金屬氧化物半導體感測器電路、擴散金屬氧 化物半導體電源電路、橫向擴散金屬氧化物半導體電路 等。此外,元件層12也包括一反或閘(NOR gate)或一反及 閘(NAND gate)之外,亦可以是一反相器(inverter)、一且閘 (AND gate)、一或閘(OR gate)靜態隨機存取記憶體單 元(SRAM cell)、一動態隨機存取記憶體單元(DRAM cell)、一 非揮發性記憶體單元(non-volatile meinory cell)、 一快閃記憶韓單元(flash memory cell)、一可消除可程式唯 讀記憶體單元(EPROM cell)、一唯讀記憶體單元(ROM cell)、一磁性隨機存取記憶體(magnetic RAM,JViRAM)單 元、一感測放大器(sense amplifier)、一運放算大器 (operational amplifier,Op Amp、OPA)、一 加法器(adder)、 一多工器(multiplexer)、一雙.工器.(diplexer)、一 .乘:法器 (multiplier)、一 類比 /數位轉換器(A/D converter)、一數位 / 類比轉換器(I)/A converter)、一互補式金屬氧化物半導體 10 1364058 MEGA 06-020TW-P05014 感測元:件單元(CMOS sensor cell)、一光敏二择薄 ·· (photo-sensitive diode)、.一互.補式拿屬氧化物半夢擘、-v :雙.載子互補式金辱半導·.體.、一雙:載.子電路(bipolar'citciiit). .或類比電蹲(analog circuit)。. t 此外在中華民國發明專利第丨239071號「奈米碳管電 晶體之製造方法」己揭露奈米碳管電晶體之製作方法,此 方法也是以矽晶圓為基礎,在矽晶圓上形成奈米碳管電晶 體,因弗在本發明之中就不加以論述。 C® 請參閱第1c圖所示,在基底10及元件.層12上形成一 .細線路結構22,此細線路結構22包括複藪細線路層 (fine-line conductivity Iayer)24、複數細線路介電層 (fine-line dielectric layer)26以及複數在細線路介電層20 之開口 28、及開.口 28内的導電检塞(fine_iine via piUg)3.〇, .此外在最頂部之細線路層24可至少一或複數區域,這些區 域定義為搂墊32 〇 細線路層24在此實施例中係選自鋁金屬材質、銅金屬 材質’或更具體來說,可以是以濺鍍方式形成的鋁層、或 以鎮嵌方式形成的銅層。所以,細線路層24可以是:(1) 所有的細線路層24均為鋁層;(2)所有的細線路層24均為 銅層;(3)底層的細線路層24為鋁層,而頂層的細線路層 • 24為銅層;或是(4)底層的細線路層24為銅層,而頂層的 細線路層24為鋁層。 此外,每一細線路層24的厚度係介於〇.〇5微米(μιη) 至2微米之間,而以介於0.2微米至1微米之間的厚度為 11 1364058 MEGA 06-020TW-P05014 較佳者,另細線路層24若為線路,則其橫向設計標準(寬 度)係介於2Q奈米(nano-meter)至IS微米之間,单以介於 2〇奈米至2微来之簡為無佳者。 首先解說細線路層24為鋁層,細線路層24之鋁層通 常是利用物理氣相沉積(Physical Vapor Deposition .,+ρν·ρ) 的方式來形成’例如利角藏鍍(sputtering)的方式來形成,.: 接著透過沈積厚度介於0.1微米至4微米之間(較佳為介於 0.3微米至2徵米之間)的.一光層對此铭層進行圖.案化., 再.來對此铭層進行一渔.钱刻(we.t: etching)或一乾银刻(.dry etching) ’較佳的方式是為乾式電漿(dry piasnia)蝕刻(通常 包含氟零漿)。另’在鋁層下可選擇性形成一黏著/阻障層 (adhesion/barrier layer),其中此黏著/阻障層可以是鈦、鈦 鎢合金、氮化鈦或者是上述材料所形成之複合層;而在鋁 層上亦可還擇性形成一抗反射層(例如氮化鈦).9此外,開 .口 28可選擇.性以化學氣相沉積(chemic’al vapor deposition,CVD)鎢金屬的方式填滿,接著再以化學機械 • · . 研磨(chemical mechanical polish,CMP)的方式研磨鎢金屬 層,以形成導電栓塞30。 接著解說細線路層24為銅層,細線路層24之銅層通.. 常是利.用電鍍與鑲嵌製程(damascene process)的方式.来形 成,其敘述如下:(1)沈積一銅擴散阻障層(例如厚度介於 0.05微米至0.25微米之間的氮氧化合物層或氮化物層); (2)利甩電漿辅助化學氣相沈積(plasma enhanced CVD, PECyD)、旋轉塗佈(Spin-on c〇ating)或高密度電聚化學氣 12 1364058 MEGA 06-020TW-P05014 相沉積(High Density Plasma CVD , .hdpcvd)的克 厚度介於G.l.微米至2.5微米之間的—細線路介電層26 , ’、中此:田緣路介電層%是以介於〇 3微来至1 $微:求义間 的厚度為較隹.者,.(3)利用沈積厚度介於〇 ι微求至4微米 之間的二光阻層'來圖案化知線路介電層%,其中光阻層的 c· c· 、、、介於〇.3微歩至2微来之.間為較佳者,接著對此. 光阻層^行曝光與顯影,使光阻層形成複數開口以及7或是 複數溝渠.?再來去除此光暉層;(4)利用_或化學氣相沈 積的方式,沈積一勒著/阻障層與一種子層(⑽切⑺。其 :著/阻障層包括钽、氮化鈕、氮化鈦、鈦或鈦鎢合 是由上述材料所形成之一複合層。另外,此種子 :、⑦疋鋼層’而此銅層可以是利用㈣銅金屬、化學 J '積鋼金屬’或者是先以化學氣相沈積一銅金屬然 後再贿冑金屬的.方式形成;⑺電錢厚度介於G.仍微 之間的—銅層在此種子層上,其中又以電鍵銅 :又丨& 〇.2微米至1微米之間的-鋼層為較佳者;(6) 、(較佳的方式為化學機械研磨)晶圓的方式去除未在 細線路介電層26之開口或溝渠内的銅層、種以及 /阻障層,古 至暴露串位在黏著/阻障層下之細線路介電層 '' 在、左喝化學機械研磨之後.,僅剩下位在開口或溝 渠内的金篇 . 〆 Ϊ面㈣“叫下的金屬㈣來作為金屬諸(線路或是 拾奉30(連接兩相.鄰.的細線路層24)。.另外., "° 雙鑲丧(double-damascene)製程,於一次電鐘製 程與人化學機械研磨中同時形成導電拾塞30以及金屬.. 13MEGA 06-020TW-P05014 • Nine: Inventions. Ming:·············································································· It relates to the structure and process of a semiconductor circuit component in which a metal line is replaced by a carbon nanotube. [Prior Art] The carbon nanotube is a tube of carbon diameter composed of nanometers. The nanotube was first discovered by Iijima in the product of arc discharge in 1991. See Natiire for details. , V〇1.354, P.56, carbon nanotubes have the characteristics of light weight, high strength, high heat, flexibility, high surface area, large surface curvature, high thermal conductivity, and electrical conductivity. The carbon nanotubes may exhibit metallic or semiconducting properties due to changes in the length, diameter and function of the screw. Among them, the metallic carbon nanotubes themselves can be used as a molecular metal wire in nanoelectronics. Areas such as materials science play an important role. However, today's semiconductor components use metal as the wiring material, and according to the most famous Moore's Law in the semiconductor industry, the density of the transistor per unit wafer is approximately doubled every two years. Therefore, in recent years, semiconductor components have entered the sub-micron process. Nano-process, entering this nano-process must have nano-level development technology and production technology, and after the semiconductor component enters the nano-process, the number of transistors per unit area can be greatly increased, so it can represent both the transistor and the wafer. Shrinking. Smaller, the current nano-process is also developed from the original 90 nm process 1364058 • * MEGA 06-020TW-P05014 60 nm and 45 nm, but when the semiconductor components develop to 45 nm.. , also reached a certain level of technical bottlenecks, and to overcome this technology '·: bottlenecks, the current industry is the "nano carbon tube" as an important index -. -. Tube applications in today's semiconductor are accompanied by expectations. In view of the above, the present invention is directed to various technologies of the above passive semiconductor components, and proposes a nanocarbon tube circuit component structure and a method for continuously electroplating a circuit component and a circuit component structure thereof for use in the field of semiconductor passive components. . SUMMARY OF THE INVENTION The main object of the present invention is to provide a carbon nanotube circuit component. The structure and the process thereof are made of a conductive carbon nanotube as a material of a semiconductor component line, utilizing the conductivity characteristics of the carbon nanotube. Flexibility and high strength make the wiring of semiconductor components thinner and denser. Another object of the present invention is to provide a carbon nanotube circuit component structure and a process thereof, wherein a carbon nanotube is disposed on a semiconductor component, and the heat dissipation of the semiconductor component is performed by utilizing nanometer (high thermal conductivity of the carbon nanotube) For the above purpose of the present invention, a circuit component structure is provided, comprising: a semiconductor substrate; a thin wiring structure, on the semiconductor substrate. The thin wiring structure has at least one pad a protective layer, located in the thin connection; structurally, the pad is exposed in one of the openings of the protective layer; at least one nanometer; a carbon tube layer is located on the thin connecting structure and the protective layer, The carbon nanotube layer is electrically connected to the pad; a first metal layer is located on the carbon nanotube layer. MEGA06-020TW-P05014 · For the purpose of the present invention, a circuit component structure is proposed. Including 1 half of the leading edge substrate, a wire junction structure is also on the semiconductor substrate, a protective layer, located on the fine wire structure; at least a first carbon nanotube layer - in On the protective layer, the second carbon nanotube layer comprises a first wire 圏.. For the above purpose of the present invention, a circuit component structure is proposed. The package- _ ' · · · includes a conductive read substrate, a thin wire structure, located on the semiconductor substrate. ' The thin wire structure has a cover less a pad; a protective layer on the thin wire structure, the two pads are respectively exposed in the two openings of the protective layer; a carbon nanotube layer, located on the protective layer and connecting the two openings, The carbon nanotube layer is electrically connected to the two pads. For the above purpose of the present invention, a circuit component structure is proposed, including a semiconductor substrate; a protective layer on the semiconductor substrate; and a carbon nanotube layer For the above-mentioned aspects of the present invention, a wiring element structure is provided, comprising a semiconductor substrate having a first surface and a second surface, a plurality of half. The conductor element is located at the first a thin wiring structure on the first surface of the semiconductor substrate, the thin wiring structure comprising at least one pad; a protective layer on the fine wire structure; a nano carbon The tube layer is located on the second surface. The purpose of the present invention, the technical contents, the features and the effects achieved by the present invention will be more readily understood by the specific embodiments and the accompanying drawings. [Embodiment] 1364058 MEGA 06-020TW-P05014 a . ····_··. 1. The present invention is a structure and a process for the structure of a circuit element, wherein several different types of semi-conductor element structures are disclosed in the invention. Each type of semi-conductive 'earphone' has a part of the line system; the carbon nanotube is used as the material.?. • The first aspect of the seventh embodiment: Please refer to the first la-picture to provide a Substrate 1 〇, substrate 10 is usually a silicon stibstrate 'this base can be a .intrinsic 矽 base, a p, type 矽 base or a n-type dream base . For high-performance silicon, the wafer is made of SiGe or SiGe, Silicon-On-Insulator (SOI) substrate. Wherein, the base of the stone scorpion includes an epitaxial layer on the surface of the ruthenium substrate, and the cover layer on the other of the insulating layer includes an insulating layer (preferably oxidized stone eve) on the bottom of the base. The upper layer and the epitaxial layer are formed on the insulating layer. Referring to FIG. 1b, a device layer 12 is formed on the substrate 1 '. The device layer 12 generally includes at least one semiconductor device: and the device layer 12 is Within the surface of the substrate 1 and/or on the surface. The 'semiconductor component can be a MOS transistor 14, such as an N-type, a NMOS transistor (n_chai; nel MOS transistor) or a P-type MOS transistor (PMOS transistor). , ρ-channel MOS transistor), and the 'gold oxide half transistor 14 includes a source 16, a drain 18 and a gate 20, and the gate. 2 〇 is usually a polycrystalline dream. (poly Silicon), a polycrystalline metal-tungsten polycide, a tungsten silicide, a titanium silicide, a cobalt silicide, or a stone slab (salicide gate). In addition, the semiconductor device may also be a double carrier 1364058 MEGA06-020TW-P05014 (· c· transistor (bipolar. transistor)., diffusion metal oxide semiconductor (Difhised 'MOS / DMOS), lateral diffusion 'metal oxide semiconductor (Lateral Diffused :: ivte)S ; t0MOS), Chafged-Coupled Device (CCD), Complementary Gold-Thick Oxide Semiconductor (CMOS) Sensing Element, Photo-sensitive Diode, Resistor Element: A piece (formed by a polycrystalline layer or a diffusion zone in a crucible base). Various semiconductor circuits can be formed by using these semiconductor packages, such as a complementary metal oxide semiconductor (CMOS) circuit, an N-type MOS circuit, a P-type MOS semiconductor, and a bi-carrier complementary metal oxide conductor (BiCMOS). A circuit, a complementary metal oxide semiconductor sensor circuit, a diffusion metal oxide semiconductor power supply circuit, a laterally diffused metal oxide semiconductor circuit, or the like. In addition, the component layer 12 also includes a NOR gate or a NAND gate, and may also be an inverter, an AND gate, or a gate (an AND gate). OR gate) SRAM cell, DRAM cell, non-volatile meinory cell, and a flash memory Han unit ( Flash memory cell), an EPROM cell, a ROM cell, a magnetic RAM (JViRAM) cell, a sense amplifier (sense amplifier), operational amplifier (Op Amp, OPA), an adder (adder), a multiplexer (multiplexer), a pair of workers (diplexer), one. Multiplier, a class of analog/digital converter (A/D converter), a digital/analog converter (I)/A converter), a complementary metal oxide semiconductor 10 1364058 MEGA 06-020TW-P05014 sensing Yuan: CMOS sensor cell, a light-sensitive thin film · (photo-se Nsitive diode),. Mutual complement. Take the oxide half-nightmare, -v: double. Carrier complementary gold shame and semi-conductor. Body., a pair: sub-circuit (bipolar'citciiit). Or an analog circuit. In addition, in the Republic of China Invention Patent No. 239071 "Manufacturing Method of Nano Carbon Tubes", a method for fabricating a carbon nanotube transistor has been disclosed, which is also based on a germanium wafer on a germanium wafer. Forming a carbon nanotube transistor, Inver is not discussed in the present invention. C® Referring to Fig. 1c, a fine line structure 22 is formed on the substrate 10 and the component layer 12. The thin circuit structure 22 includes a fine-line conductivity Iayer 24 and a plurality of fine lines. A fine-line dielectric layer 26 and a plurality of openings 28 in the fine-line dielectric layer 20 and a conductive plug (fine_iine via piUg) in the opening 28. The uppermost thin line The road layer 24 can have at least one or a plurality of regions defined as a mattress 32. The thin circuit layer 24 is selected from aluminum metal, copper metal material in this embodiment or, more specifically, can be sputtered. The formed aluminum layer or the copper layer formed by the in-situ formation. Therefore, the fine circuit layer 24 may be: (1) all of the fine circuit layers 24 are aluminum layers; (2) all of the fine circuit layers 24 are copper layers; and (3) the fine circuit layer 24 of the bottom layer is an aluminum layer. The fine circuit layer of the top layer 24 is a copper layer; or (4) the fine circuit layer 24 of the bottom layer is a copper layer, and the fine circuit layer 24 of the top layer is an aluminum layer. In addition, the thickness of each thin circuit layer 24 is between 微米.〇5 μm (μιη) and 2 μm, and the thickness between 0.2 μm and 1 μm is 11 1364058 MEGA 06-020TW-P05014 Preferably, if the thin circuit layer 24 is a line, the lateral design standard (width) is between 2N nanometers and IS micrometers, and is between 2 nanometers and 2 micrometers. Jane is a poor person. First, the thin circuit layer 24 is an aluminum layer, and the aluminum layer of the thin circuit layer 24 is usually formed by physical vapor deposition (Physical Vapor Deposition., +ρν·ρ) to form a method such as "sputtering". To form, then: through the deposition of a thickness between 0.1 microns and 4 microns (preferably between 0.3 microns and 2 meters) of a layer of light to map the layer. Case. The best way to do this is to dry the wafer (dry piasnia) etching (usually containing fluorine paste). . Another 'adhesion/barrier layer can be selectively formed under the aluminum layer, wherein the adhesion/barrier layer can be titanium, titanium tungsten alloy, titanium nitride or a composite layer formed by the above materials. An anti-reflective layer (such as titanium nitride) may also be selectively formed on the aluminum layer. 9 In addition, the opening 28 may be selected by chemical vapor deposition (CVD) tungsten metal. The manner is filled, and then the tungsten metal layer is ground in a chemical mechanical polish (CMP) manner to form a conductive plug 30. Next, it is explained that the thin circuit layer 24 is a copper layer, and the copper layer of the thin circuit layer 24 is often formed by a plating and damascene process, which is described as follows: (1) deposition of a copper diffusion a barrier layer (for example, an oxynitride layer or a nitride layer having a thickness of between 0.05 μm and 0.25 μm); (2) plasma enhanced CVD (PECyD), spin coating ( Spin-on c〇ating) or high-density electropolymerization gas 12 1364058 MEGA 06-020TW-P05014 phase deposition (High Density Plasma CVD, .hdpcvd) with a thickness ranging from G1 micron to 2.5 micron - fine line Electrical layer 26, ', in this: Tianyuan Road dielectric layer% is between 〇3 micro to 1 $ micro: the thickness between the senses is more ambiguous. (3) using sediment thickness between 〇 ι micro-finishes a two-photoresist layer between 4 micrometers to pattern the visible dielectric layer %, wherein the photoresist layer has c·c·, ,, between 〇.3 micro 歩 to 2 micro. Preferably, the photoresist layer is exposed and developed to form a plurality of openings and 7 or a plurality of trenches. Then removing the light-emitting layer; (4) depositing a barrier/barrier layer and a sub-layer by using _ or chemical vapor deposition ((10) cutting (7). The following: the barrier layer includes germanium, nitride The button, titanium nitride, titanium or titanium tungsten is a composite layer formed by the above materials. In addition, the seed: 7 疋 steel layer 'and the copper layer can be made of (4) copper metal, chemical J ' steel metal 'Or formed by chemical vapor deposition of a copper metal and then bribe metal; (7) the thickness of the electricity money is between G. still slightly - the copper layer is on the seed layer, which in turn is a copper bond: Further, a steel layer between 2 μm and 1 μm is preferred; (6) and (preferably a chemical mechanical polishing) wafer is removed in a manner not to be in the fine-line dielectric layer 26 The copper layer, species and/or barrier layer in the opening or trench, from the ancient to the exposed thin dielectric layer under the adhesion/barrier layer, after the chemical mechanical grinding of the left drinking, only the opening is in the opening Or the golden part of the ditch. 〆Ϊ (4) "The metal (4) called as the metal (the line or the pick 30 (the thin circuit layer 24 connecting the two phases. In addition, the "° double-damascene process simultaneously forms conductive plugs 30 and metal in one electric clock process and human chemical mechanical grinding. 13

I36405S MEGA 06-020TW-P05014 線路或金屬平面。兩次微备(photolithography)製程及兩次 電鍍製程係適:用蛉雙鑲嵌製程上·。雙鑲嵌製程在上述單次-V . _鑲盛製程圖案化一介電詹之步驊(3)與沈積金屬.層之 : 步練(4)間’增‘吏多沈積與圖案化矣一介電層的製輊步 . '驟 〇·: c· 接著說确細線路介電層26 ’細線路介電層26係利甩 化·學氣相沈積、電槳辅助化.學·氣相沈積、高密度電裝化.學 氣相沉積或旋塗(spin-on)的方式形成。細線路介電層26的. 材質包括氧化石夕(silicon oxide)、氣化矽(Siiicpn nitride)、 氮氧化矽(silicon oxynitride)、以電漿辅助化學氣相沈積形 成之四乙氧基梦烧(PECVD TEOS)、旋塗玻璃(SQG,梦氧 化物或碎氧炫基)、氟發玻璃(Fluorinated Silicate Glass, FSG)或一低介電常數(low-K)材質’例如黑鑽石薄膜(Black Diamond,其係為Applied Materials之產品,公司譯名為 應用.材料公司)、ULK CORAL(為NoVellus公司之產品)成. SiLK(IBM公司)之低介電常數的介電材質。以電槳辅助化 學氣袓沈積形成的氧化矽、以電漿辅助化學氣相沈積形成 的四乙氧基矽烷或以高密度電漿形成的氧化物具有介於 3.5至4.5之間的介電常數K;以電漿輔助化學氣相沈積形 成的氣碎玻璃或以1%密度電衆形成的.氣參玻璃且有.介於 3.0至3·5之間的介電常數值,而低介電常數介電材料則具 有介於1.5至3.5之_間.的介電常數值。低介電常數介電枯 料,例如黑鑽石:薄膜’其得、為多孔性,並包括有氧、碳、 矽與氧,其分子式為HwCxSiyOz。此細線路介電層26通常I36405S MEGA 06-020TW-P05014 Line or metal plane. Two photolithography processes and two electroplating processes are suitable: use a dual damascene process. The double damascene process is in the above-mentioned single-V. _ inlaid process patterning a dielectric Zhanzhi step (3) and deposited metal. Layer: stepping (4) 'increase' 吏 multi-deposition and patterning The step of making the dielectric layer. '〇〇·: c· Then say that the fine dielectric layer 26' is a fine-line dielectric layer 26 which is a system of vaporization and vaporization, and it is assisted by electric propellers. Deposition, high-density electrification, vapor deposition or spin-on formation. The material of the fine-line dielectric layer 26 includes silicon oxide, Siiicpn nitride, silicon oxynitride, and tetraethoxy monoxide formed by plasma-assisted chemical vapor deposition. (PECVD TEOS), spin-on glass (SQG, Dream Oxide or Oxygen), Fluorinated Silicate Glass (FSG) or a low dielectric constant (low-K) material such as black diamond film (Black) Diamond, which is a product of Applied Materials, the company's translation is called Application. Material Company), ULK CORAL (product of NoVellus), SiLK (IBM) low dielectric constant dielectric material. Cerium oxide formed by electric paddle assisted chemical gas deposition, tetraethoxysilane formed by plasma assisted chemical vapor deposition or oxide formed by high density plasma having a dielectric constant between 3.5 and 4.5 K; a pulverized glass formed by plasma-assisted chemical vapor deposition or a gas-parameter glass formed at a density of 1% and having a dielectric constant value between 3.0 and 3.5, and a low dielectric The constant dielectric material has a dielectric constant value between 1.5 and 3.5. A low-k dielectric dielectric, such as a black diamond: a film, which is porous, and includes oxygen, carbon, helium and oxygen, has a molecular formula of HwCxSiyOz. This thin line dielectric layer 26 is typically

mmE MEGA 06-020TW-P05014 包括無機材科(inorganic .material),.用以達到厚度大.於.2 .微. 米6每一、細線路介電層26的厚度·係介於0.05微米至2微 米-之間。另線每介電層26内的開口 28是利用.溼截刻 或乾辞刻的方式蝕刻圖案化光阻層形成,其中較佳的蝕刻 方式係為乾钱刻。乾银刻.種類包括氟電漿(flu〇rine plasm.a).。 .. . c· c· 請參閱第lc圖所示,.形成一保護層34在細線路結構 22上,此保護層34在本發明中扮演著非常重要的角色 保護層34在積體電路產業中是為一個重要的紐成部分,.如 199〇 年由 fWblf 著’並由 Lattice Press 所發行之“Silicon Processing in the VLSI era”第2冊所述,保護層34在積體 電路製程中是被定義作為最終層,並沈積在晶圓的整體上 表面上。保護層34係為一絕緣、保護層,可以防止在組裝 與封裝期間所造成的機械與化學傷害。除了防止機械刮痕 之外,保護層34也可以防止移動離子(n_bi丨e ion),比如 疋納(sodium)離子,.以及過渡金屬(transition metal),比如 是金、鋼’穿透進入至下方的積體電路元件。另外,保護 層34也可以保護下方的元件與連接線路(細線路金屬結構 與細線路介電層)免於受到水氣(moisture)的侵人。 保護層34通常包括一氮化石夕(silicon nitride)層以及/ 或疋—氮氡化梦(silicon oxynitride)層,且其厚度是介於0.2 微米至1.5微米之間,並以介於〇.3微米至ι·〇微米丈.間的 厚度為較佳者p其它使用在保護層300的材料則有以電漿 辅助化學氣相沈積形成的氧化矽、電漿加強型二氡化四乙 15 Τ364ϋ58 MEGA 06-020TW-P05014 基正矽釀鹽(plasma-enhanced , tptrap.thyl orthosilicat专, :PETEO.S).之氧.化物·、鱗.夕玻璃(phosphosilicate .glkss,.. PSG)、硼填矽玻璃(borophospho silicate glass,BP.SG)、以· 尚密度電聚(HDP)梦.成的氧化物。.接著,敘述保護層由 複合層組成的一些範例,其底部至頂部的順序是為,:(1) 厚度介於0.1微米至1.0微米之間(較佳厚度則介於.微 c· c· 米至0.7微米之間)的氧化杨/厚度介於〇 25微米至12徵 米之間(較佳厚度則介於0.35微米至1.〇微米之間)的氮化 矽,這種型式的保護層.34通常是覆蓋在以鋁形成之金屬連 接線路上,其中以鋁形成之金屬連接線路通..常包括濺鍍鋁 及蝕刻鋁的製程,(2)厚度介於0·05微米至〇 %微米(較佳 厚度則介於0.1徵米至0.2微米之間)的氮氧化合物/厚度介 於0.2微米至1.2微米(較佳厚度則介於〇1微米至〇2微 来之間)的氧化物/厚度介於〇.2微米至12微采(較佳厚产 則介於0.3微来至0.5微米之間)的氮化物/厚度介於〇 2 = 米至1 _2微米(較佳厚度則介於〇·3微米至〇 6微来之間)的 氧化物,這種型式的保護層34ii常是覆蓋在以銅形成之金 屬連接線路上,其中以銅形.成之金屬連接線路通常包括電 鐘、化學機械研磨與鑲嵌製程。另,上述兩範例中的氧化 物層可以是利用電漿辅助化學氣相沈積形成的氧化石夕、電 漿加強型二氧化四乙基正矽酸 / 歲盟(plasma-erihanced 術郝〇池0silicate,PETE〇s)之氧化物利用高密 漿形成的氧化物。以上的内容咎摘田认 係適用於本發明的所有實施. 例中。 16 1364058 ~~~~~~~~~~ • * MEGA 06-020TW-P05014. 請參閱第14圖所示,在此保護層34形成至少一開.口 36,此保護層.34.之開口 .36是利用溼蝕刻或乾蝕刻的方式 形成,.其中又以乾蝕刻為較佳方式。此外,開口 36:的尺寸 係介於0.1 .微來至200微米之間,並以介於1微米至100 微米之間或? 5微米至30微米之間為較佳者,另開口 36的 .形狀可以是圓形方形、長方形或多邊形,所以上述開mmE MEGA 06-020TW-P05014 includes inorganic materials (inorganic.material), used to achieve a large thickness of .2 . micro. m 6 each, the thickness of the fine-line dielectric layer 26 is between 0.05 micron to 2 microns - between. The openings 28 in each of the dielectric layers 26 are formed by etching the patterned photoresist layer by wet or dry etching, wherein the preferred etching method is dry etching. Dry silver engraving. The species includes flu〇rine plasm.a. . . . c. c. Referring to Figure lc, a protective layer 34 is formed on the thin wiring structure 22, which plays a very important role in the present invention. The protective layer 34 is in the integrated circuit industry. Medium is an important part of the process, as described in the book "Silicon Processing in the VLSI era", Volume 2, published by Lattice Press in 199, and the protective layer 34 is in the integrated circuit process. It is defined as the final layer and is deposited on the entire upper surface of the wafer. The protective layer 34 is an insulating and protective layer that prevents mechanical and chemical damage during assembly and packaging. In addition to preventing mechanical scratches, the protective layer 34 also prevents mobile ions (such as sodium ions), and transition metals such as gold and steel from penetrating into The integrated circuit components below. In addition, the protective layer 34 can also protect the underlying components and connection lines (fine line metal structure and fine line dielectric layer) from moisture intrusion. The protective layer 34 typically comprises a silicon nitride layer and/or a silicon oxynitride layer and has a thickness between 0.2 microns and 1.5 microns and is between 〇.3. The thickness between the micron and the ι·〇 micron is preferred. The other materials used in the protective layer 300 are yttrium oxide formed by plasma-assisted chemical vapor deposition, and the plasma-enhanced type of bismuth tetraethylene 15 Τ 364 ϋ 58 MEGA 06-020TW-P05014 base-based salt (plasma-enhanced, tptrap.thyl orthosilicat, :PETEO.S). Oxygen. Compound, scale, glass (phosphosilicate.glkss, .. PSG), boron fill An oxide of borophospho silicate glass (BP.SG) and a density of electricity (HDP). Next, some examples of the protective layer consisting of composite layers are described. The order from bottom to top is: (1) The thickness is between 0.1 μm and 1.0 μm (the preferred thickness is between . micro c· c· Tantalum oxide with a thickness of between 〇25 μm and 12 mm (preferably between 0.35 μm and 1.〇μm) between meters and 0.7 μm The layer .34 is usually covered on a metal connecting line formed of aluminum, wherein the metal connecting line formed by aluminum is generally included in the process of sputtering aluminum and etching aluminum, and (2) the thickness is between 0. 05 micrometers to 〇. Nitrogen oxides per 100 micrometers (preferably between 0.1 and 0.2 micrometers thick) have a thickness of between 0.2 micrometers and 1.2 micrometers (preferably between 1 micrometer and 2 micrometers). The oxide/thickness of the oxide/thickness between 〇.2 μm and 12 μL (preferably thick between 0.3 μm and 0.5 μm) is between 〇2 = m and 1 _2 μm (better thickness) An oxide of between 3 micrometers and 6 micrometers. This type of protective layer 34ii is often covered with gold formed of copper. Connection line, wherein the copper form. To the connecting line generally comprises a metal electric clock, and the chemical mechanical polishing damascene process. In addition, the oxide layer in the above two examples may be an oxide oxide formed by plasma-assisted chemical vapor deposition, plasma-enhanced tetraethyl ortho-ruthenium hydride/plasma-plasma The oxide of PETE〇s) utilizes an oxide formed by a high-density slurry. The above content 咎 field recognition is applicable to all implementations of the present invention. 16 1364058 ~~~~~~~~~~ • * MEGA 06-020TW-P05014. Please refer to Fig. 14, in which the protective layer 34 forms at least one opening 36, the opening of the protective layer .34. .36 is formed by wet etching or dry etching, wherein dry etching is preferred. In addition, the opening 36: has a size of between 0.1 micrometers and 200 micrometers, and preferably between 1 micrometer and 100 micrometers or between 5 micrometers and 30 micrometers, and the other opening 36. The shape can be a round square, a rectangle or a polygon, so the above

口 36的尺寸是指圓形的直徑尺寸、正方形的邊長尺寸、多 邊形的最長對角線尺寸或長方形的寬度尺寸,其中長方形 的長度尺寸則是介於1微米至1釐米,並以介於5微米至 200微米為較佳者。 其中保護層34之開口 36對於元件層12所設置元件不 同也有不同的大小,一般而言保護層34之開口 36的尺寸 是介於0.1微米至100微米之間,並以介於0.3微米至30 ―…微米之間為較佳者;若是元件層12中係設置穩壓器、變壓 器及靜電放電防護電路而言,此蘭口 .36的尺寸較大,其範 .圍係介於1微米至150微米之間,並以介於5微米至100 C® 微米之間為較佳者。.另外,開口 36暴露出細線路層24最 上層之接塾(metal pad)32,用以電性連接保護層36上方 (over-passiyation)的線路或平面。 以上所述之結構定義為晶圓(wafer),例如石夕晶圓 - (silicon wafer),係使用不同世代的積體電路製程技術來製 造,例如1微米、0.8微米、0.6微米、0.5微米、0.35微 米、0.25微米、0.18微米、0.25微米、0.13微米、90奈米 (nm)、65奈米、45奈米、35奈米、25奈米技術,而這些 17 MEGA 06-020TW-P05014 -積.體電路製轾.技術的世代是以全氧半電晶體14之閘極:長..: 度(gate lengih)或有效通道長度(charuiel length)來定義。」 晶圓的尺寸大小比如是5崎' 6吋、8对、12忖或18.-:吋等。基底10係使用微影製程來製作,此微影製程包含塗' 佈(coating)、曝光(exposing)以及顯影(developing)光阻:。·用 於製作基底10的光阻,其厚度是介.於0.1微求至04微米 之間’並以五倍(5X)步進曝光機(stepper)或掃描機(scanner) 曝光此光阻。其中,步進曝光機的倍數是指當光束從一光 罩(通常是以石英構成)投影至晶圓上時,光軍上之圖形縮 小在晶圓上的比例’而五倍(5X)即是指光罩上之圖案比例 是為晶圓上之圖案比例的五倍。使用在先造世代的積體電 路製程技術上的掃描機,通常是以四倍(4χ)尺寸比例縮小. 來改善解柝度。步進曝光機或掃推機所使用的光束波長係 為436奈米(g-lipe)、365奈米(i_iine)、248奈米(深紫外光, DUV)、193奈米(DUV)、157奈米(DUV)或13.5奈米(極短 紫外光’ EUV)。另’面素引侵潤式(high-index immersion) ’微影技術亦可用以完成晶圓上的細線路層24。 此外’晶圓是在具有等級10(class 1〇)或更佳(例如等 級1)的無塵室(clean r0〇m)中製作。等級1()的無塵室允許. 每立方英呎之最大灰塵粒子數目係為:含有大於或:等於I 微米之灰塵粒子不超過.1顆、含有大於或等於〇.5微米之. 灰塵粒子不超過.10顆、含有大於或等於〇 3微米之灰塵粒 子不.超過30顆 '含有大於或等於〇.2微米之灰塵粒子不超 適75顆、含有大於或等於微.米之灰塵粒子不超過35〇 1364058 ~ MEGA 06-020TW-P05014 .顆 > 而等'級:::1、的無塵「室;則允,許每立.方英呎之最大灰麈粒:子 數目是為含有大於或等.玲.5 .微米之灰塵釭子不超過1:,.. 顆:、.含有大於或等:於0.3微米之灰塵粒子不.超過3,;顆、含ί..::, .有大於或.等於..〇·2微米之.灰塵粒子.不超過7顆、含有大於v ...... 或等於.0.1 .微.米.之灰.塵粒子.不.超過3 5顆。 其中當使用銅作為細線路層24時,則需要使用一金屬/ 頂層(metal cap)(圖中未示).來保護保護層34開口.30.所暴露 C·The size of the mouth 36 refers to the diameter of the circle, the length of the square, the longest diagonal of the polygon, or the width of the rectangle, wherein the length of the rectangle is between 1 micrometer and 1 centimeter, and 5 microns to 200 microns are preferred. The opening 36 of the protective layer 34 also has different sizes for the components of the component layer 12. Generally, the size of the opening 36 of the protective layer 34 is between 0.1 micrometers and 100 micrometers, and is between 0.3 micrometers and 30 micrometers. ―...micron is preferred; if the voltage regulator, transformer and ESD protection circuit are set in the component layer 12, the size of the blue port is larger, and the range is between 1 micron and Between 150 microns and between 5 microns and 100 C® microns is preferred. In addition, the opening 36 exposes the uppermost metal pad 32 of the thin circuit layer 24 for electrically connecting the over-passing line or plane of the protective layer 36. The structure described above is defined as a wafer, such as a silicon wafer, which is fabricated using integrated circuit processing techniques of different generations, such as 1 micron, 0.8 micron, 0.6 micron, 0.5 micron, 0.35 micron, 0.25 micron, 0.18 micron, 0.25 micron, 0.13 micron, 90 nanometer (nm), 65 nm, 45 nm, 35 nm, 25 nm technology, and these 17 MEGA 06-020TW-P05014 - product The generation of the technology is defined by the gate of the oxy-period 14: length: gate lengih or charuiel length. The size of the wafer is, for example, 5 ' '6 吋, 8 pairs, 12 忖 or 18.-: 吋. The substrate 10 is fabricated using a lithography process that includes coating, exposing, and developing photoresist: The photoresist used to make the substrate 10 has a thickness between 0.1 micron and 04 micron' and is exposed to a five-fold (5X) stepper or scanner. Wherein, the multiple of the stepper is that when the light beam is projected onto the wafer from a reticle (usually composed of quartz), the ratio of the pattern on the light to the wafer is reduced by five times (5X). It means that the proportion of the pattern on the mask is five times that of the pattern on the wafer. Scanners that use the previous generation of integrated circuit process technology are usually scaled down by four times (4 inches) to improve the resolution. The beam wavelength used by the stepper or sweeper is 436 nm (g-lipe), 365 nm (i_iine), 248 nm (deep UV, DUV), 193 nm (DUV), 157 Nano (DUV) or 13.5 nm (very short UV 'EUV). Another 'high-index immersion' lithography technique can also be used to complete the fine circuit layer 24 on the wafer. In addition, the wafer is fabricated in a clean room (class 1) or better (e.g., level 1). Level 1 () clean room allows. The maximum number of dust particles per cubic inch is: contains more than or equal to 1 micron of dust particles no more than .1, containing greater than or equal to 5.5 microns. No more than .10 particles containing more than or equal to 〇3 μm. No more than 30 pieces of dust particles containing greater than or equal to 〇.2 μm are not over 75 particles containing no more than or equal to micrometers. More than 35〇1364058 ~ MEGA 06-020TW-P05014 .>> and wait for 'level:::1, no dust" room; then, let each stand. Fang Yingxi's largest gray grain: the number of children is Dust containing more than or equal to .5 micron does not exceed 1:,..:: contains more than or equal: dust particles of 0.3 micron are not more than 3,; particles, containing ί..:: , having a particle size greater than or equal to .. 〇·2 microns. No more than 7 particles, containing more than v ...... or equal to .0.1. Micro. meters. Gray. Dust particles. No. 3 5. When copper is used as the fine wiring layer 24, it is necessary to use a metal/metal cap (not shown) to protect the opening of the protective layer 34. 30.

出銅質之接墊32,使此接墊32免於受到氧化而侵蝕損壞, 並可作為後續晶片的打線秦合.。.此金屬頂層包栝广銘 (aluminum)層、,一金(gold)層、一鈦(Ti)層、一鈦鎢合金層、 一鈕(Ta)層、一氮化钽(TaN)層或一鎳(奶)層。其中,當金 屬頂層是為一銘層時,則在銅接墊與金屬頂層之簡形成有 一 障屠(barriei layer) ?而此阻障層包括鈥·、鈦鶴合全、 氮化鈦,钽、.氮化鈕、鉻(Cr)或鎳。 . 接著製造一保護層上之結構(over-jia^sivation scheme): 的製程步驟.,其中在此實施例中保護層上之結構包括由奈 米碟管(Carbon naiiotube)所構成成之線路層,首先請參蘭 第.Ip圖戶)t示,接.著形成.一黏,著阻障層(adhesion/barrie-r layer)38在保護層34及接墊32上,此黏著阻障層38的材 質可以是鈦、鶴、钻、.鎳、氮化欽、鈦鎢合金、;|fl、鉻、-鈉、鉻銅合金、.钽,.氮化钽.、上述材質所形成之合金或是 由上述材質所組成的複合層。另,·黏著/阻障層可以利用電 鍍(eUcttoplating) ' 無f; f:M(electioleiss plating)、化學氣 相沈積或物理氣相沉積(例如減鍍)的方式形成,其中又以 19The copper pad 32 is provided to protect the pad 32 from oxidation and damage, and can be used as a subsequent wafer. The metal top layer comprises a layer of aluminium, a layer of gold, a layer of titanium (Ti), a layer of titanium-tungsten alloy, a layer of Ta (Ta), a layer of tantalum nitride (TaN) or A layer of nickel (milk). Wherein, when the top layer of the metal is a layer of inscription, a barriei layer is formed on the copper pad and the metal top layer, and the barrier layer comprises tantalum, titanium crane, titanium nitride, tantalum Nitride button, chromium (Cr) or nickel. Next, an over-jia^sivation scheme is formed: wherein the structure on the protective layer in this embodiment comprises a circuit layer composed of a carbon naiiotube. First, please refer to the "Ip" household) t, the formation of a sticky, adhesion layer (adhesion / barrie-r layer) 38 on the protective layer 34 and the pad 32, the adhesive barrier layer 38 The material may be titanium, crane, drill, nickel, nitride, titanium tungsten alloy; |fl, chrome, sodium, chrome-copper alloy, tantalum, tantalum nitride, alloy formed by the above materials or It is a composite layer composed of the above materials. In addition, the adhesion/barrier layer can be formed by electroplating (eUcttoplating), f:M (electioleiss plating), chemical vapor deposition or physical vapor deposition (for example, deplating), wherein

136405S MEGA 06-020TW-P05014 ::物理:氣相就積為較隹的形.成方式:,例如金屬激鍍製程Λ另.H" …此黏著./阻障展丨加-的/厚度:係介龙0)..02 .微米至0.8歲米.之: 間丨並;以介於:ά.:05:微味、至:0:2微来之.間的厚度為較隹者Vv . 請參蘭:第:lf圖;所示,:接著形:·成厚度介於1微米至。1〇丨;.: 微..米:之間的T觸媒金屬層40在黏著阻障層38上,此觸媒 金屬層40係形成奈米碳管:層重要步驟,而以下介紹觸:媒金乂 . 屬'層40形成之方_法: -136405S MEGA 06-020TW-P05014 ::Physical: The gas phase accumulates into a more sinuous shape. The method is: for example, metal plating process Λ another. H" ... this adhesion. / barrier barrier plus - thickness / thickness: Department of Dragons 0)..02. Micron to 0.8 years old. It is between: ά.:05: Weiwei, to: 0:2 micro. The thickness between the two is Vv. Please refer to the map: lf: lf diagram; shown: the shape of the following: · the thickness is between 1 micron to. 1〇丨;.: Micro..m: The T-catalyst metal layer 40 is on the adhesion barrier layer 38. This catalyst metal layer 40 forms an important step of the carbon nanotube: layer, and the following describes: Media gold 乂. belongs to the 'layer 40 formation side _ method: -

笫1種形成衝媒金屬層40之方法:此方式係使用溶液 方式製作觸媒金屬層:40,首先係將一觸媒金屬附著在貴重 金屬粒子上,此觸媒金屬包括鐵、鈷、鎳等金屬,而貴重 金屬粒子包括金、銀、翻、纪及銅或及其合金’其中較佳 的貴重金屬為銀金屬,且貴重金屬粒子之粒徑係介於〇·〇! 至10微米之間,而將觸媒金屬附著在貴重金屬粒子上的方 式有兩種,第一種是含浸法,第二種則係沉稽沉澱法,這 兩種方法都需先將貴重金屬顆粒分散於水中。A method for forming a dielectric metal layer 40: in this manner, a catalytic metal layer is formed by a solution method: 40, first, a catalyst metal is attached to a precious metal particle, and the catalyst metal includes iron, cobalt, and nickel. The metal, and the precious metal particles include gold, silver, turn, and copper or alloys thereof. The preferred precious metal is silver metal, and the particle size of the precious metal particles is between 〇·〇! to 10 microns. There are two ways to attach the catalyst metal to the precious metal particles. The first method is the impregnation method, and the second method is the sedimentation method. Both methods require the precious metal particles to be dispersed in the water.

其中含浸法係將貴重金屬粒子水溶液以超音波震盪方 式將貴重金屬粒子均勻分散在溶液中,然後加入含觸媒金 屬鹽類溶液並使二溶液,均勻混合,此觸媒金屬鹽類溶液例 如是硝酸鹽溶液或硫酸鹽溶液,接著將此混合溶液加熱濃 縮,接著去除此混合溶液中的溶劑,如此觸媒金屬則可分 佈於貴重金屬粒子上。 .而沉積沉澱法則係将含有貴重金屬粒子的水溶液加八 一鹼性水溶液,此鹼性水溶液如氨永等,使混合溶液的pH 值為8〜9之間,再加熱此混合溶液.,:如此可使貴重金屬粒 20 Π64058 * · MEGA 06-020TW-P05014 .子表面改〔質為鹼性,再將含觸媒金屬鹽類之水溶液加入並= .擾拌均勻Λ,此觸媒金屬鹽.類例如是硝酸鹽或硫酸鹽,.接著.. 再加人沉澱:劑與還原劑將觸媒金屬予以沉澱並還原,此沉.. 澱劑例如氨水,而還原‘劑例如是曱链,最後除去此混合溶 液中的溶劑,如此觸-媒金屬則可分佈於貴重金屬粒子上。The impregnation method uniformly disperses the precious metal particles in the solution by ultrasonic wave aqueous solution in an ultrasonic wave oscillating manner, and then adds the catalyst-containing metal salt solution and uniformly mixes the two metal solutions, for example, nitrate. The solution or the sulfate solution is then concentrated by heating, and then the solvent in the mixed solution is removed, so that the catalyst metal can be distributed on the precious metal particles. The deposition precipitation method is to add an aqueous solution containing precious metal particles to an aqueous alkaline solution, such as ammonia, to make the pH of the mixed solution between 8 and 9, and then heat the mixed solution. Thus, the precious metal particles 20 Π64058 * · MEGA 06-020TW-P05014 . The sub-surface is changed to be alkaline, and then the aqueous solution containing the catalytic metal salt is added and the interference is uniform. The class is, for example, a nitrate or a sulfate, and then: a human precipitate is added: the agent and the reducing agent precipitate and reduce the catalytic metal, the sinking agent such as ammonia water, and the reducing agent such as an oxime chain, Finally, the solvent in the mixed solution is removed, so that the contact-agent metal can be distributed on the precious metal particles.

C· 接著要將己附著有觸媒金屬的貴重金屬粒子散稀在黏 著阻障層38表面上,其中將己附著有觸媒金屬的貴重金屬 粒子散佈在黏著阻障層38表面的方式有數稜方式,第1 種方式係將粒子混舍在一高分子膠液中,其中觸媒金屬的 貴重金屬粒子與高分子朦液混合比例為1 : 10至1 : 3,此 高分子膠液包含一纖維素樹脂(cellulose resin)35wt%、溶 劑 dl-1-對-婦.帖醇(dl-a-terpineol)50wt%+、.作為分散.劑 (dispersant)的.崎.酸納(sodium .phosph.ate) 1 Owt% 及玻璃粉 (glass powder) 15wt%。此玻璃粉的功用係為增加接著性之 用。接著將此混合膠體塗佈於黏著阻障層38表面,經由烘 烤並在300°C至500°C之空氣中下燒結,以去除高分子膠 .液,如此即可將附著有觸媒金屬的貴重金屬粒子散佈在黏 著阻障層38上。 而第2種散佈方式係將附著有觸媒金屬的貴重金屬粒 子加入一有機溶劑中,此有機溶劑例如是乙醇,以超音波 震盪使混合液中的粒子分散,接著直接將混合液塗抹在黏 著阻障層.38上並經由烘烤將有機溶劑去除,使附著有·觸媒 金屬的貪重金屬粒子散佈在黏著阻障層38上。: 21 1364058 MEGA 06-020TW-P05014 第2種形成騎媒金屬層40的方法:第2.種形成觸媒金 屬層40的方法係利用藏鐘(Sputtering)的方式,此方.式.必須. 提供一鎮全:合全靶材,鎳銀.合·金靶材.、鎳鈀合金靶材.、鎳. 鉑合金靶材或:錄銅i合金靶材其中之―,其中較佳靶材為鎳. 銀合金,在反應腔室中將鎳銀金屬形成在基材上。:C. Next, the precious metal particles to which the catalytic metal has been attached are scattered on the surface of the adhesive barrier layer 38, wherein the precious metal particles to which the catalytic metal has been attached are dispersed on the surface of the adhesive barrier layer 38 in a number of ways. In the first method, the particles are mixed in a polymer glue, wherein the ratio of the precious metal particles of the catalytic metal to the polymer mash is 1:10 to 1:3, and the polymer glue contains one Cellulose resin (35 wt%), solvent dl-1-pair-dl-a-terpineol 50 wt%+, as a dispersant. .ate) 1 Owt% and glass powder 15wt%. The function of this glass frit is to increase the adhesion. Then, the mixed colloid is coated on the surface of the adhesive barrier layer 38, baked and baked in air at 300 ° C to 500 ° C to remove the polymer glue, so that the catalyst metal can be attached. The precious metal particles are interspersed on the adhesive barrier layer 38. The second type of dispersion is to add precious metal particles with a catalyst metal attached thereto to an organic solvent such as ethanol, which is ultrasonically oscillated to disperse the particles in the mixture, and then directly apply the mixture to the adhesive. On the barrier layer 38, the organic solvent is removed by baking, and the greedy metal particles to which the catalyst metal is adhered are spread on the adhesion barrier layer 38. : 21 1364058 MEGA 06-020TW-P05014 The second method for forming the riding metal layer 40: The second method for forming the catalytic metal layer 40 is to use a method of collecting a clock, which is a formula. Provide a town full: a total target, nickel silver. He/gold target., nickel-palladium alloy target., nickel. Platinum alloy target or: record copper i alloy target, among which better target In the case of a nickel. silver alloy, nickel silver metal is formed on the substrate in the reaction chamber. :

請參閱第lg圖所示,將基底10置於反應器之中進行 熱化學氣相沉積反應即可在觸媒金屬層40表面上形成厚 度介於100奈米至20微米之間的一奈米碳管層42。其中 反應氣體包括情性氣體(例如氦、氬、氮等)、氫氣及碳源 氣體,其中碳源氣體包括碳氫化合物或一氧化碳、反應溫 度為攝度400°C至600°C,反應壓力為0.5至3大氨壓,而 反應後所形成的奈米碳管層42之管徑分佈於1至200奈米 之間。另外可在基底10下表面或下方設置一磁性裝亶,如 此可在形成奈米碳管層42時吸引導電型奈米.碳管沉積在 觸媒金屬層40上:。 請參閱第lh圖所示,形成一黏著阻障層44在奈米碳 誓層42上,形成此黏著阻障層44之方法在上述形成黏著 阻障層38相同·,在此就不.加以論述。 請參閱第li圖所示,形成一種子層46在黏著阻障層 44上,此種子層46有利於後續金屬線路的設置,因此種 子層46之材質也隨後續的金屬線路材質有所變化。 當種子層46上是電鍍形成銅材質之金屬線路時,種子 層46.之材料係以銅為佳;當要電鍍形成銀材:質之金屬線路 時,種子層46之材料係以銀為佳;當要電鍍形成鈀材質之 22 1364058 "7— MEGA 06-020TW-P05014 金屬線路時,種子層46之材料係以鈀為佳;當要電鍍形成. 鉑材質之金屬線路時,種子層46.之材科係以鉑為佳;當要 .. 電鍍形成铑材質务金屬線路時,種子層46.之材料係.以·錄為' /: 佳;當要電鍍形成釘材質之金屬線路哼,種子層46:之材料 係以釕為佳;當要電鍍形成銖材質之金屬線路時,種子層.. 46 .之材料係以銖為佳;當:要電鏢形成鎳材貧之金屬線路 時,種子層46之材料係以録為佳。.Referring to FIG. 1g, a substrate 10 is placed in a reactor for thermal chemical vapor deposition to form a nanometer having a thickness between 100 nm and 20 μm on the surface of the catalytic metal layer 40. Carbon tube layer 42. The reaction gas includes an inert gas (such as helium, argon, nitrogen, etc.), hydrogen and a carbon source gas, wherein the carbon source gas includes hydrocarbon or carbon monoxide, the reaction temperature is 400 ° C to 600 ° C, and the reaction pressure is 0.5 to 3 large ammonia pressure, and the diameter of the carbon nanotube layer 42 formed after the reaction is distributed between 1 and 200 nm. Alternatively, a magnetic device may be disposed on the lower surface or below the substrate 10, so that a conductive carbon nanotube is attracted to the catalytic metal layer 40 when the carbon nanotube layer 42 is formed. Referring to FIG. 1h, an adhesive barrier layer 44 is formed on the nano-carbon mask layer 42. The method of forming the adhesive barrier layer 44 is the same as the formation of the adhesive barrier layer 38 described above. Discussion. Referring to Figure li, a sub-layer 46 is formed over the adhesion barrier layer 44. This seed layer 46 facilitates the placement of subsequent metal lines, and thus the material of the seed layer 46 also varies with subsequent metal line materials. When the seed layer 46 is plated to form a metal line of copper material, the material of the seed layer 46. is preferably copper; when the metal material is formed by electroplating to form a silver material: the material of the seed layer 46 is preferably silver. When the metal line of 22 1364058 "7- MEGA 06-020TW-P05014 is to be electroplated to form a palladium material, the material of the seed layer 46 is preferably palladium; when electroplating is formed to form a metal line of platinum material, the seed layer 46 The material of the material is preferably platinum; when it is electroplated to form the metal material of the bismuth material, the material of the seed layer 46. is recorded as '/: good; when the metal wire is to be plated to form a nail material哼, seed layer 46: the material is preferably 钌; when electroplating to form the metal line of bismuth material, the seed layer.. 46. The material is better than ;; when: to form a nickel-poor metal line The material of the seed layer 46 is preferably recorded. .

(· 請參閱第lj圖所示,形成一圖案化光阻層48在種子 層46上,此圖案化光阻層48具有至少一開口 .50,此開口 50暴露出部分之種子層46,此圖案化光阻層48有兩種型: 式,其係為:(1)濕膜光阻(liquid photoresist),其係利用單 一或多重的旋轉塗佈方式或者是印刷(printing)方式形 成。此濕膜光阻的厚度係介於3微米至60微米之間,而以 介於5微米至40微米之間為較佳者;以及(2)乾膜光阻(dry film Photoiesist),其係利用貼合方式(laminating.imethod) 形成。此乾膜光阻的厚度係介於30微米至300微米之間, 而以介於50微米至150微米之間為較佳者。另外,光阻可 以是正型.(positive-type)或負型(negative-type),而在護得更 好解析度上,則以正型厚光阻(positive-type thick photoresist)為較佳者。利用一對準機(aligner)或一倍(IX) 步進曝光機曝光此光阻。此一倍(IX)係指當光束從一光罩 (通常係以石英或硃璃構成)投影至晶圓上時,光罩上之圖 形縮小在晶.圓上的比例,且在光罩上之圖案比例係與在晶 圓上之圖案比例相同。對準機或一倍步進曝光機所使甩的 23 imm MEGA 06-020TW-P05014 光束波長係為436奈米(g-line) .、397奈米(h-line)、365奈 :. 来(i-line)、g/h line(結合 g-line 與:h-line)或 g/h/i linq(結合(1) As shown in FIG. 1j, a patterned photoresist layer 48 is formed on the seed layer 46. The patterned photoresist layer 48 has at least one opening .50. The opening 50 exposes a portion of the seed layer 46. The patterned photoresist layer 48 has two types: a formula, which is: (1) a liquid photoresist which is formed by a single or multiple spin coating method or a printing method. The thickness of the wet film photoresist is between 3 microns and 60 microns, preferably between 5 microns and 40 microns; and (2) the dry film photoiesist, which utilizes Forming a laminating method (laminating.imethod). The thickness of the dry film photoresist is between 30 micrometers and 300 micrometers, and preferably between 50 micrometers and 150 micrometers. In addition, the photoresist may be positive. Positive-type or negative-type, and in the case of better resolution, positive-type thick photoresist is preferred. (aligner) or double (IX) stepper exposes the photoresist. This double (IX) refers to when the beam is from a reticle ( When the film is usually projected on a wafer by quartz or glaze, the pattern on the reticle is reduced in proportion to the circle on the crystal, and the pattern ratio on the reticle is the same as the pattern on the wafer. The 23 imm MEGA 06-020TW-P05014 beam wavelength system of the 准 or double stepper is 436 nm (g-line), 397 nm (h-line), 365 奈:. I-line), g/h line (combined with g-line and :h-line) or g/h/i linq (combined

;. 與-i-line)。使用光束波長.為 g/h.line.或 g/h/L :....line的·一倍步.進曝洗機(:或一倍對準機)可在厚光阻或.厚感.. • 光牲聚合物..的曝光上,提供較大的光強度(light .. 'intensity) ·;· ilfc外、此猶1案'化光阻層48之開口 50之-形狀包· 栝:線圈形狀.、方形或圓形等。· 請參閱第lk圖所示.,以電鍍:方式形成一金屬層52在 C® 開口.5.0内及揉護層34上的種子層46上,金屬層52比如 .是金、銅、·銀、.::赵、姐.、.缺、紅、鍊或鎮之_單層金.屬層結. 構,或是由上述金屬材質所組成的複合層,由上述金屬材 質所形成之金屬層52厚度係介於1微米至50微米,而較. 佳厚度可介於2:微来至30微米之間,在本實施例之中的金 屬層52係使用金為材質;另外若圖案化光阻層4S之開口 50為線圈形狀時,此奈米碳管層42及金屬層52係作為電 感.元件使用..、.1... 請參閱第1L.圖所示,去除圖案化光阻層48,其中去 除圖案化光阻層48可使用有機溶.劑方式去除,例如丙晒、 .醇顧等,另外也可使用無機溶劑方式去除,例如硫酸及雙 氧水(H2S04、Η202)等,再者此圖案化光阻層48也可用高 壓氧氣(〇2)燒化方式去除。 < .. - 請參閲第lm圖所示,去除未在金屬層52下方的獐子 .層46、.黏著祖障層44、奈米碳管層42、觸媒金屬層40及 . .黏著阻障層38,其中若種子層46之材質係為金時,則可 < ·δ 24 MEGA 06-020TW-P05014 ...利用含有碘之飯刻液去除,:¾去除黏:著阻障層44·及黏著阻 ...障層.3多的方式分為乾式蝕刻及濕式教刻,其中乾式餘刻像 ^ .用高壓氬氣進括濺擊錄刻:,.而濕式蝕刻在黏著阻障層.44,.、 38為.鈦鎢合金時’則可使.用雙氧水進行去除,另外奈来碳 :.管層42可以使用高壓氧氣(〇2)燒化方式去除,再者觸媒金 .屬層40也可使用高壓氬氣(Ar)藏擊去除,或是利甩雙氧水 及氨水(NH4OH、H2〇2)或雙氧水及氨化氫(H2〇2、HC1)餞刻 . 去除。 G· 請參聞第ln圖所示,進行切割步驟產生複數半導體晶 片_.(chip)54 ’再利用打線製程形成一導線56在金屬層52 表面上,藉由此導線56電連接至外界電路上。以上完成第 • 一實施例之第1態樣解說。 第一實施例之第2態樣: ..請參閱第1〇圖所示,第2 .態樣與第1 .態樣之.結構相 似’差異在於第2態樣可形成厚度介於2微米至50微米之 間的.一聚合物層58覆蓋在保護層34及金屬層52上,並且 形成至少一開口的暴露出金屬層52表面,此聚合物層.58 可以,是聚酸亞胺(polyimide ’ PI)、苯基環丁稀 (benzocyclobutene,BCB)、聚對二曱笨(paryl0ne)、環氧基 材料(epoxy-based material),例如環氧樹脂或是由位於瑞 : 士之 Renens 的 Sotec Microsystems 所提供之 ph〇toepoxy. . SU-8、彈性.材料(elastomer),例如矽锏(silic〇ne)。而當此 聚合物層58.是為感光性材質時,可以僅利.用微影製程(無 須钕刻製程).來圖案化此聚合物層58 ;接著請參閱第ip圖 25 MEGA 06-020IW-P05014 所示將此聚合物層58進行硬化(cure)步驟,再進行切割;. 步驟同樣產圭複數半導:禮晶片(chLip)54,再利用打線製程形. 成導線56 :在聚合物層58開口 .60内之金屬層52.表面上,. 藉由此導線56電連接至外界電路上。以上完成第一實施例 之禁2態樣解說。.. 第一實施例之第3態樣. 請參閲第lq圖所示,第3態樣與第2態樣及第1態樣 之結構相似,差異在於第1態樣及第2態樣之導線56皆是 形成在細線路結構22之接墊32正上方,而第3態樣在形 成金屬層52步·驟時’此金屬層52即延伸至保護層34之開 口 36 —侧,並在金屬膚52表面上定義局部區域作為一金 屬接墊62,由俯視透視圖觀之此金屬接墊62與保護層34 之開口 36内的接墊32為不同位置,此第3態樣之結構在 +業界稱為「重.配置線‘(Redistribution. Layer,RDL)」.;請參 閱第lr圖所示,接著同樣去除圖案化光阻層48 ’並且去 除未在金屬層52下方的種子層46、黏著阻障層44、奈米 碳層層42、觸媒金屬層4Q及黏著阻障層38 ;·請參閱第Is 圖所示,同樣形成聚合物層58在保護層34及金屬層52 上,並且聚合物層58同樣形成至少一開口 60暴露出部分 金屬層52;請參閲第It圖所示,同樣將此聚合物層58進: 行硬化(cure)步驟,再進行切割步驟同樣產生複數半導體晶 片(chip)54 ,再利用打線製程形成導線56在聚合物層58 開口 60内之金屬層52表面土.,藉由此導線%電連接至外 界電路上。以上完成第一實施例之第3態檬解說。 TT64m MEGA 06-020TW-P05014 第一實施例之第4態樣.: 請參閱第..lu圖、第lv调及第lw圖所示,此第4態 樣與第1〜3實施態樣之結構相似.,.結構之差異在於第4.態 樣的金.屬層.52與保護層34之間設有另一厚度介於2.微米. 至.50微米之間的聚合物層.64,此聚合物層64之作用在於 缓衝進行打線製程時之應力,使金屬層52下方的元件層 12.不易受損,此聚合物層64與聚合物層58之材質相同, 其結構如第lu圖、第lv圖及第lw圖所示。以上完成第 c· 一實施例所有實施態樣解說。 此外,再此說明以下各實施例許多構造部分與第一實 施例之製程、材質及物性相同,因此就不加以論述,例如 第一實施例之基底10、元件層i2、金氧半電晶體14源極 16、汲極18 '閘極20、細線路結構22、接墊32、保護層 34、黏著阻障層38、觸媒金屬層40及奈米碳層層42等等, 所以以下實施例單純係解說構造上或特徵技術的不同之 處,在此特別聲明。;. with -i-line). Use beam wavelength. It is g/h.line. or g/h/L:....line one step. Into the exposure machine (: or double alignment machine) can be in thick photoresist or thick Sense.. • Light emulsion polymer.. provides greater light intensity (light .. 'intensity) ·; · ilfc, this case of 'the photoresist layer 48 of the opening 50 - shape package · 栝: Coil shape, square or round, etc. · Refer to the lk diagram. A metal layer 52 is formed by electroplating on the seed layer 46 in the C® opening .5.0 and on the buffer layer 34. The metal layer 52 is, for example, gold, copper, silver. ,:::Zhao, sister, .. lack, red, chain or town _ single layer of gold. is a layer of structure. Or a composite layer composed of the above metal materials, the metal layer formed by the above metal material The thickness of 52 is between 1 micrometer and 50 micrometers, and the thickness may be between 2 micrometers and 30 micrometers. In the embodiment, the metal layer 52 is made of gold; When the opening 50 of the resist layer 4S is in the shape of a coil, the carbon nanotube layer 42 and the metal layer 52 are used as inductors. The components are used.., .1... Please refer to the 1L. figure to remove the patterned photoresist layer. 48, wherein the patterned photoresist layer 48 can be removed by using an organic solvent, such as acrylonitrile, alcohol, etc., and can also be removed by using an inorganic solvent, such as sulfuric acid and hydrogen peroxide (H2S04, Η202), etc. The patterned photoresist layer 48 can also be removed by high pressure oxygen (〇2) firing. < .. - Referring to the lm diagram, the rafter layer 46, the adhesive apex layer 44, the carbon nanotube layer 42, the catalytic metal layer 40, and the adhesive layer not under the metal layer 52 are removed. The barrier layer 38, wherein if the material of the seed layer 46 is gold, it can be < δ 24 MEGA 06-020TW-P05014 ... using the iodine-containing rice engraving solution, : 3⁄4 to remove the adhesion: the barrier Layer 44· and adhesion resistance... barrier layer. More than 3 ways are divided into dry etching and wet teaching, where the dry type is like ^. Using high pressure argon gas to smear recording:, and wet etching When the adhesion barrier layer .44, . , 38 is a titanium tungsten alloy, it can be removed with hydrogen peroxide, and the carbon layer: tube layer 42 can be removed by high pressure oxygen (〇 2) burning, and then The catalyst layer 40 can also be removed by high pressure argon (Ar), or by hydrogen peroxide and ammonia (NH4OH, H2〇2) or hydrogen peroxide and hydrogen halide (H2〇2, HC1). Remove. G· Please refer to the ln diagram to perform a dicing step to generate a plurality of semiconductor wafers _.(chip) 54' and then use a wire bonding process to form a wire 56 on the surface of the metal layer 52, whereby the wire 56 is electrically connected to the external circuit. on. The first aspect of the first embodiment is explained above. The second aspect of the first embodiment: .. Please refer to FIG. 1 , the second aspect is similar to the structure of the first aspect. The difference is that the second aspect can form a thickness of 2 μm. A polymer layer 58 between 50 microns is overlying the protective layer 34 and the metal layer 52 and forms at least one open exposed metal layer 52 surface. The polymer layer .58 may be a polyimide. Polyimide 'PI', benzocyclobutene (BCB), paryl0ne, epoxy-based material, such as epoxy resin or by Renens in Switzerland The ph〇toepoxy. SU-8, elastic material (elastomer) provided by Sotec Microsystems, for example, silky silk. When the polymer layer 58 is a photosensitive material, the polymer layer 58 can be patterned only by a lithography process (without engraving process); then, see ip FIG. 25 MEGA 06-020IW -P05014 shows the curing step of the polymer layer 58 and then cutting. The steps are also the same as the semi-conductor: the wafer wafer (chLip) 54, and then the wire-forming process. The wire 56: in the polymer The metal layer 52 in the opening 58 of the layer 58 is electrically connected to the external circuit by the wire 56. The above-described example of the second embodiment is completed. The third aspect of the first embodiment. Referring to the lq figure, the third aspect is similar in structure to the second aspect and the first aspect, and the difference is in the first aspect and the second aspect. The wire 56 is formed directly above the pad 32 of the thin circuit structure 22, and the third aspect is formed on the side of the opening 36 of the protective layer 34 when the metal layer 52 is formed. A partial region is defined on the surface of the metal substrate 52 as a metal pad 62. The metal pad 62 is viewed from a top view in a different position from the pad 32 in the opening 36 of the protective layer 34. The structure of the third aspect In the + industry, it is called "Redistribution. Layer (RDL)"; see the lr figure, then the patterned photoresist layer 48' is also removed and the seed layer not under the metal layer 52 is removed. 46. Adhesive barrier layer 44, nanocarbon layer 42, catalytic metal layer 4Q, and adhesion barrier layer 38; see also shown in Figure I. Polymer layer 58 is also formed in protective layer 34 and metal layer 52. And the polymer layer 58 also forms at least one opening 60 to expose a portion of the metal layer 52; see the Figure It diagram, also The layer 58 is: a cure step, and the dicing step also produces a plurality of semiconductor chips 54 which are formed by the wire bonding process to form the surface of the metal layer 52 of the wires 56 in the openings 60 of the polymer layer 58. By this wire, the electrical connection is made to the external circuit. The third state of the first embodiment is completed above. TT64m MEGA 06-020TW-P05014 The fourth aspect of the first embodiment.: Please refer to the ..lu diagram, the lvth adjustment and the lwth diagram, the fourth aspect and the first to third embodiments. The structure is similar. The difference in structure is that there is another polymer layer between the gold layer of .4 and the protective layer 34 having a thickness between 2. micrometers and .50 micrometers. The polymer layer 64 functions to buffer the stress during the wire bonding process, so that the component layer 12 under the metal layer 52 is not easily damaged. The polymer layer 64 is the same as the polymer layer 58 and has the same structure. The lu map, the lv graph, and the lw graph are shown. The above description of all the embodiments of the c. an embodiment is completed. In addition, it is to be noted that many of the structural parts of the following embodiments are the same as the processes, materials, and physical properties of the first embodiment, and therefore will not be discussed. For example, the substrate 10, the element layer i2, and the MOS semiconductor 14 of the first embodiment are not discussed. The source electrode 16, the drain electrode 18', the gate electrode 20, the thin circuit structure 22, the pad 32, the protective layer 34, the adhesion barrier layer 38, the catalytic metal layer 40, the nano carbon layer 42 and the like, so the following embodiments The mere explanation of the differences in the construction or feature technology is specifically stated here.

第二實施例之第1態樣: 請參閱第2a圖所示,第二實施例之基底10、元件層 12、細線路結構22及保護層.34與第一實施例之結構相同, 相同部分在此就不加以論述,而不同點在於第二實施例在 保護層34形成至少二開口 66,此二開口 66分別暴露出細 .線路層24之一接墊68,此二開口 66的尺寸係介於04徼 来至200微米之間,並以介於1微米至100微米之間或5 微米至30微米之間為較佳者,另開口 66的形狀可以是圓 27 1364058 MEGA 06-020TW-P05014 形、正方形、長方形或多邊形,所以上述開口 68的尺寸是. 指圓形:的直徑尺寸、正方形的邊長尺寸、多邊·形的最長對. V 角線尺寸或長方形的寬度:尺寸,.其中長方形的長度尺寸則. 是介於1微求至.1.釐米並以介於.5微米至200微求為較.V .佳者。 ..請參閱第2b圖所示,‘形成一黏著阻障層70在保護層. 34及接墊68上,此黏著阻障層70的厚度係介於α.〇2微 :' .The first aspect of the second embodiment: Referring to FIG. 2a, the substrate 10, the element layer 12, the thin wiring structure 22, and the protective layer .34 of the second embodiment are identical in structure to the first embodiment, and the same portion It will not be discussed here, but the difference is that the second embodiment forms at least two openings 66 in the protective layer 34. The two openings 66 respectively expose one of the pads 68 of the thin circuit layer 24. The dimensions of the two openings 66 are Between 04 徼 and 200 μm, and preferably between 1 μm and 100 μm or between 5 μm and 30 μm, the shape of the other opening 66 may be a circle 27 1364058 MEGA 06-020TW- P05014 is a shape, a square, a rectangle or a polygon, so the size of the above-mentioned opening 68 is: the diameter of the circle: the length of the square, the longest dimension of the polygon, the length of the V-angle or the width of the rectangle: the size. The length dimension of the rectangle is between 1 micro and .1 centimeters and is better than .5 micrometer to 200 microseconds. . . Please refer to FIG. 2b, 'forming an adhesive barrier layer 70 on the protective layer 34 and the pad 68, the thickness of the adhesive barrier layer 70 is between α.〇2 micro:'.

.米至0.8微米之間,.並以介於0.05微米至0.Ζ微米:之間的 厚度為較佳者;如第2c圖所示,.形成厚度介於1微米至 10微米之.間的一觸媒金屬層72在黏著阻障層70上;如第 2d圖所示,形成厚度介於100奈米至.20微米之間的一奈 米碳管層74在觸媒金屬層72上;如第2e圖所示,形成一 圖案化光阻層76在奈米碳管層74上,其中圖案化光阻層 .. .76具有複數開口 78暴露出部分的奈米碳管層74,且此圖.. 案化光阻層.74之厚度係介於3微米至¢0微米之間,而以 介於10微米至40微米之間為較佳者;如第2f圖所示,利. C® 用:高壓氬氣(Ar)氣濺擊將所暴露的奈米碳管層74.及觸媒 金屬層72去除,此時圖案化光阻層74的厚度會減少一定. .程度,所以此圖案化光阻廣76厚度必須有一定厚度,較佳 者圖案化光阻層74厚度大於奈米碳管層74三倍以上:;如 : 第2g圖所示,去除圖案化光阻層76 ?再移除未在奈米碳 - 管層74下方的觸媒金孱層.7.2及黏著阻障層70 ;如第2h 圖所示,形成一聚合物層8Ό,覆蓋在保護層34及奈米碳管. ‘層74上.,再進行聚會物層80硬化步驟;如第2i圖所示, 28 1364058 MEGA 06-020TW-P05014 .同樣再進行切割步驊,使基底10.形成複.數半導體晶片5“ 此第二實施例之第1態樣係説明:籍由奈·米碳管層74.連接至 ;少上接墊.68,此.奈求碳管層’:7.4做為連接線路 (interconnectib’n)之.用'也.自:作為/内部連接線路之用.途而'·:非 對外界電路連接,所以奈米碳管層74表面不需形成.其它金 屬層。如此.即完成第二實施例之第1態樣之解說。 第二實施例之第2.態樣; . .· C· 請參閱策2j圖所示,此第二實施例之第2態樣與第1 態樣結構相似:,,結構不同點在於奈米碳管層74與保護層 34之間形咸另—聚合物層82,.將奈米碳管層74與保護層 34隔開,而關於形成聚合物層82之方法則請參考第1實 施例之聚合物層5S之製程。 第二實施例之第3態樣;Between m and 0.8 μm, and preferably between 0.05 μm and 0.1 μm: as shown in Fig. 2c, forming a thickness between 1 μm and 10 μm. a catalyst metal layer 72 is adhered to the barrier layer 70; as shown in FIG. 2d, a carbon nanotube layer 74 having a thickness between 100 nm and .20 μm is formed on the catalytic metal layer 72. As shown in FIG. 2e, a patterned photoresist layer 76 is formed on the carbon nanotube layer 74, wherein the patterned photoresist layer . . . 76 has a plurality of openings 78 exposing a portion of the carbon nanotube layer 74, Moreover, the thickness of the patterned photoresist layer 74 is between 3 micrometers and ¢0 micrometers, and preferably between 10 micrometers and 40 micrometers; as shown in FIG. 2f, C®: High-pressure argon (Ar) gas splashing removes the exposed carbon nanotube layer 74. and the catalytic metal layer 72, at which time the thickness of the patterned photoresist layer 74 is reduced to a certain extent. Therefore, the thickness of the patterned photoresist 76 must have a certain thickness. Preferably, the patterned photoresist layer 74 is more than three times thicker than the carbon nanotube layer 74; as shown in FIG. 2g, the patterned photoresist layer is removed. 76 ?Remove again The catalytic gold layer 7.2 and the adhesion barrier layer 70 under the carbon nanotube layer 74; as shown in Fig. 2h, a polymer layer 8 is formed, covering the protective layer 34 and the carbon nanotubes. On layer 74, the hardening step of the party layer 80 is performed; as shown in Fig. 2i, 28 1364058 MEGA 06-020TW-P05014. The cutting step is further performed to form the substrate 10. Forming a plurality of semiconductor wafers 5 The first aspect of the second embodiment is illustrated by: the connection of the carbon nanotube layer 74.; the upper pad. 68, which is the carbon tube layer: 7.4 as the connection line (interconnectib'n) Use 'also. From: as / internal connection line. Way and '·: non-external circuit connection, so the surface of the carbon nanotube layer 74 does not need to form. Other metal layers. So complete the second implementation The second aspect of the second embodiment. The second aspect of the second embodiment is similar to the first aspect The structure differs in that the carbon nanotube layer 74 and the protective layer 34 form a salty polymer layer 82. The carbon nanotube layer 74 is separated from the protective layer 34, and the polymer layer is formed. For the method of 82, please refer to the process of the polymer layer 5S of the first embodiment. The third aspect of the second embodiment;

請參閱第2k圖所示,此第二實施例之第.3態樣與第1 態樣結構相似,結構不同點在於聚合物層8 0上設有至少一 開口 84暴露出奈米碳管層)74,因此第二實施例之第3態 樣係揍續第2h圖之步驟,接著同.樣進行硬化步驟,使此聚 合物層80:硬化;如第2L圖所示,依序形成一黏著阻障層 86及一種子廣88在聚合物層80及所暴露奈米碳管層74 上;如第2m圖所示,形成一圖案化光阻層90在種子層88 上,此圖案化光阻層90之多數開口 92暴露出種子層88 ; 如第2n圖所示,電鍍形成厚度可介於1微米至30微米之 間一金屬層/94在開口 92内之種子層88上;如第2〇爵所 示,去.除圖案化光阻層、90,並且去徐未在金屬層94下方 29 136405? MEGA 06-020TW-P05014 ‘的種子層. . .8 著阻障層· %。此實施例態樣之金屬灣:9 4 -可韓由..打.線製程絶成.導線(圖中未牟)電連接至外界電路。. -第三實施例第:·ι.態樣:.:. 參 * - * ·.. . - . .* ; *. . --···: …色閱—第—3a—辱―所! 10、元件層U及保護層34與第一實施例之绪構相同,其- 中_路結構.22中,相同部分在此就不加以論述,而不同 點在於第三實施例之第1態樣的保護層34沒有任何開口暴 露出接墊32。 請參閱第3b圖所示,形成一黏著阻障層9.6.在保護層 34上,此黏著降障層96的厚摩係介於〇〇2微求至〇8微 米之間,並以介S0.05微米至〇2微米之間的厚度為較佳 者;如第3c圖所示,形成厚度介於i微米至ι〇微米之間 的-觸媒金屬層.98在黏著阻障層%上;如第乂圖所示, 、形成厚度介於_奈米至20微来之間的一奈米碳管層贈 在觸媒金屬層98上;如第3e圖所示,形成厚度係介於〇 〇2 微来至0.8微米之間的一黏著阻障層1〇2及一種子層1〇4 在奈.来碳管層歸上;如第3Γ_所示,形成一圖案化光阻 層1〇6在種子層1〇4上.,其中圖案化光阻層1⑽具有至少 -線圈形狀之開口⑽暴露出部分的種子層104表面且 此圖案化光阻層1G6之厚度係介於3微米至6Ό微米之間, 而以介於5微米至40微米之間為較佳者;如第%圖所示, 電鐘形成厚度介於1微米至3G _之間的—金屬層ιι〇 在開口 1〇8内的種子層104上;如第3h圖所示,去除圖案 化光阻層1〇6 ,並且去除未在金屬層11〇下方的種子層 30 MEGA 06-020TW-P05014 1〇4、黏著阻障層. ίο》、奈米碳管層1〇〇、觸媒.金屬層98 及黏著阻障層9.6 ;如第3i圖所示,.此金屬層呈現線 调形狀’此線圈形狀的線路係為電感元件(丨nductor)之用 如弟3j圖阶示,形成一圖案化聚合物層U2位在金屬層u〇 及奋護層34上,,此圖案化聚合物層112之至少一開口114 暴露出金屬層110表面,在此實施例態樣圖案化聚合物層 II2之具有二開口 II4暴露出金屬層11〇,接著進行硬化步 驟’使圖案化聚合物層112硬化;如第:3k圖所示,進行切 割步驟,使基底10.切割形成複數半導體晶片54,並利用 打線製程形成導線56在開口 114内的金屬層110表面上, 經由導線56電連接至外界電路。 第三實施例第2態樣:: :請參閱第3L·圖所示,第三實施例之第2態樣與第三 實施例之第1態樣相似?不同點在於形成黏著阻障層96 之步驟前更形成一聚合物層116在保護層34上,對於結樽 而言’也就是在黏著阻障層96與保護層34之間設有聚合 物層116,此聚合物層116硬化後,接著如同第三實施例 之第1態樣之製程,再接續與第三實施例之第^態樣相同 製程形成黏著阻障層96、觸媒金屬層98、奈米碳管層1〇〇、 黏著卩且障層102、種子層104、圖案化光阻層106、金屬層 110、圖案化聚合物層112及導線56等,而此實施例態樣 之聚合物層、116作用在於將所形成線圈狀之奈米碳管層 100輿細線路結構μ之間诒距離拉大,其中原因在於當經 由導線56連接外界電路時,此線圈形狀之奈米碳管層.1〇() 1364058 • » MEGA 06-020TW-P05014 通過電流,即產生感應電動勢,使保護層34.下方的細線路 層24感應,此時線圈形狀冬奈米碳管層100會產生大量的 靜電,太約為1500伏特(V),因此聚合物層116必須有一 定程度的厚.度將涑圈形狀之奈米碳管層1〇〇與細線路層.24 隔開,才能防止細線路層.24損壞。 第四實施例第1態樣:Referring to FIG. 2k, the third embodiment of the second embodiment is similar to the first aspect structure, and the structural difference is that at least one opening 84 is provided on the polymer layer 80 to expose the carbon nanotube layer. 74, so the third aspect of the second embodiment is followed by the step of FIG. 2h, followed by a hardening step to harden the polymer layer 80; as shown in FIG. 2L, sequentially form a Adhesive barrier layer 86 and a sub-bump 88 are on polymer layer 80 and exposed carbon nanotube layer 74; as shown in FIG. 2m, a patterned photoresist layer 90 is formed on seed layer 88, which is patterned. A plurality of openings 92 of the photoresist layer 90 expose the seed layer 88; as shown in FIG. 2n, a seed layer 88 having a thickness between 1 micrometer and 30 micrometers and a metal layer/94 in the opening 92 may be formed; As shown in the 2nd Duke, go. Except for the patterned photoresist layer, 90, and go to the seed layer below 29 136405? MEGA 06-020TW-P05014' of the metal layer 94. .8 with barrier layer · % . The metal bay of this embodiment: 9 4 - can be Han.. The wire process is absolutely formed. The wire (not shown) is electrically connected to the external circuit. - The third embodiment:: ι. Aspect: .:. 参 * - * ·.. . - . .* ; *. . --···: ... color reading - the third - a - humiliation 10. The component layer U and the protection layer 34 are the same as those of the first embodiment, and the same portion is not discussed here, but differs in the first embodiment of the third embodiment. The protective layer 34 of the aspect does not have any openings exposing the pads 32. Referring to FIG. 3b, an adhesive barrier layer is formed. 9.6. On the protective layer 34, the thickness of the adhesive barrier layer 96 is between 微2 and 〇8 μm, and is referred to as S0. A thickness between .05 microns and 〇2 microns is preferred; as shown in Figure 3c, a -catalytic metal layer having a thickness between i microns and ι μm is formed. 98% on the adhesion barrier layer As shown in the figure, a carbon nanotube layer having a thickness between _ nanometer and 20 micrometers is formed on the catalytic metal layer 98; as shown in Fig. 3e, the thickness is formed黏2 between 0 micrometers and 0.8 micron, an adhesive barrier layer 1〇2 and a sub-layer 1〇4 are placed on the carbon nanotube layer; as shown in the third layer, a patterned photoresist layer is formed. 1〇6 is on the seed layer 1〇4, wherein the patterned photoresist layer 1 (10) has at least a coil-shaped opening (10) exposing a portion of the surface of the seed layer 104 and the patterned photoresist layer 1G6 has a thickness of 3 μm. Between 6 and 10 microns, and preferably between 5 and 40 microns; as shown in the % view, the electric clock forms a thickness between 1 micron and 3G _ - the metal layer is open at the opening 1 On the seed layer 104 in 8; as shown in FIG. 3h, the patterned photoresist layer 1〇6 is removed, and the seed layer 30 not under the metal layer 11〇 is removed. MEGA 06-020TW-P05014 1〇4, Adhesive resistance Barrier. ίο》, carbon nanotube layer 1〇〇, catalyst. Metal layer 98 and adhesion barrier layer 9.6; as shown in Fig. 3i, this metal layer exhibits a line shape 'this coil shape line system For the use of an inductor element, such as a 3nductor, a patterned polymer layer U2 is formed on the metal layer u and the layer 34, and at least one opening 114 of the patterned polymer layer 112 is formed. Exposing the surface of the metal layer 110, in this embodiment, the patterned polymer layer II2 has two openings II4 exposing the metal layer 11〇, and then performing a hardening step 'hardening the patterned polymer layer 112; as shown in the figure: 3k As shown, a cutting step is performed to scribe the substrate 10. The plurality of semiconductor wafers 54 are formed, and the wire 56 is formed on the surface of the metal layer 110 in the opening 114 by a wire bonding process, and electrically connected to the external circuit via the wires 56. Third Aspect of the Third Embodiment:: : Referring to Fig. 3L, the second embodiment of the third embodiment is similar to the first aspect of the third embodiment. The difference is that a polymer layer 116 is formed on the protective layer 34 before the step of forming the adhesive barrier layer 96. For the crucible, that is, a polymer layer is provided between the adhesive barrier layer 96 and the protective layer 34. 116. After the polymer layer 116 is hardened, the adhesion barrier layer 96 and the catalyst metal layer 98 are formed by the same process as the first embodiment of the third embodiment. , the carbon nanotube layer 1 〇〇, the adhesive layer and the barrier layer 102, the seed layer 104, the patterned photoresist layer 106, the metal layer 110, the patterned polymer layer 112 and the wires 56, etc., and the embodiment The polymer layer, 116 acts to enlarge the distance between the formed coiled carbon nanotube layers 100 and the fine line structure μ, because the coil shape of the nano carbon is connected when the external circuit is connected via the wire 56. Tube layer.1〇() 1364058 • » MEGA 06-020TW-P05014 By the current, that is, the induced electromotive force is generated, the thin circuit layer 24 under the protective layer 34 is induced, and the coil shape winter carbon nanotube layer 100 is generated. A lot of static electricity, too close to 1500 volts (V), so the polymer 116 must have a certain degree of thickness. The shape of the ring carbon nanotube Su wiring layer and the thin layer 1〇〇 spaced .24, .24 in order to prevent damage to the fine wiring layer. The first aspect of the fourth embodiment:

第四實施例第.1態樣與第三實施例第1.態樣結構相 似,請參閱第4a圖所示,此第4a圖係接續第三實施.例之 第3a圖,其係形成一黏著阻障層118在保護層34上,此 黏著阻障層118的厚度係介於Q.02微米至0.8徵米之間, 並以介於0.05微米至0.2微米之間的厚度為較佳者;如第 " 4b圖所示,形成厚度介於1微米至10微米之間的一觸媒 ' 金屬層120在黏著阻障層118上;如第4c圖所示,形成庠 度介於100奈米至20微米之間的一奈米碳管層122在觸媒 金屬層120上,奈米碳管層122係由非導電之奈来碳管所 構成;如第4d圖所示,形成一圖案化光阻層124在奈米碳 C®. 管層122上,其中圖案化光阻層124具有複數開口 126暴 露出部分的奈米碳管層122,且此圖案化光阻層124之厚 度係介於3微米至60微米之間,而以介於10微米至40 微米之間為較佳者;如第4e圖所示,利用高壓氬.氣(Ar) - 氣濺擊將所暴露的奈米碳管層122及觸媒金屬層120去 除,此時圖案化光阻層124的厚度會減少一定程度,所以 此圖案化光阻層.124厚度必須有一定厚度,較佳者圖案化 光阻層124厚度大於奈来碳管層122三倍以上;如第4f < B > 32 1364058 MEGA 06-020TW-P05014 圖所示’接著·.去除圖案化光阻層124,再移除未夺奈米碳: 瞢層·122 .下方的黏著阻障層118,此時奈.米碳管層】2.2係 呈現平面,由俯梘幽觀之可為圓形、方形或其他幾何形:狀;.. 如第4g圖所示,:同.樣再進行切割-步驟·,使基底10.形成祿.. 數半夢體晶片54,每一個半導體晶片54上皆有一平面奈 米碳管層I22。因此第西實施例第1態樣之平面奈米碳管 層122係作為散熱器凌用,藉由奈米碳管良好的導熱性.The first embodiment of the fourth embodiment is similar to the first embodiment of the third embodiment. Please refer to FIG. 4a, which is a third embodiment of the third embodiment. The adhesive barrier layer 118 is on the protective layer 34. The thickness of the adhesive barrier layer 118 is between Q.02 micrometers and 0.8 micrometers, and the thickness is preferably between 0.05 micrometers and 0.2 micrometers. As shown in the first " 4b, a catalyst 'metal layer 120 having a thickness between 1 micrometer and 10 micrometers is formed on the adhesion barrier layer 118; as shown in Fig. 4c, the formation has a twist of 100 A carbon nanotube layer 122 between nanometers and 20 micrometers is on the catalytic metal layer 120, and the carbon nanotube layer 122 is composed of a non-conductive carbon nanotube; as shown in Fig. 4d, a The patterned photoresist layer 124 is on the nanocarbon C®. tube layer 122, wherein the patterned photoresist layer 124 has a plurality of openings 126 exposing a portion of the carbon nanotube layer 122, and the thickness of the patterned photoresist layer 124 The system is between 3 microns and 60 microns, and preferably between 10 microns and 40 microns; as shown in Figure 4e, using high pressure argon (A) - gas splashing The exposed carbon nanotube layer 122 and the catalytic metal layer 120 are removed, and the thickness of the patterned photoresist layer 124 is reduced to a certain extent. Therefore, the thickness of the patterned photoresist layer 124 must have a certain thickness, preferably a pattern. The thickness of the photoresist layer 124 is more than three times greater than that of the carbon nanotube layer 122; as shown in FIG. 4f < B > 32 1364058 MEGA 06-020TW-P05014, the photo-resist layer 124 is removed. In addition to the lack of nano carbon: 瞢 layer · 122. Below the adhesive barrier layer 118, at this time the Nai. carbon tube layer] 2.2 series appears flat, from the gaze can be round, square or other geometric shape : as shown in FIG. 4g, the same as the cutting-step, the substrate 10 is formed into a Lu.. half-dream wafer 54, each of which has a planar nanocarbon. Tube layer I22. Therefore, the planar carbon nanotube layer 122 of the first aspect of the west embodiment is used as a heat sink, and the carbon nanotubes have good thermal conductivity.

質’將半導禮晶片54運作時(電流瑪過時)產生的熱量快速. 移除。 第四實施例第2態樣:. 請參閱第4h圖所示,第四實施例第2態樣與第四實施 例第1態樣結構相似,其中結構上之差異在於第1態樣的 非導電性之奈米碳管層122係設在保護層34上,並且位在 基底10的主動表面上方,而第2態樣的奈米碳.管層1?2 係設置在基底1〇的非主動表面上,而將奈米碳;管層122-The quality of the heat generated by the semi-conductive wafer 54 (current is over) is quickly removed. The second aspect of the fourth embodiment: Please refer to FIG. 4h, the second embodiment of the fourth embodiment is similar to the first aspect of the fourth embodiment, wherein the difference in structure is in the first aspect. The conductive carbon nanotube layer 122 is disposed on the protective layer 34 and is positioned above the active surface of the substrate 10, and the second aspect of the nanocarbon tube layer 1? 2 is disposed on the substrate 1 Active surface, while nano carbon; tube layer 122-

設置在基底1〇的非主動表面上的優點在於可減少奈米碳 管層122製造過程對保護層34的損害,並且不用佔.用保護 層34上的使用空間,例如可在保護層34上利用電鐘.製程 進行金屬.材質的重配Ϊ線路(Redistribution Layer,: RpL), 連接線路(intereonnection)、電感元件(inductor)、凸塊(bump) 等,或是如同第一實施例、第二實施例及第三實施例在保 護層上形成奈米破管材質的重配置線路(RedistributionThe advantage of being disposed on the inactive surface of the substrate 1 is that the damage of the protective layer 34 during the manufacturing process of the carbon nanotube layer 122 can be reduced, and the use space on the protective layer 34 is not required, for example, on the protective layer 34. Using a clock, a process, a redistribution layer (RpL), an intereonnection, an inductor, a bump, etc., or as in the first embodiment, The second embodiment and the third embodiment form a reconfigurable line of the nano tube material on the protective layer (Redistribution

Layer,. RD.L)、連接線路(interconneetioEi)、電感元件 (inductor) <凸塊(bump)等’在此就不加以重覆論述。: 33 1364058 MEGA 06-020TW-P05014 本發明係將奈米碳管應用在半導體的保護層上之結構:· : · (cjveepakiyatioit.sclie.nie)及散..熱結構上;.藉由奈米藏.營良. : \好:的·:導電特性、可撓曲及:高強度,使啐導體元件的線路更:ΊLayer,. RD.L), connection line (interconneetioEi), inductance element (inductor) <bump, etc.' are not repeated here. : 33 1364058 MEGA 06-020TW-P05014 The present invention relates to a structure in which a carbon nanotube is applied to a protective layer of a semiconductor: · ( ) (cjveepakiyatioit.sclie.nie) and a thermal structure;营良. : \好:的: Conductive properties, flexibility and: high strength, make the circuit of the conductor element more: Ί

W 細、更密'集:,'並利用奈米碳管的高導熱性.,使半導翬元件: * 的散熱效能更隹。; 以:上所述你藉由實施例說明本發明之特點,其目的在.' .使熟習該技.術者能暸解本發明之内容並據以實施,而非限.. 定本發明之專利範:圍,故.,凡其他未脫離本發明所揭示之.. G 鲁 精神所完成之等效修飾或修改,仍應包含在以下所述之申 請專利範圍中。 .【圖式簡單說明】. 圖式說明:: 第la.圖至第In圖為本發明第一實施例之第1態樣之.示意 圖。.. 第1〇圖至第lp圖為本發明第一實雒例之第2態樣之示意W finer, more dense 'set:, 'and use the high thermal conductivity of carbon nanotubes., so that the semi-conducting element: * heat dissipation is more sturdy. In the above description, the features of the present invention are described by way of example, and the purpose of the present invention is to enable the skilled person to understand the contents of the present invention and to implement it, and not to limit the patent of the present invention. The equivalent modifications or modifications made by G. G. Spirit are not included in the scope of the patent application described below. BRIEF DESCRIPTION OF THE DRAWINGS: The following is a schematic view of a first aspect of the first embodiment of the present invention. . . . 1 to lp are schematic diagrams showing the second aspect of the first embodiment of the present invention

第1 q圖至第lw圖為本發明第二實施例之第3態樣之示意 Μ . ..: ‘ . 第2a圖至第2i圖為本發明第乓實施例之第1態樣之示意 圖。 第2j圖為本發明第二實施例之第2態樣之示意圖:。. .第+2k圖至第2〇圖為第.二實施例冬第.3態樣之示意圖。... .第3a圖至第3k.圖為本發明第三實施例之第.1態樣之示意 34 1364058 MEGA 06-020TW-P05014 圖.:。...Ο:..::..::. · . . 第.31/圖為本發明第三實施例之第2態樣之示意圖。:: 第4a賓至第4g圖.為本發明第.四實施例之第1態樣之示意 固,' · ·· 第4h圖為本發明第四實施例之第2態樣之示意圖。 圖號說明1a to 1w are schematic diagrams showing a third aspect of the second embodiment of the present invention. . . : ' . 2a to 2i are schematic views showing a first aspect of the first pome embodiment of the present invention. . 2j is a schematic view showing a second aspect of the second embodiment of the present invention: . . . 2k to 2nd is a schematic diagram of the second aspect of the second embodiment. Fig. 3a to Fig. 3k are diagrams showing the first aspect of the third embodiment of the present invention. 34 1364058 MEGA 06-020TW-P05014 Fig.: ...Ο:..::..::. . . . Fig. 31/ is a schematic view showing a second aspect of the third embodiment of the present invention. :: 4a to 4g. Fig. 4 is a schematic view showing a first aspect of the fourth embodiment of the present invention, and Fig. 4h is a schematic view showing a second aspect of the fourth embodiment of the present invention. Figure number description

10 _.基底 12 光件層 14 金氧半電晶體 16 源極 18 汲極 20 蘭極 22 細線路結構 24 細線路層 26 細線路介電層 28 開口 30 導電.栓塞 32 接墊 34 保護層. 36 開口... 38 :黏著阻障層 40 觸媒金屬層 42 奈米碳層層. 44 黏著阻障層 46 種子層 48 圖案化光阻層 50 開口 5.2 金屬層 54 半導體晶片 56 導線 58 聚合物層 60 開口 62 金屬接墊 64 聚合物層 66 開口 68 接墊 70 .黏著阻障層. 72 觸媒金屬層 74 奈米.碳管.+層 76 . .圖案化光阻層 35 136405810 _. Substrate 12 Light layer 14 Gold oxide semi-transistor 16 Source 18 Deuterium 20 Blue Pole 22 Fine circuit structure 24 Thin circuit layer 26 Fine circuit dielectric layer 28 Opening 30 Conductive. Plug 32 Pad 34 Protective layer. 36 opening... 38: adhesive barrier layer 40 catalytic metal layer 42 nanocarbon layer. 44 adhesive barrier layer 46 seed layer 48 patterned photoresist layer 50 opening 5.2 metal layer 54 semiconductor wafer 56 wire 58 polymer Layer 60 opening 62 metal pad 64 polymer layer 66 opening 68 pad 70. adhesion barrier layer. 72 catalyst metal layer 74 nanotube. carbon tube. + layer 76. patterned photoresist layer 35 1364058

MEGA 06-020TW-P05014 78 .開口 . 80 82 · 聚合物層 84 86 黏著P且障層.. 88 90 圖案化光阻層 92 94 金屬層 96 98 觸媒金屬層 100 102 黏著阻障層 104 106 圖案化光阻層 108 110 金屬層 112 114 開口 116 118 黏著阻障層 120 122 奈米碳管.層 124 126 開口 聚合物層 開口 種子層 開口 黏著阻障層· 奈米碳管層 種子層 π . 圖案化聚合物層 聚合物層 觸媒金屬.層 圖案化光阻層 cmMEGA 06-020TW-P05014 78 . Opening. 80 82 · Polymer layer 84 86 Adhesive P and barrier layer. 88 90 Patterned photoresist layer 92 94 Metal layer 96 98 Catalyst metal layer 100 102 Adhesion barrier layer 104 106 Patterned photoresist layer 108 110 metal layer 112 114 opening 116 118 adhesion barrier layer 120 122 carbon nanotubes layer 124 126 open polymer layer opening seed layer opening adhesion barrier layer nano silicon tube layer seed layer π . Patterned polymer layer polymer layer catalyst metal. layer patterned photoresist layer cm

3636

Claims (1)

1364058 第095143682號專利申請案 中文申請專利範圍#換本(101年2月) 十、申請專利範圍 1. 一種晶片,包括:1364058 Patent application No. 095143682 Chinese patent application scope #换本(February 101) X. Patent application scope 1. A wafer, including: 一基底; 一第一電晶體,設置於該基底上; 一第二電晶體,設置於該基底上; 一絕緣層,位於該基底之上,且該絕緣層具有 一第一開口與一第二開口;a substrate; a first transistor disposed on the substrate; a second transistor disposed on the substrate; an insulating layer over the substrate, the insulating layer having a first opening and a second Opening 一奈米碳管線路,位於該第一開口與該第二開 口之間的該絕緣層之上,且該奈米碳管線路經由 該第一開口連接該第一電晶體以及經由該第二開 口連接該第二電晶體;以及 一金屬層,位於該絕緣層上方,且該金屬層連 接該奈米碳管線路。a carbon nanotube line above the insulating layer between the first opening and the second opening, and the carbon nanotube circuit is connected to the first transistor via the first opening and via the second opening Connecting the second transistor; and a metal layer above the insulating layer, and the metal layer is connected to the carbon nanotube circuit. 2.如申請專利範圍第1項所述之晶片,更包括位於 該絕緣層上方以及位於該奈米碳管線路上方的一 聚合物層。 3 .如申請專利範圍第1項所述之晶片,其中該金屬 層連接一打線導線。 4.如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一穩壓元件。 5 .如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一變壓元件。 6.如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一感測元件。 143034-1010223.doc 1364058 7. 如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一靜態隨機存取記憶體單元(SRAM cell)。 8. 如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一動態隨機存取記憶體單元 (DRAM cell)。 9. 如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一快閃記憶體單元(flash memory cell)。 1 0 ·如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一磁性隨機存取記憶體(magnetic RAM,MRAM)單元。 1 1 .如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一記憶體單元(memory cell)。 12. 如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一可消除可程式唯讀記憶體單元 (EPROM cell)。 13. 如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一唯讀記憶體單元(ROM cell)。 14. 如申請專利範圍第1項所述之晶片,其中該金屬 層的厚度介於1微米至30微米之間。 1 5 .如申請專利範圍第1項所述之晶片,其中該絕緣 層包括厚度介於0.25微米至1.2微米之間的氮化 石夕(silicon nitride)。 143034-10I0223.doc 1364058 1 6.如申請專利範圍第1項所述之晶片,其中該絕緣 層包括厚度介於0.2微米至1.2微米之間的一氮化 物。 17. 如申請專利範圍第1項所述之晶片,更包括設置 於該基底上的一靜電放電防護電路。 18. 如申請專利範圍第1項所述之晶片,其中該基底 為一 $夕基底。 1 9.如申請專利範圍第1項所述之晶片,其中該基底 係選自砷化鎵基底、矽化鍺基底或具有磊晶矽在 絕緣層上(silicon-on-insulator,SOI)之基底。 2 0 . —種晶片,包括: 一基底; 一電晶體,設置於該基底上;以及 一電感元件,位於該基底之上,且該電感元件 的組成包括奈米碳管。 2 1 .如申請專利範圍第20項所述之晶片,其中該電感 元件經由一打線導線連接一外界電路。 2 2.如申請專利範圍第20項所述之晶片,更包括位於 該電感元件之上的一聚合物層。 2 3 .如申請專利範圍第2 0項所述之晶片,更包括設置 於該基底上的一穩壓元件。 2 4.如申請專利範圍第20項所述之晶片,更包括設置 於該基底上的一變壓元件。 25.如申請專利範圍第20項所述之晶片,更包括設置 143034-1010223.doc 1364058 於該基底上的一感測元件。 26. 如申請專利範圍第20項所述之晶片,更包括設置 於該基底上的一靜態隨機存取記憶體單元。 27. 如申請專利範圍第20項所述之晶片,更包括設置 於該基底上的一動態隨機存取記憶體單元。 28. 如申請專利範圍第20項所述之晶片,更包括設置 於該基底上的一快閃記憶體單元。 2 9.如申請專利範圍第20項所述之晶片,更包括設置 於該基底上的一磁性隨機存取記憶體單元。 30. 如申請專利範圍第20項所述之晶片,更包括設置 於該基底上的一記憶體單元。 31. 如申請專利範圍第20項所述之晶片,更包括設置 於該基底上的一可消除可程式唯讀記憶體單元。 3 2.如申請專利範圍第20項所述之晶片,更包括設置 於該基底上的一唯讀記憶體單元。 3 3.如申請專利範圍第20項所述之晶片,其中該電感 元件為線圈形狀》 3 4.如申請專利範圍第20項所述之晶片,其中該電感 元件的組成更包括一觸媒金屬層。 3 5 .如申請專利範圍第2 0項所述之晶片,更包括位於 該基底與該電感元件之間的一聚合物層。 3 6.如申請專利範圍第20項所述之晶片,更包括位於 該基底與該電感元件之間的一絕緣層。 3 7.如申請專利範圍第20項所述之晶片,更包括設置 143034-1010223.doc 1364058 於該基底上的一靜電放電防護電路。 38.如申請專利範圍第20項所述之晶片,其中該基 為一 $夕基底。 3 9.如申請專利範圍第20項所述之晶片,其中該基 係選自砷化鎵基底、矽化鍺基底或具有磊晶矽 絕緣層上(silicon-on-insulator,SOI)之基底。 4 0 . —種晶片,包括: 一基底; 一第一電晶體,設置於該基底上; 一第一聚合物層,位於該基底之上,且該第 聚合層具有一第一開口;以及 一奈米碳管線路,位於該第一聚合物層之上 且該奈米碳管線路經由該第一開口連接該第一 晶體。 4 1 .如申請專利範圍第4 0項所述之晶片,更包括設 於該基底上的一第二電晶體,且該第一聚合物 具有一第二開口,該奈米碳管線路經由該第二 口連接該第二電晶體。 42.如申請專利範圍第41項所述之晶片,其中該奈 碳管線路係位於該第一開口與該第二開口之間 該第一聚合物層之上。 43 .如申請專利範圍第40項所述之晶片,更包括位 該第一聚合物層之上的一金屬層,且該金屬層 接該奈米碳管線路。 底 底 在 電 置 層 開 米 的 於 連 143034-1010223.doc 1364058 4 4.如申請專利範圍第43項所述之晶片,其中該金屬 層的厚度介於1微米至1 〇微米之間。 45.如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一感測元件。 4 6.如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一靜態隨機存取記憶體單元。 4 7.如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一動態隨機存取記憶體單元。 48.如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一快閃記憶體單元。 4 9.如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一磁性隨機存取記憶體單元。 50.如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一記憶體單元。 5 1 .如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一可消除可程式唯讀記憶體單元。 52. 如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一唯讀記憶體單元。 53. 如申請專利範圍第40項所述之晶片,更包括位於 該第一聚合物層上方以及位於該奈米碳管線路上 方的一第二聚合物層。 54. 如申請專利範圍第40項所述之晶片,更包括設置 於該基底上的一穩壓元件。 55. 如申請專利範圍第40項所述之晶片,更包括設置 143034-1010223.doc 1364058 於該基底上的一變壓元件。 56. 如申請專利範圍第40項所述之晶片,更包括 ,於該基底上的一靜電放電防護電路。 57. 如申請專利範圍第40項所述之晶片,其中該 為一力夕基底。 58. 如申請專利範圍第40項所述之晶片,其中該 係選自神化嫁基底、碎化緒基底或具有蠢晶 絕緣層上(silicon-on-insulator,SOI)之基底 設置 基底 基底 矽在 143034-1010223.doc2. The wafer of claim 1 further comprising a polymer layer above the insulating layer and above the carbon nanotube line. 3. The wafer of claim 1, wherein the metal layer is connected to a wire. 4. The wafer of claim 1, further comprising a voltage stabilizing element disposed on the substrate. 5. The wafer of claim 1, further comprising a transformer element disposed on the substrate. 6. The wafer of claim 1, further comprising a sensing element disposed on the substrate. The wafer of claim 1 further includes a static random access memory cell (SRAM cell) disposed on the substrate. 8. The wafer of claim 1, further comprising a DRAM cell disposed on the substrate. 9. The wafer of claim 1, further comprising a flash memory cell disposed on the substrate. The wafer of claim 1, further comprising a magnetic random access memory (MRAM) unit disposed on the substrate. 1 1. The wafer of claim 1, further comprising a memory cell disposed on the substrate. 12. The wafer of claim 1, further comprising an erasable programmable read only memory unit (EPROM cell) disposed on the substrate. 13. The wafer of claim 1, further comprising a ROM cell disposed on the substrate. 14. The wafer of claim 1, wherein the metal layer has a thickness of between 1 micrometer and 30 micrometers. The wafer of claim 1, wherein the insulating layer comprises silicon nitride having a thickness of between 0.25 micrometers and 1.2 micrometers. The wafer of claim 1, wherein the insulating layer comprises a nitride having a thickness of between 0.2 μm and 1.2 μm. 17. The wafer of claim 1, further comprising an electrostatic discharge protection circuit disposed on the substrate. 18. The wafer of claim 1, wherein the substrate is a substrate. The wafer of claim 1, wherein the substrate is selected from the group consisting of a gallium arsenide substrate, a germanium telluride substrate, or a substrate having an epitaxial germanium on a silicon-on-insulator (SOI). A wafer comprising: a substrate; a transistor disposed on the substrate; and an inductive component on the substrate, and the composition of the inductive component comprises a carbon nanotube. The wafer of claim 20, wherein the inductive component is connected to an external circuit via a wire. 2. The wafer of claim 20, further comprising a polymer layer over the inductive component. 2 3. The wafer of claim 20, further comprising a voltage stabilizing element disposed on the substrate. 2. The wafer of claim 20, further comprising a transformer element disposed on the substrate. 25. The wafer of claim 20, further comprising a sensing element disposed on the substrate of 143034-1010223.doc 1364058. 26. The wafer of claim 20, further comprising a static random access memory cell disposed on the substrate. 27. The wafer of claim 20, further comprising a dynamic random access memory cell disposed on the substrate. 28. The wafer of claim 20, further comprising a flash memory unit disposed on the substrate. 2. The wafer of claim 20, further comprising a magnetic random access memory unit disposed on the substrate. 30. The wafer of claim 20, further comprising a memory unit disposed on the substrate. 31. The wafer of claim 20, further comprising an erasable programmable read only memory unit disposed on the substrate. 3. The wafer of claim 20, further comprising a read-only memory unit disposed on the substrate. 3. The wafer of claim 20, wherein the inductive component is in the form of a coil. The wafer of claim 20, wherein the composition of the inductive component further comprises a catalytic metal. Floor. The wafer of claim 20, further comprising a polymer layer between the substrate and the inductive component. 3. The wafer of claim 20, further comprising an insulating layer between the substrate and the inductive component. 3 7. The wafer of claim 20, further comprising an electrostatic discharge protection circuit disposed on the substrate of 143034-1010223.doc 1364058. 38. The wafer of claim 20, wherein the substrate is a base substrate. The wafer of claim 20, wherein the substrate is selected from the group consisting of a gallium arsenide substrate, a germanium telluride substrate, or a substrate having a silicon-on-insulator (SOI). a wafer comprising: a substrate; a first transistor disposed on the substrate; a first polymer layer on the substrate, the first polymer layer having a first opening; and a A carbon nanotube circuit is disposed above the first polymer layer and the carbon nanotube circuit is connected to the first crystal via the first opening. 4. The wafer of claim 40, further comprising a second transistor disposed on the substrate, and the first polymer has a second opening through which the carbon nanotube circuit is The second port is connected to the second transistor. 42. The wafer of claim 41, wherein the carbon nanotube circuit is located above the first polymer layer between the first opening and the second opening. 43. The wafer of claim 40, further comprising a metal layer over the first polymer layer, the metal layer being bonded to the carbon nanotube circuit. The substrate of the present invention is the same as the wafer of claim 43 wherein the thickness of the metal layer is between 1 micrometer and 1 micrometer. 45. The wafer of claim 40, further comprising a sensing element disposed on the substrate. 4. The wafer of claim 40, further comprising a static random access memory cell disposed on the substrate. 4. The wafer of claim 40, further comprising a dynamic random access memory cell disposed on the substrate. 48. The wafer of claim 40, further comprising a flash memory unit disposed on the substrate. 4. The wafer of claim 40, further comprising a magnetic random access memory unit disposed on the substrate. 50. The wafer of claim 40, further comprising a memory unit disposed on the substrate. 5 1. The wafer of claim 40, further comprising an erasable programmable read only memory unit disposed on the substrate. 52. The wafer of claim 40, further comprising a read-only memory unit disposed on the substrate. 53. The wafer of claim 40, further comprising a second polymer layer above the first polymer layer and on the surface of the nanocarbon pipeline. 54. The wafer of claim 40, further comprising a voltage stabilizing element disposed on the substrate. 55. The wafer of claim 40, further comprising a transformer element disposed on the substrate of 143034-1010223.doc 1364058. 56. The wafer of claim 40, further comprising an electrostatic discharge protection circuit on the substrate. 57. The wafer of claim 40, wherein the wafer is a substrate. 58. The wafer of claim 40, wherein the substrate is selected from the group consisting of a deified substrate, a shredded substrate, or a substrate having a silicon-on-insulator (SOI). 143034-1010223.doc
TW095143682A 2005-11-28 2006-11-27 Cabon allotropy of circuit structure and fabrication method thereof TWI364058B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US59735105P 2005-11-28 2005-11-28

Publications (2)

Publication Number Publication Date
TW200725690A TW200725690A (en) 2007-07-01
TWI364058B true TWI364058B (en) 2012-05-11

Family

ID=46750645

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095143682A TWI364058B (en) 2005-11-28 2006-11-27 Cabon allotropy of circuit structure and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI364058B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002364B (en) * 2016-10-31 2019-12-17 清华大学 Preparation method of transparent conductive layer

Also Published As

Publication number Publication date
TW200725690A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
US7990037B2 (en) Carbon nanotube circuit component structure
TWI330863B (en) Semiconductor chip with coil element over passivation layer
US10262944B2 (en) Semiconductor device having interconnect layer that includes dielectric segments interleaved with metal components
KR100659801B1 (en) Wire bonding to copper
US9728457B2 (en) System, structure, and method of manufacturing a semiconductor substrate stack
TW583750B (en) Process for forming fusible links
TW201044523A (en) Chip packages
TWI277158B (en) Multilayered cap barrier in microelectronic interconnect structures
TWI312169B (en) Chip structure and process for forming the same
TWI254350B (en) Fuse structure and method for making the same
TWI278983B (en) A device and method for providing shielding in radio frequency integrated circuits to reduce noise coupling
US11744083B2 (en) Fabrication of embedded memory devices utilizing a self assembled monolayer
US7816792B2 (en) Semiconductor device with conductive interconnect
TW201118997A (en) Pad structure for semiconductor devices
TW201216429A (en) Conductive pillar structure
CN111564411B (en) Semiconductor device and forming method thereof
TW201225183A (en) Semiconductor devices having through-contacts and related fabrication methods
TW200837914A (en) Structure and method for enhancing resistance to fracture of bonding pads
TW201236061A (en) Integrated circuits having place-efficient capacitors and methods for fabricating the same
TWI364058B (en) Cabon allotropy of circuit structure and fabrication method thereof
TW200415704A (en) Integrated circuits with air gaps and method of making the same
TWI342594B (en) Semiconductor chip and method for fabricating the same
TWI276184B (en) Methods for producing electrode and semiconductor device
US20140034906A1 (en) Carbon nanotube semiconductor devices and deterministic nanofabrication methods
Moon et al. Process and Electrical Results for the On-die Interconnect Stack for Intel's 45nm Process Generation.

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees