TWI616899B - 透明導電層的製備方法 - Google Patents

透明導電層的製備方法 Download PDF

Info

Publication number
TWI616899B
TWI616899B TW105138579A TW105138579A TWI616899B TW I616899 B TWI616899 B TW I616899B TW 105138579 A TW105138579 A TW 105138579A TW 105138579 A TW105138579 A TW 105138579A TW I616899 B TWI616899 B TW I616899B
Authority
TW
Taiwan
Prior art keywords
carbon nanotubes
semiconductor
transparent conductive
conductive layer
carbon
Prior art date
Application number
TW105138579A
Other languages
English (en)
Other versions
TW201818430A (zh
Inventor
李東琦
魏洋
姜開利
范守善
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Application granted granted Critical
Publication of TWI616899B publication Critical patent/TWI616899B/zh
Publication of TW201818430A publication Critical patent/TW201818430A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32056Deposition of conductive or semi-conductive organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一種透明導電層的製備方法,其包括以下步驟:提供一奈米碳管膜,該奈米碳管膜包括多個奈米碳管;提供一導電基底,該導電基底上設置一層絕緣層;將所述奈米碳管膜設置在所述絕緣層上;將奈米碳管膜放置在掃描電鏡下,採用掃描電鏡對所述奈米碳管膜拍攝照片;獲得奈米碳管膜的照片,照片中奈米碳管分佈在襯底上,比襯底顏色淺的奈米碳管為金屬型奈米碳管,比襯底顏色深的奈米碳管為半導體型奈米碳管;按照和照片相同的比例,在實物上相同的位置對半導體型的奈米碳管進行標識,並除去半導體型的奈米碳管。

Description

透明導電層的製備方法
本發明涉及一種透明導電層的製備方法,尤其涉及一種基於奈米碳管的透明導電層的製備方法。
奈米碳管膜作為透明導電層,被越來越多的領域應用。現有技術中,奈米碳管膜通過一定方法獲得之後,便直接拿來用作透明導電層。然而,由於奈米碳管可以分為金屬型和半導體型兩種類型,半導體型的奈米碳管導電性能差,因此,在採用奈米碳管膜作為透明導電層時,奈米碳管膜中的半導體型的奈米碳管影響了透明導電層的導電性能。因此,採用傳統方法獲得的奈米碳管透明導電膜的導電性能不好,需要進一步改善。
有鑑於此,確有必要提供一種透明導電層的製備方法,該透明導電層的製備方法可以克服以上缺點。
一種透明導電層的製備方法,其包括以下步驟:提供一奈米碳管膜,該奈米碳管膜包括多個奈米碳管;提供一導電基底,該導電基底上設置一層絕緣層,將所述奈米碳管膜設置在所述絕緣層上;將奈米碳管膜放置在掃描電鏡下,調整掃描電鏡的加速電壓為5~20千伏,駐留時間為6~20微秒,放大倍數為1萬~10萬倍,採用掃描電鏡對所述奈米碳管膜拍攝照片;獲得奈米碳管膜的照片,照片中奈米碳管分佈在襯底上,比襯底顏色淺的奈米碳管為金屬型奈米碳管,比襯底顏色深的奈米碳管為半導體型奈米碳管;按照和照片相同的比例,在實物上相同的位置對半導體型的奈米碳管進行標識,並除去半導體型的奈米碳管。
相較於現有技術,本發明所提供的透明導電層的製備方法中,包括一除去半導體型奈米碳管的步驟,使得透明導電層中的奈米碳管均為金屬型奈米碳管,因此,獲得的透明導電層的導電性能良好。
圖1為本發明第一實施例提供的透明導電層的製備方法的流程示意圖。
圖2為本發明第一實施例提供的奈米碳管類型的判斷方法所獲得的奈米碳管的照片。
圖3為圖2的示意圖。
圖4為現有技術中,採用掃描電鏡獲得的奈米碳管照片。
圖5為圖4的示意圖。
以下將結合附圖對本發明的提供的透明導電層的製備方法進一步的詳細說明。
請參閱圖1,本發明第一實施例提供透明導電層的製備方法,其包括以下步驟:
S1:提供一奈米碳管膜,該奈米碳管膜包括多個奈米碳管;
S2:提供一導電基底,該導電基底上設置一層絕緣層,將奈米碳管膜設置於所述絕緣層上;
S3:將奈米碳管膜放置在掃描電鏡下,調整掃描電鏡的加速電壓為5~20千伏,駐留時間為6~20微秒,放大倍數為1萬~10萬倍,採用掃描電鏡對所述奈米碳管膜拍攝照片;
S4:獲得奈米碳管膜的照片,照片中奈米碳管分佈在襯底上,比襯底顏色淺的奈米碳管為金屬型奈米碳管,比襯底顏色深的奈米碳管為半導體型奈米碳管;以及
S5:按照和照片相同的比例,在實物上相同的位置對半導體型的奈米碳管進行標識,並除去半導體型的奈米碳管。
在步驟S1中,所述奈米碳管膜包括多個奈米碳管。該奈米碳管可以為單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管。該奈米碳管可以為金屬型或者半導體型。奈米碳管的直徑不限,可以為0.5奈米~150奈米,在某些實施例中,奈米碳管的直徑可以為1奈米~10奈米。所述多個奈米碳管的排列方向不限,可以交叉排列或平行排列。本實施例中,奈米碳管膜中的多個奈米碳管相互平行,並且平行於絕緣層的表面。
在步驟S2中,所述導電基底的材料不限,只要是導電材料即可,可以為金屬、導電有機物或摻雜的導電材料。本實施例中,選用摻雜的矽作為導電基底材料。所述絕緣層的材料為絕緣材料,可以為氧化物或者高分子材料。本實施例中,選用氧化矽材料。所述絕緣層的厚度為50-300奈米。所述奈米碳管膜設置於絕緣層上之後,奈米碳管膜中的奈米碳管平行於絕緣層的表面。
在步驟S3中,優選地,加速電壓為15-20千伏,駐留時間為10-20微秒。本實施例中,加速電壓為10千伏,駐留時間為20微秒,放大倍數為2萬倍。
在步驟S4中,獲得奈米碳管膜的照片如圖2所示,其示意圖如圖3所示。圖2/圖3中包括襯底以及形成在襯底上的奈米碳管的影像。從圖2/圖3可以看出,一部分奈米碳管的顏色比襯底的顏色淺,一部分奈米碳管的顏色比襯底的顏色深。比襯底顏色淺的奈米碳管為金屬型奈米碳管;比襯底顏色深的奈米碳管為半導體型奈米碳管。
本發明所提供的透明導電層的製備方法中,採用掃描電鏡對奈米碳管膜中的奈米碳管進行區分,對比現有技術中採用掃描電鏡表徵奈米碳管的方法所獲得的奈米碳管的照片圖4/圖5,和採用本發明實施例區分奈米碳管類型的方法所獲得的奈米碳管照片圖2/圖3,可以得出以下區別:
第一,採用傳統方法獲得的奈米碳管掃描電鏡照片中,奈米碳管的導電性能與照片中的顏色有關,顏色越淺,導電性能越好,但是,奈米碳管的顏色都是比襯底的顏色淺。當照片中同時存在金屬型奈米碳管和半導體型奈米碳管時,對於處於中間色的奈米碳管,如灰色的奈米碳管,在判斷這些奈米碳管的種類時,常會發生錯誤。因此,傳統的掃描電鏡區分奈米碳管的方法在辨識奈米碳管種類時,準確度不夠高,常常會出現誤判或者難以判斷。而採用本發明實施例所獲得的奈米碳管照片中,金屬型奈米碳管比襯底的顏色淺,半導體型的奈米碳管比襯底的顏色深,因此在判斷奈米碳管屬於金屬型還是半導體型時,便可以一目了然。
第二,採用傳統方法獲得的奈米碳管掃描電鏡照片中,由於無論金屬型還是半導體型的奈米碳管,在照片中顯示的顏色均比襯底顏色淺,當照片中只存在一種類型的奈米碳管時,難以區分照片中的奈米碳管是金屬型還是半導體型。而採用本發明所提供的奈米碳管區分方法所獲得的奈米碳管照片中,金屬型奈米碳管比襯底的顏色淺,半導體型的奈米碳管比襯底的顏色深,即使照片中只存在一種類型的奈米碳管,也可以快速區分其類型。
第三,相對於圖2/圖3,圖4/圖5的對比度更高,視覺上更容易觀察奈米碳管,而且照片比較美觀,而本發明實施例所獲得的掃描電鏡照片圖2中,解析度相對較低,照片也不夠美觀,所以現有技術中均是採用低加速電壓對奈米碳管進行表徵和區分。但是現有技術中區分奈米碳管類型的方法所獲得的照片難以準確地區分奈米碳管的種類。本發明提供的區分奈米碳管類型的方法,能夠快速而準確的判斷奈米碳管的種類,克服了技術偏見。
第四,相對於圖4/圖5,圖2/圖3中奈米碳管成像的寬度較小,因此,對於密度較高的多個奈米碳管,本發明所提供的奈米碳管類型的判斷方法更加適合。
步驟S5的具體步驟可以為:
S51:在照片上建立一坐標系,並讀出半導體型奈米碳管的具體座標值;
S52:按照和照片相同的比例,在實體奈米碳管膜上建立坐標系,根據半導體型奈米碳管的座標值標識出半導體型的奈米碳管,並將半導體型的奈米碳管除去。
本實施例中,用電子束曝光的方法,將該金屬型的奈米碳管進行保護,將半導體型的奈米碳管露出,採用等離子體刻蝕的方法將半導體型的奈米碳管去除。
本發明所提供的透明導電層的製備方法由於採用了上述方法區分奈米碳管膜中的奈米碳管,因此,可以準確快速的判斷出奈米碳管的類別,從而除去半導體型的奈米碳管,得到僅包括金屬型奈米碳管的透明導電層,因此,製備出的透明導電層的導電性好。
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之請求項。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下請求項內。

Claims (10)

  1. 一種透明導電層的製備方法,其包括以下步驟:
    提供一奈米碳管膜,該奈米碳管膜包括多個奈米碳管;
    提供一導電基底,該導電基底上設置一層絕緣層,將所述奈米碳管膜設置在所述絕緣層上;
    將奈米碳管膜放置在掃描電鏡下,調整掃描電鏡的加速電壓為5~20千伏,駐留時間為6~20微秒,放大倍數為1萬~10萬倍,採用掃描電鏡對所述奈米碳管膜拍攝照片;
    獲得奈米碳管膜的照片,照片中奈米碳管分佈在襯底上,比襯底顏色淺的奈米碳管為金屬型奈米碳管,比襯底顏色深的奈米碳管為半導體型奈米碳管;
    按照和照片相同的比例,在實物上相同的位置對半導體型的奈米碳管進行標識,並除去半導體型的奈米碳管。
  2. 如請求項第1項所述之透明導電層的製備方法,其中,所述導電基底的材料為金屬、導電有機物或摻雜的導電材料。
  3. 如請求項第1項所述之透明導電層的製備方法,其中,所述絕緣層的材料為氧化物或者高分子材料。
  4. 如請求項第1項所述之透明導電層的製備方法,其中,所述絕緣層的厚度為50-300奈米。
  5. 如請求項第1項所述之透明導電層的製備方法,其中,所述奈米碳管膜包括多根奈米碳管,該多根奈米碳管包括金屬型奈米碳管和半導體型奈米碳管。
  6. 如請求項第1項所述之透明導電層的製備方法,其中,所述多根碳納管平行於絕緣層的表面。
  7. 如請求項第1項所述之透明導電層的製備方法,其中,所述掃描電鏡的加速電壓為15-20千伏。
  8. 如請求項第1項所述之透明導電層的製備方法,其中,所述駐留時間為10-20微秒。
  9. 如請求項第1項所述之透明導電層的製備方法,其中,所述按照和照片相同的比例,在實物上相同的位置對半導體型的奈米碳管進行標識的步驟包括:在照片上建立一坐標系,並讀出半導體型奈米碳管的具體座標值;按照和照片相同的比例,在實體奈米碳管膜上建立坐標系,根據半導體型奈米碳管的座標值標識出半導體型的奈米碳管。
  10. 如請求項第1項所述之透明導電層的製備方法,其中,所述除去半導體型的奈米碳管的步驟包括:用電子束曝光的方法,將該金屬型的奈米碳管進行保護,將半導體型的奈米碳管露出,採用等離子體刻蝕的方法將半導體型的奈米碳管去除。
TW105138579A 2016-10-31 2016-11-24 透明導電層的製備方法 TWI616899B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610942312.3A CN108002364B (zh) 2016-10-31 2016-10-31 透明导电层的制备方法
??201610942312.3 2016-10-31

Publications (2)

Publication Number Publication Date
TWI616899B true TWI616899B (zh) 2018-03-01
TW201818430A TW201818430A (zh) 2018-05-16

Family

ID=62021791

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105138579A TWI616899B (zh) 2016-10-31 2016-11-24 透明導電層的製備方法

Country Status (3)

Country Link
US (1) US10121564B2 (zh)
CN (1) CN108002364B (zh)
TW (1) TWI616899B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141091A2 (en) * 2018-12-31 2020-07-09 Asml Netherlands B.V. Apparatus for obtaining optical measurements in a charged particle apparatus
CN113120881B (zh) * 2020-01-15 2022-10-18 清华大学 半导体型碳纳米管的获取方法
CN113120882B (zh) * 2020-01-15 2022-10-18 清华大学 金属型碳纳米管的获取方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200725690A (en) * 2005-11-28 2007-07-01 Megica Corp Cabon allotropy of circuit structure and fabrication method thereof
TW200902437A (en) * 2007-07-06 2009-01-16 Kuender & Co Ltd Sorting method of single-walled carbon nanotubes
EP2053495A2 (en) * 2007-10-23 2009-04-29 Tsinghua University Touch panel, method for making the same, and display device adopting the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009222A (zh) * 2007-01-26 2007-08-01 北京大学 一种制备碳纳米管电子器件的方法
CN101308889B (zh) * 2007-05-16 2010-08-18 中国科学院半导体研究所 提高半导体型碳纳米管发光效率的方法
CN102019224B (zh) * 2010-09-29 2013-01-16 中国科学院苏州纳米技术与纳米仿生研究所 金属性和半导体性碳纳米管的分离方法
CN103482607A (zh) * 2013-10-08 2014-01-01 上海理工大学 一种半导体型碳纳米管的富集方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200725690A (en) * 2005-11-28 2007-07-01 Megica Corp Cabon allotropy of circuit structure and fabrication method thereof
TW200902437A (en) * 2007-07-06 2009-01-16 Kuender & Co Ltd Sorting method of single-walled carbon nanotubes
EP2053495A2 (en) * 2007-10-23 2009-04-29 Tsinghua University Touch panel, method for making the same, and display device adopting the same

Also Published As

Publication number Publication date
CN108002364A (zh) 2018-05-08
US20180122530A1 (en) 2018-05-03
CN108002364B (zh) 2019-12-17
US10121564B2 (en) 2018-11-06
TW201818430A (zh) 2018-05-16

Similar Documents

Publication Publication Date Title
Zhang et al. Strain relaxation of monolayer WS2 on plastic substrate
TWI616899B (zh) 透明導電層的製備方法
Pacakova et al. Mastering the wrinkling of self-supported graphene
TWI633641B (zh) 半導體層的製備方法
JP6446521B2 (ja) 薄膜トランジスタの製造方法
JP5142278B2 (ja) グラフェン又は超薄膜グラファイトの厚さ検出方法および厚さ検出システム
TWI628140B (zh) 區分奈米碳管類型的方法
US20100224913A1 (en) One-dimensional FET-based corrosion sensor and method of making same
TWI490483B (zh) 奈米線帶隙分佈的測量方法
Lan et al. Effect of focused ion beam deposition induced contamination on the transport properties of nano devices
Behnam et al. Percolation scaling of 1/f noise in single-walled carbon nanotube films
TWI656092B (zh) 奈米碳管的表徵方法
JP7060742B1 (ja) 物性分析方法、物性分析試料及びその作製方法
Dawant et al. Hybrid cross correlation and line-scan alignment strategy for CMOS chips electron-beam lithography processing
Song et al. Influence of an Electron Beam Exposure on the Surface Plasmon Resonance of Gold Nanoparticles
Bell et al. The development and advantages of helium ion microscopy for the study of block copolymer nanopatterns
Park et al. Fabrication of Standard Calibration Samples for Highly Reliable Atomic Force Microscope Measurements
Kim et al. Simple selective electron beam patterning on a single nanowire
Kratschmer et al. Dot-matrix marks for dynamic overlay measurements in electron beam lithography
Yates et al. Carbon nanotube metrology in a CD SEM