CN107999109B - 一种氮、硫、磷共掺杂碳材料的制备和应用 - Google Patents

一种氮、硫、磷共掺杂碳材料的制备和应用 Download PDF

Info

Publication number
CN107999109B
CN107999109B CN201711421300.7A CN201711421300A CN107999109B CN 107999109 B CN107999109 B CN 107999109B CN 201711421300 A CN201711421300 A CN 201711421300A CN 107999109 B CN107999109 B CN 107999109B
Authority
CN
China
Prior art keywords
carbon material
phosphorus
catalyst
sulfur
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711421300.7A
Other languages
English (en)
Other versions
CN107999109A (zh
Inventor
童金辉
李文艳
马文梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201711421300.7A priority Critical patent/CN107999109B/zh
Publication of CN107999109A publication Critical patent/CN107999109A/zh
Application granted granted Critical
Publication of CN107999109B publication Critical patent/CN107999109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种氮、硫、磷共掺杂碳材料的制备方法,是先将指示剂超声溶解在水中,再在搅拌下加入过渡金属盐,室温下搅拌12~48小时,过滤,产物用水和乙醇洗涤,真空干燥,得前驱体;然后在氮气气氛中将前驱体高温碳化得多孔碳材料;最后将多孔碳材料与含磷盐混合后,在高温下进行磷化处理,得到共掺杂碳材料。本发明以指示剂为N、S、P及C源,其原料来源广泛,制备工艺简单,成本低;制备的共掺杂的碳材料中,掺杂的各元素即相互独立,又通过协同作用,大大提升了碳材料的催化活性,并表现出良好OER和HER催化活性,是一种可替代贵金属的和OER双功能催化剂。

Description

一种氮、硫、磷共掺杂碳材料的制备和应用
技术领域
本发明涉及一种掺杂碳材料的制备,尤其涉及一种氮、硫、磷共掺杂碳材料的制备,主要用作酸性介质中电解水析氢反应(HER)和碱性介质中电解水析氧反应(OER)。
背景技术
当今世界越来越多的化石能源被消耗,即将面临着化石能源枯竭的危机,人们迫切需要寻找一种新的可持续能源方式代替传统能源。在开发新能源的各种方法中,电解已被认为是生产氢燃料和水分解后产氧的最有效方法之一。氢能是未来清洁能源的良好选择,不仅制氢原料价格低廉,而且燃烧对环境不会造成污染,所以,氢气的发展具有重大的潜力。电催化分解水析氧(OER)也被认为是最清洁的可循环技术之一。它的来源丰富,并且制得的产物可循环,氢气与氧气燃烧又生成水。所以我们迫切需要寻找一种新型高效的电解水析氢和析氧的催化剂,来实现可持续能源的应用。
目前,贵金属Pt/C催化剂应用非常广泛,但是由于贵金属价格昂贵,资源稀少,且在实验中化学稳定性较差,限制其在生活生产中的大规模使用。因此开发一种经济并且有效的双功能电催化剂同时用于析氢反应与析氧反应仍是一个巨大的挑战。杂原子掺杂碳材料已被广泛研究。氮掺杂是一种对碳材料进行改性修饰的有效途径。掺氮碳材料不仅改变氮附近的电子云密度,使其具有良好的电子传导性,而且大大改善碳材料的表面吸附金属离子的活性位点,并且稳定金属多孔碳纳米离子,使纳米粒子均匀的镶嵌在碳纳米片中,有利于获得高分散性金属负载型催化剂。将磷引入碳材料中会使碳材料表面产生大量缺陷,这些缺陷不仅可以提高更多的活性位点,大大增加催化反应速率,而且会为碳材料提供大量的成核位点,这样就能更好的控制合成碳材料的形貌和尺寸大小。而掺硫的碳材料,因为硫原子和碳原子电负性相近,但硫原子的半径比碳原子的半径却大的多,所以在碳材料中引入硫元素会打破碳材料原有的结构,让碳材料具有新的特性。
发明内容
本发明的目的是提供一种氮、硫、磷共掺杂碳材料的制备方法;
本发明的另一目的是提供上述氮、硫、磷共掺杂碳材料在HER和OER反应中的电催化活性和应用。
一、N、S、P共掺杂碳材料的制备
(1)多孔碳材料的制备:先将指示剂超声溶解在水中,再在搅拌下加入过渡金属盐,室温下搅拌12~48小时,过滤,产物用水和乙醇洗涤,60~100℃下真空干燥,得前驱体;然后在氮气气氛中,将前驱体于500~1000℃下高温碳化1~5h,即得多孔碳材料。
所述指示剂为刚果红、金橙、甲基橙、二甲酚橙、亚甲基蓝、钙指示剂、铬黑T中的一种;所述过渡金属盐为铁、钴、镍的氯化物或硝酸盐;指示剂与过渡金属盐的摩尔比为:1:1~1:15。
(2)碳材料的磷化:将碳材料与含磷盐以1:1~1:50的质量比混合后,在200~800℃下热处理1~5h,得到磷化碳材料。
所述含磷盐为次亚磷酸钠、磷酸氢二钠、磷酸二氢钾、磷酸钠、磷酸三甲中的一种。
为了便于比较,将磷化碳材料标记为:X-Ind-MP @ T1-T2。其中X代表指示剂和金属盐的摩尔比,Ind代表指示剂,M代表金属元素,T1代表碳化的温度,T2代表磷化的温度。
二、催化剂的结构表征
下面以样品1:2-二甲酚橙-NiP @ 600-600为例,对本发明制备的催化剂的形貌进行表征。
图1为催化剂1:2-二甲酚橙-NiP @ 600-600的SEM图。由图1可以得出该碳材料具有纳米片结构,厚度约为40 nm,是一种多孔的碳材料。1:2-二甲酚橙-NiP @ 600-600的多孔纳米片结构增大催化剂的比表面积,增加催化活性位点,使催化剂催化HER和OER活性更佳。
图2为催化剂1:2-二甲酚橙-NiP @ 600-600的TEM图。由图2可以得出球状磷化物纳米粒子较为均匀的镶嵌在碳纳米片中,其大大提高了磷化物纳米粒子的分散度和催化剂的催化活性。
图3为催化剂1:2-二甲酚橙-NiP @ 600-600的XRD图。由图3可以得出1:2-二甲酚橙-NiP @ 600-600含有Ni2P和Ni5P4的衍射峰,1:2-二甲酚橙-NiP @ 600-600由Ni2P和Ni5P4的共同作用一起催化HER和OER。
三、电催化性能测试
以样品1:2-二甲酚橙-NiP @ 600-600为例,对本发明制备的催化剂的性能进行测试。
1、电解水析氢测试
电解水析氢测试(HER)是在三电极体系中,通过电化学工作站控制完成的,以石墨电极为对电极,Ag/AgCl电极为参比电极,负载了催化剂的玻碳电极为工作电极。电解质溶液为0.5M H2SO4
将2.5mg 1:2-二甲酚橙-NiP @ 600-600催化剂分散在0.98mL无水乙醇和0.2ml的水中,超声30min分散至均匀。取5μL涂到玻碳电极上,在室温下自然晾干,最终得到了负载催化剂的工作电极。
图4、5分别为催化剂1:2-二甲酚橙-NiP @ 600-600的HER的Lsv图和Tafel斜率图。由图4、5可以看出,催化剂1:2-二甲酚橙-NiP @ 600-600的过电位为377mv,tafel斜率为133mV/dec,比较相同条件下Pt/C催化剂的HER的Lsv图和Tafel斜率图,过电位及Tafel斜率略低于Pt/C催化剂,但电流密度高于Pt/C,证明1:2-二甲酚橙-NiP @ 600-600有较低的过电位和较小的tafel斜率,且电流密度高,稳定性好,对HER表现出了良好的催化活性。
2、电解水析氧测试
电解水析氧测试(OER)是通过电化学工作站控制完成。使用三电极体系,其中石墨电极为对电极,Ag/AgCl电极为参比电极,工作电极是负载催化剂的玻碳电极。电解液为0.1M KOH溶液。
将2.5mg 1:2-二甲酚橙-NiP @ 600-600催化剂分散在0.98mL无水乙醇和0.2ml的水中,超声30min分散至均匀。取7μL涂到旋转圆盘电极上,在室温下自然晾干,最终得到了负载催化剂的工作电极。
图6、7为催化剂1:2-二甲酚橙-NiP @ 600-600的OER的Lsv图和Tafel斜率图。由图6、7可以看出,催化剂1:2-二甲酚橙-NiP @ 600-600的过电位为490mv,tafel斜率为126mV/dec。比较相同条件下Pt/C催化剂的OER的Lsv图和Tafel斜率图,1:2-二甲酚橙-NiP @ 600-600过电位略高于Pt/C,但是塔菲尔斜率低于Pt/C催化剂。这证明1:2-二甲酚橙-NiP @600-600有较低的过电位和较小的tafel斜率,且电流密度高,稳定性好。对OER表现出了良好的催化活性。
本发明相比现有催化剂体系具有以下优点:
1、本发明制备的共掺杂的碳材料,掺杂的各元素即相互独立,又通过协同作用,大大提升了碳材料的催化活性,且稳定性好;
2、本发明制备过程没有使用任何贵金属,以指示剂为N、S、P及C源其原料来源广泛,成本低,并表现出良好OER和HER催化活性,是一种可替代贵金属的和OER双功能催化剂。
附图说明
图1为催化剂1:2-二甲酚橙-NiP @ 600-600的SEM图。
图2为催化剂1:2-二甲酚橙-NiP @ 600-600的TEM图。
图3为催化剂1:2-二甲酚橙-NiP @ 600-600的XRD图。
图4为催化剂1:2-二甲酚橙-NiP @ 600-600的HER的Lsv图。
图5为催化剂1:2-二甲酚橙-NiP @ 600-600的HER的Tafel斜率图。
图6为催化剂1:2-二甲酚橙-NiP @ 600-600的OER的Lsv图。
图7为催化剂1:2-二甲酚橙-NiP @ 600-600的OER的Tafel斜率图。
具体实施方式
下面通过具体实施例对本发明催化剂的制备及用于HER和OER反应的性能作进一步说明。
实施例一、催化剂 1:2-二甲酚橙-NiP @ 600-600的制备
将1mol二甲酚橙(XO)超声溶解在20ml H2O中形成均匀的溶液,在搅拌下缓慢加入Ni(NO3)2·6H2O(二甲酚橙与Ni(NO3)2·6H2O的摩尔比为1:2),在室温下搅拌24小时,过滤并收集产生的沉淀,用水和乙醇各洗涤3次,80℃真空干燥。干燥后的样品在高纯度N2保护下600℃高温碳化3h,得到碳材料。将碳材料与磷酸氢二钠按1:10质量比混合后,在N2气氛600℃磷化3h,即得催化剂1:2-二甲酚橙-NiP @ 600-600。
电解水析氢测试:在三电极体系中,通过电化学工作站控制完成。其中石墨电极为对电极,Ag/AgCl电极为参比电极,工作电极是负载催化剂的玻碳电极。电解液为0.5M H2SO4溶液,将2.5mg 1:2-二甲酚橙-NiP @ 600-600催化剂分散在0.98mL无水乙醇和0.2ml的水中,超声30min分散至均匀。取5μL涂到玻碳电极上,在室温下自然晾干,最终得到了负载催化剂的工作电极。测试结果:催化剂1:2-二甲酚橙-NiP @ 600-600的过电位为377mv,tafel斜率为133mV/dec。
电解水析氧测试:使用三电极体系,其中石墨电极为对电极,Ag/AgCl电极为参比电极,工作电极是负载催化剂的玻碳电极。电解液为0.1M KOH溶液,将2.5mg 1:2-二甲酚橙-NiP @ 600-600催化剂分散在0.98mL无水乙醇和0.2ml的水中,超声30min分散至均匀。取7μL涂到旋转圆盘电极上,在室温下自然晾干,最终得到了负载催化剂的工作电极。测试结果:催化剂1:2-二甲酚橙-NiP @ 600-600的过电位为490mv,tafel斜率为126 mV/dec。
实施例二、催化剂 1:2-甲基橙-NiP @ 600-600的制备
将1mol甲基橙(MO)超声溶解在20ml H2O中形成均匀的溶液,在搅拌下缓慢加入Ni(NO3)2·6H2O(甲基橙与Ni(NO3)2·6H2O的摩尔比为1:2),在室温下搅拌24小时,过滤并收集产生的沉淀,用水和乙醇各洗涤3次,80℃真空干燥。干燥后的样品在高纯度N2保护下600℃高温碳化3h,得到碳材料。将碳材料与磷酸氢二钠按1:10质量比混合后,在N2气氛600℃磷化3h,即得催化剂1:2-甲基橙-NiP @ 600-600。
电解水析氢测试:测试条件和方法同实施例1。测试结果:催化剂1:2-甲基橙-NiP@ 600-600的过电位为458mv,tafel斜率为172mV/dec。
电解水析氧测试:测试条件和方法同实施例1。测试结果:催化剂1:2-甲基橙-NiP@ 600-600的过电位为511mv,tafel斜率为150 mV/dec。
实施例三、催化剂 1:5-铬黑T -CoP @ 500-300的制备
将1mol铬黑T(EBT)超声溶解在20ml H2O中形成均匀的溶液,在搅拌下缓慢加入CoCl2·6H2O(铬黑T与CoCl2·6H2O的摩尔比为1:5),在室温下搅拌24小时,过滤并收集产生的沉淀,用水和乙醇各洗涤3次,80℃真空干燥。干燥后的样品在高纯度N2保护下500℃高温碳化3h,得到碳材料。将碳材料与磷酸氢二钠按1:10质量比混合后,在N2气氛300℃磷化3h,即得催化剂1:5-铬黑T-CoP @ 500-300。
电解水析氢测试:测试条件和方法同实施例1;测试结果:催化剂1:5-铬黑T-CoP @500-300的过电位为309mv,tafel斜率为100 mV/dec。
电解水析氧测试:测试条件和方法同实施例1;测试结果:催化剂1:5-铬黑T-CoP @500-300的过电位为548mv,tafel斜率为162 mV/dec。
实施例四、催化剂 1:5-铬黑T -FeP @ 500-300的制备
将1mol铬黑T(EBT)超声溶解在20ml H2O中形成均匀的溶液,在搅拌下缓慢加入FeCl3·6H2O(铬黑T与FeCl3·6H2O的摩尔比为1:5),在室温下搅拌24小时,过滤并收集产生的沉淀,用水和乙醇各洗涤3次,80℃真空干燥。干燥后的样品在高纯度N2保护下500℃高温碳化3h,得到碳材料。将碳材料与磷酸氢二钠按1:10质量比混合后,在N2气氛300℃磷化3h,即得催化剂1:5-EBT- FeP @ 500-300。
电解水析氢测试:测试条件和方法同实施例1;测试结果:催化剂1:5-铬黑T-FeP @500-300的过电位为325mv,tafel斜率为106 mV/dec。
电解水析氧测试:测试条件和方法同实施例1;测试结果:催化剂1:5-铬黑T-FeP @500-300的过电位为547mv,tafel斜率为141 mV/dec。
实施例五、催化剂 1:10-铬黑T-CoP @ 500-300的制备
将1mol铬黑T(EBT)超声溶解在20ml H2O中形成均匀的溶液,在搅拌下缓慢加入CoCl2·6H2O(铬黑T与CoCl2·6H2O的摩尔比为1:10),在室温下搅拌24小时,过滤并收集产生的沉淀,用水和乙醇各洗涤3次,80℃真空干燥。干燥后的样品在高纯度N2保护下500℃高温碳化3h,得到碳材料。将碳材料与磷酸氢二钠按1:10质量比混合后,在N2气氛300℃磷化3h,即得催化剂1:10-铬黑T-CoP @ 500-300。
电解水析氢测试:测试条件和方法同实施例1;测试结果:催化剂1:10-铬黑T-CoP@ 500-300的过电位为377mv,tafel斜率为127 mV/dec。
电解水析氧测试:测试条件和方法同实施例1;测试结果:催化剂1:10-铬黑T -CoP@ 500-300的过电位为499mv,tafel斜率为140 mV/dec。
实施例六、催化剂 1:5-铬黑T -CoP @ 900-300的制备
将1mol铬黑T(EBT)超声溶解在20ml H2O中形成均匀的溶液,在搅拌下缓慢加入CoCl2·6H2O(铬黑T与CoCl2·6H2O的摩尔比为1:5),在室温下搅拌24小时,过滤并收集产生的沉淀,用水和乙醇各洗涤3次,80℃真空干燥。干燥后的样品在高纯度N2保护下900℃高温碳化3h,得到碳材料。将碳材料与磷酸氢二钠按1:10质量比混合后,在N2气氛300℃磷化3h,即得催化剂1:5-EBT-CoP @ 900-300。
电解水析氢测试:测试条件和方法同实施例1;测试结果:催化剂1:5-铬黑T-CoP @900-300的过电位为365mv,tafel斜率为131 mV/dec。
电解水析氧测试:测试条件和方法同实施例1;测试结果:催化剂1:5-铬黑T-CoP @900-300的过电位为439mv,tafel斜率为121 mV/dec。
实施例七、催化剂 1:5-铬黑T-CoP @ 500-800的制备
将1mol铬黑T(EBT)超声溶解在20ml H2O中形成均匀的溶液,在搅拌下缓慢加入CoCl2·6H2O(铬黑T与CoCl2·6H2O的摩尔比为1:5),在室温下搅拌24小时,过滤并收集产生的沉淀,用水和乙醇各洗涤3次,80℃真空干燥。干燥后的样品在高纯度N2保护下500℃高温碳化3h,得到碳材料。将碳材料与磷酸氢二钠按1:10质量比混合后,在N2气氛800℃磷化3h,即得催化剂1:5-铬黑T -CoP @ 500-800。
电解水析氢测试:测试条件和方法同实施例1;测试结果:催化剂1:5-铬黑T -CoP@ 500-800的过电位为383mv,tafel斜率为137 mV/dec。
电解水析氧测试:测试条件和方法同实施例1;测试结果:催化剂1:5-铬黑T -CoP@ 500-800的过电位为510mv,tafel斜率为127 mV/dec。

Claims (6)

1.一种氮、硫、磷共掺杂碳材料的制备方法,是先将指示剂超声溶解在水中,再在搅拌下加入过渡金属盐,室温下搅拌12~48小时,过滤,产物用水和乙醇洗涤,真空干燥,得前驱体;然后在氮气气氛中将前驱体高温碳化得多孔碳材料;最后将多孔碳材料与含磷盐混合后,在高温下进行磷化处理,得到磷化碳材料;所述指示剂为刚果红、金橙、甲基橙、二甲酚橙、亚甲基蓝、钙指示剂、铬黑T中的一种;所述过渡金属盐为铁、钴、镍的氯化物或硝酸盐,指示剂与过渡金属盐的摩尔比为:1:1~1:15。
2.如权利要求1所述一种氮、硫、磷共掺杂碳材料的制备方法,其特征在于:所述高温碳化的温度为500~1000℃,碳化时间为1~8h。
3.如权利要求1所述一种氮、硫、磷共掺杂碳材料的制备方法,其特征在于:所述含磷盐为次亚磷酸钠、磷酸氢二钠、磷酸二氢钾、磷酸钠、磷酸三钾中的一种。
4.如权利要求1所述一种氮、硫、磷共掺杂碳材料的制备方法,其特征在于:多孔碳材料与含磷盐的质量比为1:1~1:50。
5.如权利要求1所述一种氮、硫、磷共掺杂碳材料的制备方法,其特征在于:碳材料的磷化温度为200~800℃,磷化时间为1~5h。
6.如权利要求1所述方法制备的氮、硫、磷共掺杂碳材料作为催化剂用于电解水析氢反应。
CN201711421300.7A 2017-12-25 2017-12-25 一种氮、硫、磷共掺杂碳材料的制备和应用 Active CN107999109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711421300.7A CN107999109B (zh) 2017-12-25 2017-12-25 一种氮、硫、磷共掺杂碳材料的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711421300.7A CN107999109B (zh) 2017-12-25 2017-12-25 一种氮、硫、磷共掺杂碳材料的制备和应用

Publications (2)

Publication Number Publication Date
CN107999109A CN107999109A (zh) 2018-05-08
CN107999109B true CN107999109B (zh) 2020-07-07

Family

ID=62061158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711421300.7A Active CN107999109B (zh) 2017-12-25 2017-12-25 一种氮、硫、磷共掺杂碳材料的制备和应用

Country Status (1)

Country Link
CN (1) CN107999109B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012749A (zh) * 2018-08-14 2018-12-18 青岛科技大学 基于zif-8磷硫双掺杂的非金属双功能氧催化剂及其制备方法和应用
CN109279603A (zh) * 2018-11-15 2019-01-29 中国海洋大学 一种氮氧硫三掺杂多孔碳材料及其制备方法
CN110052282B (zh) * 2019-05-05 2021-09-28 西北师范大学 一种过渡金属磷化物/核壳型氮掺杂碳纳米纤维复合材料的制备和应用
CN110368969B (zh) * 2019-08-20 2022-04-01 南昌航空大学 一种在碳纸或碳布上负载杂原子掺杂碳化钼析氢催化剂的制备方法及其应用
CN111082079B (zh) * 2019-12-30 2021-01-22 上海交通大学 一种双功能氧气电催化剂材料及其制备方法和应用
CN112695343A (zh) * 2020-12-15 2021-04-23 桐乡市吉曼尔信息技术有限公司 一种生物质基石墨化多孔碳的析氢电催化剂的制法和应用
CN113430552B (zh) * 2021-06-24 2023-03-10 南昌大学 一种三原子掺杂型多孔碳催化剂及其制备方法及应用
CN113594480B (zh) * 2021-07-16 2022-06-10 齐鲁工业大学 一种杂原子共掺杂的非贵金属基碳材料及其制备方法、应用
CN114686918B (zh) * 2022-02-21 2023-08-22 中国石油大学(北京) 碳基单原子掺杂钴化合物复合材料及其制备方法和应用
CN114664570B (zh) * 2022-04-20 2024-04-26 滁州学院 一种锌离子混合电容器用氮磷硫共掺杂生物质基多孔碳的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000438A (zh) * 2016-06-03 2016-10-12 兰州交通大学 一种氮磷共掺杂孔状碳材料的制备方法及其应用
CN106881138A (zh) * 2017-03-12 2017-06-23 西北师范大学 一种氮磷共掺杂多孔生物质碳催化剂的制备方法
CN106955725A (zh) * 2017-02-20 2017-07-18 西北师范大学 一种n,s共掺杂石墨化碳材料的制备及作为电化学催化剂的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000438A (zh) * 2016-06-03 2016-10-12 兰州交通大学 一种氮磷共掺杂孔状碳材料的制备方法及其应用
CN106955725A (zh) * 2017-02-20 2017-07-18 西北师范大学 一种n,s共掺杂石墨化碳材料的制备及作为电化学催化剂的应用
CN106881138A (zh) * 2017-03-12 2017-06-23 西北师范大学 一种氮磷共掺杂多孔生物质碳催化剂的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media;Xiaofen Xiao等;《Energy Environ. Sci.》;20170119;第10卷;第893-899页 *
Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution;Junfeng Xie等;《J. Am. Chem. Soc.》;20130905;第135卷;第17881-17888页 *
Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes;Jingjing Duan;《ACS Catal.》;20150723;第5卷;第5207-5234页 *
Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles;Eric J. Popczun等;《Angew. Chem. Int. Ed.》;20140519;第53卷(第21期);第5427-5430页 *
Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution;Rong Li等;《ACS Catal.》;20150527;第5卷;第4133-4142页 *
杂原子掺杂碳材料的合成及其氧还原性能的研究;耿克然;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20160215;B014-664 *
氮/硫共掺杂石墨烯的制备及其氧还原催化性能研究;张欢欢;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20170215;B014-1386 *

Also Published As

Publication number Publication date
CN107999109A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
CN107999109B (zh) 一种氮、硫、磷共掺杂碳材料的制备和应用
Ma et al. Edge-sited Fe-N4 atomic species improve oxygen reduction activity via boosting O2 dissociation
CN111111716A (zh) 一种mof指导的镍钴双金属磷化物的制备及应用
CN110479329B (zh) 一种磷掺杂碲化钴纳米材料的制备及应用
CN108714429B (zh) 一种棒状CoP/CoP2纳米复合物电催化剂的制备方法
CN113862693B (zh) 一种氮掺杂介孔碳负载高分散Ru纳米颗粒催化剂的制备方法及其应用
CN112981455B (zh) 一种高效钴基纳米片电解水催化剂及其制备方法和应用
Chen et al. Interface engineering for boosting electrocatalytic performance of CoP-Co2P polymorphs for all-pH hydrogen evolution reaction and alkaline overall water splitting
CN113249739B (zh) 金属磷化物负载的单原子催化剂及其制备方法和作为析氢反应电催化剂的应用
CN108946692B (zh) 一种磷酸钴纳米材料及其制备方法和应用
CN111013631A (zh) 一种新型三维分级多孔复合材料、制备方法及其应用
CN113943949B (zh) 一种铂边缘修饰镍基纳米材料及其制备方法和应用
CN113270597A (zh) 一种C3N4包覆的碳纳米管负载NiFe双功能氧气电催化剂及其制备方法
Ma et al. Selective sulfuration, phosphorization and selenylation: a universal strategy toward Co-Ni-M@ CeO2/NF (M= O, S, P and Se) interface engineering for efficient water splitting electrocatalysis
CN111957336A (zh) 一种ZIF-8衍生的Fe-N-C氧还原电催化剂的制备方法
Zhang et al. Oxygen vacancies confined in nickel oxide nanoprism arrays for promoted electrocatalytic water splitting
CN113104862A (zh) 一种快速批量制备普鲁士蓝或其类似物的方法及其应用
CN114628696B (zh) 一种多孔碳载钴基双功能氧催化剂的制备方法
Sun et al. Rh particles in N-doped porous carbon materials derived from ZIF-8 as an efficient bifunctional electrocatalyst for the ORR and HER
Song et al. Fabrication of CoFe-LDH nanosheets@ CoP nanowires hierarchical heterostructure with enhanced bifunctional electrocatalytic activity for alkaline water splitting
Xiao et al. Optimizing the intermediates adsorbability and revealing the dynamic reconstruction of Co6Fe3S8 solid solution for bifunctional water splitting
Zhu et al. Spinel-type high-entropy oxide nanotubes for efficient oxygen evolution reaction
CN114855216A (zh) 一种镍基制氢催化剂及其合成方法、应用
CN114797941A (zh) 一种m-n-c单原子催化剂的制备方法及应用
Wei et al. Three-dimensional N-doped graphene coated with B-doped iron phosphide electrocatalysts: Nonmetallic element co-modification for enhanced dual-pH hydrogen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant