CN107963890A - 一种氮化钛多孔导电陶瓷的制备方法 - Google Patents

一种氮化钛多孔导电陶瓷的制备方法 Download PDF

Info

Publication number
CN107963890A
CN107963890A CN201711239977.9A CN201711239977A CN107963890A CN 107963890 A CN107963890 A CN 107963890A CN 201711239977 A CN201711239977 A CN 201711239977A CN 107963890 A CN107963890 A CN 107963890A
Authority
CN
China
Prior art keywords
titanium nitride
preparation
electrically conductive
nitride porous
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711239977.9A
Other languages
English (en)
Other versions
CN107963890B (zh
Inventor
陈斐
黄梅
沈强
张联盟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201711239977.9A priority Critical patent/CN107963890B/zh
Publication of CN107963890A publication Critical patent/CN107963890A/zh
Application granted granted Critical
Publication of CN107963890B publication Critical patent/CN107963890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明是一种氮化钛多孔导电陶瓷的制备方法,即:先将分散剂、胶凝剂配置为组合助剂,加入陶瓷粉体及烧结助剂,搅拌混合均匀后制备出陶瓷料浆,再注入模具中,经固化成型、干燥,制备得到陶瓷坯体,再在特定的排胶制度下进行排胶热处理,选用场助烧结或无压烧结中的一种,在设定的温度及气氛下进行烧结,得到所述的TiN多孔导电陶瓷。该多孔陶瓷的孔隙率为30~70%,孔径尺寸1~20μm,抗弯强度为15~150MPa,电导率为8~25×103S/m。本发明在制备过程中避免了高温氮化过程,所得氮化钛多孔陶瓷纯度更高,孔隙率高,孔径分布均匀,结构可控,且可降低烧结温度,成本低廉,工艺简单,操作方便。

Description

一种氮化钛多孔导电陶瓷的制备方法
技术领域:
本发明属于结构材料制备领域,具体涉及一种氮化钛多孔导电陶瓷的制备方法。
技术背景:
氮化钛是一种新型结构功能一体化的工程陶瓷材料,具有优良的化学稳定性和抗氧化性能,以及较高的导电性、导热性和超导临界温度,可用于电子器件中做热阻材料和超导材料;同时,它又有熔点高(3223K)、硬度大、密度小、摩擦系数小等特性,目前已成为一种有广泛用途的结构陶瓷。氮化钛陶瓷涂层可以提高刀具的硬度,改善切削工具的耐磨性能,提高切削工具使用寿命;氮化钛陶瓷还可以用于热电偶保护套、热交换器等化学装置,同时还可用作熔盐电解的电极以及电触头等材料。氮化钛多孔陶瓷是近年来在研究氮化钛陶瓷和多孔陶瓷基础上逐渐兴起的一种新型陶瓷材料,因其充分发挥氮化钛和多孔陶瓷两者的优异性能而引人注目,制备具有高气孔率的氮化钛多孔陶瓷更是目前研究的焦点。
传统氮化钛多孔陶瓷的制备方法是以直接氮化法为主,即以钛粉为主要原料先制备出多孔钛,然后通入氮气气氛,直接氮化制备得到氮化钛多孔陶瓷。但是在氮化过程中,钛粉表面会形成一层氮化钛薄膜,抑制钛粉的进一步氮化,导致很难氮化完全。有研究发现,通过将钛粉进行特殊处理,可以实现完全氮化,但成本明显增加。所以直接氮化法生产工艺复杂,成本过高,且制备得到的氮化钛多孔陶瓷纯度不高,不利于工业化生产。中国专利文献(CN105565815A)公开了一种氮化钛多孔陶瓷的制备方法,其中以二氧化钛粉末和碳黑为主要原料,通过碳热还原氮化法制备得到氮化钛多孔陶瓷。该方法原料低廉,制备得到的氮化钛多孔陶瓷气孔率高,但通过反应合成氮化钛的方法仍存在较多问题。为提高二氧化钛氮化率,必须升高烧结温度,但仍然无法保证氮化完全,降低氮化钛多孔陶瓷纯度,从而影响陶瓷性能。
发明内容:
本发明所要解决的技术问题是:提供一种氮化钛多孔导电陶瓷的制备方法,以克服上述现有技术中氮化钛的制备及应用局限性。
本发明解决其技术问题采用以下的技术方案:
本发明提供的氮化钛多孔导电陶瓷的制备方法,具体是通过以下3个步骤实现的:
(1)陶瓷料浆的制备:
先按质量配比将分散剂(3~8wt.%)和胶凝剂(2~10wt.%)配置为组合助剂,再按质量配比加入陶瓷原料粉(97~95wt.%)及烧结助剂(3~5wt.%),然后经搅拌混合后制备得到陶瓷料浆;
(2)陶瓷坯体的制备:
将陶瓷料浆注入模具中,经固化成型、干燥,制备得到陶瓷坯体;
(3)在设定的排胶制度下将陶瓷坯体进行热处理,经烧结后得到氮化钛多孔导电陶瓷材料。
所述制备方法步骤(1)中的陶瓷料浆由以下方法制成:
①称取3~8wt.%的分散剂、2~10wt.%的胶凝剂溶于去离子水中,制备得到组合助剂;
②称取3~5wt.%的烧结助剂、与陶瓷原料粉体一起加入到组合助剂中;
③将混合液至于搅拌台上24~48h,搅拌速率为500~700r/min。
本发明所述制备方法步骤(2)中,是将陶瓷料浆倒入陶瓷、金属或聚合物材质模具中,其固化成型时间为10~30min,干燥时间为1~3天。
本发明所述氮化钛多孔导电陶瓷的制备方法,其特征在于,步骤(3)所用烧结方式为场助烧结或无压烧结中的一种。具体烧结工艺为:烧成温度为1300~1600℃,升温速率为2~10℃/min,保温时间为4~8h;所用气氛为氩气或氮气中的一种。
本发明所述制备方法步骤(3)中排胶温度为350~650℃,升温速率为0.5~5℃/min,保温时间为1~4h,所用气氛为空气。
本发明所述制备方法步骤(1)中的陶瓷原料粉体为TiN,其平均粒径为2~10μm,所用烧结助剂为Y2O3、MgO、Al2O3、CeO2、B2O3、SiO2中的一种或多种,其平均粒径为2~5μm。
本发明所述制备方法步骤(1)中的分散剂包括聚乙二醇(PEG)、柠檬酸铵(C6H17N3O7)、聚乙烯吡咯烷酮(PVP)、聚丙烯酸铵(PAA-NH4)中的一种。
本发明所述制备方法步骤(1)中的胶凝剂包括丙烯酰胺(AM)体系、甲基丙烯酰胺(MAM)体系、甲基丙烯酸(MAA)体系中的一种。
本发明制备的氮化钛多孔陶瓷,其孔隙率为30~70%,抗弯强度为15~150MPa,孔径尺寸1~20μm,电导率为8~25×103S/m,孔隙分布均匀,孔隙结构可控。
本发明与现有技术相比具有以下的主要优点:
相比于传统的直接氮化法及碳热还原氮化法,本发明制备过程中避免了高温氮化过程,所获得的氮化钛多孔陶瓷纯度更高,且可降低烧结温度,成本低廉,工艺简单,操作方便,所制备得到的氮化钛多孔陶瓷孔隙率高(~60%),孔径分布均匀,结构可控;同时本发明所提及的方法可制备出满足各种需求的特殊形状的氮化钛多孔陶瓷,并首次研究了其导电性能,电导率高达25×103S/m,扩大了其应用范围。
本发明首次对氮化钛多孔陶瓷的电学性能进行研究,发明所采用制备方法相对于传统的直接氮化法和碳热还原法而言,所获得氮化钛多孔导电陶瓷孔径分布均匀、孔隙结构可控,具有较高的力学性能及电学性能,同时氮化钛本身具有较强的电化学稳定性及耐腐蚀性,能有效替代多孔金属在电极材料中的应用,且该制备方法简单、成本低廉,易于实现工业化。
附图说明
图1是实施例1、实施例2和实施例6中TiN多孔陶瓷的XRD图片。
图2是实施例3中TiN多孔陶瓷的低倍SEM图片。
图3是实施例3中TiN多孔陶瓷的高倍SEM图片。
图4是实施例2~5中TiN多孔陶瓷的孔隙率及抗弯强度变化趋势图。
图5是实施例2~5中TiN多孔陶瓷的电导率变化趋势图。
具体实施方式
本发明提供了一种氮化钛多孔陶瓷的制备方法,具体是:以TiN陶瓷粉体为初始原料,Y2O3、MgO、Al2O3、CeO2、B2O3、SiO2中的一种或多种为烧结助剂,选用聚乙二醇(PEG)、柠檬酸铵(C6H17N3O7)、聚乙烯吡咯烷酮(PVP)、聚丙烯酸铵(PAA-NH4)中的一种作为分散剂,丙烯酰胺(AM)体系、甲基丙烯酰胺(MAM)体系、甲基丙烯酸(MAA)体系中的一种作为胶凝剂,首先将分散剂、胶凝剂配置为组合助剂,然后加入陶瓷粉体和烧结助剂,在500~700r/min的搅拌速率下搅拌混合24~48h后制备出陶瓷料浆,再将陶瓷料浆倒入陶瓷、金属或聚合物材质模具中,经10~30min固化成型,在室温下干燥1~3天,脱模制备得到陶瓷坯体,再以0.5~5℃/min的升温速率在350~650℃下进行排胶热处理,最后以2~10℃的升温速率在1300~1600℃下保温4~8h进行烧结,制备得到孔隙率为30~70%,孔径尺寸1~20μm,抗弯强度为15~150MPa,电导率为8~25×103S/m,孔隙分布均匀,孔隙结构可控的氮化钛多孔导电陶瓷。
下面结合实施例和附图对本发明作进一步说明,但不限定本发明。
实施例1:
(1)分别称取0.75gPEG、0.45gAM、0.05gMBAM溶于15mL去离子水中,待混合均匀后称取0.45gY2O3、14.5gTiN加入其中。将混合溶液置于搅拌台上,搅拌速率为700r/min,搅拌时间24h,得到陶瓷料浆;
(2)称取0.01gAPS溶于陶瓷料浆中,再加入1~3滴TEMED,混合均匀后将陶瓷料浆倒入陶瓷、金属或聚合物材质模具之中,经10~30min固化成型,在室温下干燥1~3天,得到陶瓷坯体;
(3)将陶瓷坯体以1℃/min的升温速率升至450℃进行排胶预处理,保温2h,此过程在空气中进行;再以5℃/min的升温速率升至1500℃/min进行烧结,保温时间4h,此过程在氩气气氛中进行。
本实施例制备得到的TiN多孔陶瓷,其孔隙率为52.6%,孔径平均尺寸12.5μm,抗弯强度为18.6MPa,电导率为1.25×104S/m,孔隙分布均匀。
实施例2:
(1)分别称取0.75gPEG、0.45gAM、0.05gMBAM溶于15mL去离子水中,待混合均匀后称取0.45gY2O3、14.5gTiN加入其中。将混合溶液置于搅拌台上,搅拌速率为700r/min,搅拌时间24h,得到陶瓷料浆;
(2)称取0.01gAPS溶于陶瓷料浆中,再加入1~3滴TEMED,混合均匀后将陶瓷料浆倒入陶瓷、金属或聚合物材质模具之中,经10~30min固化成型,在室温下干燥1~3天,得到陶瓷坯体;
(3)将陶瓷坯体以0.5℃/min的升温速率升至400℃进行排胶预处理,保温2h,此过程在空气中进行;再以6℃/min的升温速率升至1600℃/min进行烧结,保温时间4h,此过程在氩气气氛中进行。
本实施例制备得到的TiN多孔陶瓷,其孔隙率为46.05%,孔径平均尺寸10.5μm,抗弯强度为23.56MPa,电导率为1.89×104S/m,孔隙分布均匀。
实施例3:
(1)分别称取0.60gPEG、0.40gAM、0.05gMBAM溶于12.3mL去离子水中,待混合均匀后称取0.45gY2O3、14.5gTiN加入其中。将混合溶液置于搅拌台上,搅拌速率为700r/min,搅拌时间24h,得到陶瓷料浆;
(2)称取0.01gAPS溶于陶瓷料浆中,再加入1~3滴TEMED,混合均匀后将陶瓷料浆倒入陶瓷、金属或聚合物材质模具之中,经10~30min固化成型,在室温下干燥1~3天,得到陶瓷坯体;
(3)将陶瓷坯体以0.5℃/min的升温速率升至450℃进行排胶预处理,保温2h,此过程在空气中进行;再以5℃/min的升温速率升至1600℃/min进行烧结,保温时间4h,此过程在氩气气氛中进行。
本实施例制备得到的TiN多孔陶瓷,其孔隙率为43.25%,孔径平均尺寸8.5μm,抗弯强度为27.86MPa,电导率为2.26×104S/m,孔隙分布均匀。
实施例4:
(1)分别称取0.6gPEG、0.35gAM、0.045gMBAM溶于10mL去离子水中,待混合均匀后称取0.45gY2O3、14.5gTiN加入其中。将混合溶液置于搅拌台上,搅拌速率为700r/min,搅拌时间24h,得到陶瓷料浆;
(2)称取0.01gAPS溶于陶瓷料浆中,再加入1滴TEMED,混合均匀后将陶瓷料浆倒入陶瓷、金属或聚合物材质模具之中,经10~30min固化成型,在室温下干燥1~3天,得到陶瓷坯体;
(3)将陶瓷坯体以0.5℃/min的升温速率升至450℃进行排胶预处理,保温2h,此过程在空气中进行;再以5℃/min的升温速率升至1600℃/min进行烧结,保温时间4h,此过程在氩气气氛中进行。
本实施例制备得到的TiN多孔陶瓷,其孔隙率为41.75%,孔径平均尺寸6.5μm,抗弯强度为32.27MPa,电导率为2.26×104S/m,孔隙分布均匀。
实施例5:
(1)分别称取0.80gPEG、0.50gAM、0.06gMBAM溶于18mL去离子水中,待混合均匀后称取0.45gY2O3、14.5gTiN加入其中。将混合溶液置于搅拌台上,搅拌速率为700r/min,搅拌时间24h,得到陶瓷料浆;
(2)称取0.01gAPS溶于陶瓷料浆中,再加入1~3滴TEMED,混合均匀后将陶瓷料浆倒入陶瓷、金属或聚合物材质模具之中,经10~30min固化成型,在室温下干燥1~3天,得到陶瓷坯体;
(3)将陶瓷坯体以0.5℃/min的升温速率升至450℃进行排胶预处理,保温2h,此过程在空气中进行;再以8℃/min的升温速率升至1600℃/min进行烧结,保温时间4h,此过程在氩气气氛中进行。
本实施例制备得到的TiN多孔陶瓷,其孔隙率为47.63%,孔径平均尺寸7.5μm,抗弯强度为20.7MPa,电导率为1.68×104S/m孔隙分布均匀。
实施例6:
(1)分别称取0.75gPEG、0.45gAM、0.05gMBAM溶于15mL去离子水中,待混合均匀后称取0.45gY2O3、14.5gTiN加入其中。将混合溶液置于搅拌台上,搅拌速率为700r/min,搅拌时间24h,得到陶瓷料浆;
(2)称取0.01gAPS溶于陶瓷料浆中,再加入1~3滴TEMED,混合均匀后将陶瓷料浆倒入陶瓷、金属或聚合物材质模具之中,经10~30min固化成型,在室温下干燥1~3天,得到陶瓷坯体;
(3)将陶瓷坯体以0.5℃/min的升温速率升至400℃进行排胶预处理,保温2h,此过程在空气中进行;再以8℃/min的升温速率升至1400℃/min进行烧结,保温时间6h,此过程在氩气气氛中进行。
本实施例制备得到的TiN多孔陶瓷,其孔隙率为55.8%,孔径平均尺寸15.5μm,抗弯强度为17.5MPa,电导率为1.02×104S/m孔隙分布均匀。
实施例7:
(1)分别称取0.70gPEG、0.40gAM、0.05gMBAM溶于12.3mL去离子水中,待混合均匀后称取0.45gY2O3、14.5gTiN加入其中。将混合溶液置于搅拌台上,搅拌速率为700r/min,搅拌时间24h,得到陶瓷料浆;
(2)称取0.01gAPS溶于陶瓷料浆中,再加入1~3滴TEMED,混合均匀后将陶瓷料浆倒入陶瓷、金属或聚合物材质模具之中,经10~30min固化成型,在室温下干燥1~3天,得到陶瓷坯体;
(3)将陶瓷坯体以1℃/min的升温速率升至400℃进行排胶预处理,保温2h,此过程在空气中进行;再以8℃/min的升温速率升至1500℃/min进行烧结,保温时间4h,此过程在氩气气氛中进行。
本实施例制备得到的TiN多孔陶瓷,其孔隙率为49.38%,孔径平均尺寸14.5μm,抗弯强度为20.25MPa,电导率为1.36×104S/m,孔隙分布均匀。
实施例8:
(1)分别称取0.65gPEG、0.45gAM、0.06gMBAM溶于10mL去离子水中,待混合均匀后称取0.45gY2O3、14.5gTiN加入其中。将混合溶液置于搅拌台上,搅拌速率为700r/min,搅拌时间24h,得到陶瓷料浆;
(2)称取0.01gAPS溶于陶瓷料浆中,再加入1~3滴TEMED,混合均匀后将陶瓷料浆倒入陶瓷、金属或聚合物材质模具之中,经10~30min固化成型,在室温下干燥1~3天,得到陶瓷坯体;
(3)将陶瓷坯体以1℃/min的升温速率升至400℃进行排胶预处理,保温2h,此过程在空气中进行;再以8℃/min的升温速率升至1400℃/min进行烧结,保温时间6h,此过程在氩气气氛中进行。
本实施例制备得到的TiN多孔陶瓷,其孔隙率为46.31%,孔径平均尺寸9.5μm,抗弯强度为23.65MPa,电导率为1.28×104S/m,孔隙分布均匀。

Claims (9)

1.一种氮化钛多孔导电陶瓷的制备方法,其特征是采用包括以下步骤的方法:
(1)陶瓷料浆的制备:
先按质量配比将分散剂(3~8wt.%)和胶凝剂(2~10wt.%)配置为组合助剂,再按质量配比加入陶瓷原料粉(97~95wt.%)及烧结助剂(3~5wt.%),然后经搅拌混合后制备得到陶瓷料浆;
(2)陶瓷坯体的制备:
将陶瓷料浆注入模具中,经固化成型、干燥,制备得到陶瓷坯体;
(3)在设定的排胶制度下将陶瓷坯体进行热处理,经烧结后得到氮化钛多孔导电陶瓷材料。
2.根据权利要求1所述的氮化钛多孔导电陶瓷的制备方法,其特征在于步骤(1)中制备陶瓷料浆是通过以下步骤实现的:
①称取3~8wt.%的分散剂、2~10wt.%的胶凝剂溶于去离子水中,制备得到组合助剂;
②称取3~5wt.%的烧结助剂、与陶瓷原料粉体一起加入到组合助剂中;
③将混合液至于搅拌台上24~48h,搅拌速率为500~700r/min。
3.根据权利要求1所述的氮化钛多孔导电陶瓷的制备方法,其特征在于步骤(2)中,是将陶瓷料浆倒入陶瓷、金属或聚合物材质模具中,其固化成型时间为10~30min,干燥时间为1~3天。
4.根据权利要求1所述的氮化钛多孔导电陶瓷的制备方法,其特征在于步骤(3)中,所用烧结方式为场助烧结或无压烧结中的一种;具体烧结工艺为:烧成温度为1300~1600℃,升温速率为2~10℃/min,保温时间为4~8h,所用气氛为氩气或氮气中的一种。
5.根据权利要求1所述的氮化钛多孔导电陶瓷的制备方法,其特征在于步骤(3)所述排胶制度具体为:排胶温度为350~650℃,升温速率为0.5~5℃/min,保温时间为1~4h,所用气氛为空气。
6.根据权利要求1所述的氮化钛多孔导电陶瓷的制备方法,其特征在于步骤(1)所述陶瓷原料粉体为TiN,其平均粒径为2~10μm,所用烧结助剂为Y2O3、MgO、Al2O3、CeO2、B2O3、SiO2中的一种或多种,其平均粒径为2~5μm。
7.根据权利要求1所述的氮化钛多孔导电陶瓷的制备方法,其特征在于,步骤(1)所述的分散剂包括聚乙二醇、柠檬酸铵、聚乙烯吡咯烷酮、聚丙烯酸铵中的一种。
8.根据权利要求1所述的氮化钛多孔导电陶瓷的制备方法,其特征在于步骤(1)所述的胶凝剂包括丙烯酰胺体系、甲基丙烯酰胺体系、甲基丙烯酸体系中的一种。
9.根据权利要求1-8中任一所述的氮化钛多孔导电陶瓷制备方法,其特征在于制备出的氮化钛多孔导电陶瓷,其孔隙率为30~70%,孔径尺寸1~20μm,抗弯强度为15~150MPa,电导率为8~25×103S/m,且孔径分布均匀,孔隙结构可控。
CN201711239977.9A 2017-11-30 2017-11-30 一种氮化钛多孔导电陶瓷的制备方法 Active CN107963890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711239977.9A CN107963890B (zh) 2017-11-30 2017-11-30 一种氮化钛多孔导电陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711239977.9A CN107963890B (zh) 2017-11-30 2017-11-30 一种氮化钛多孔导电陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN107963890A true CN107963890A (zh) 2018-04-27
CN107963890B CN107963890B (zh) 2020-09-01

Family

ID=61998196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711239977.9A Active CN107963890B (zh) 2017-11-30 2017-11-30 一种氮化钛多孔导电陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN107963890B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109095944A (zh) * 2018-08-27 2018-12-28 芜湖市元奎新材料科技有限公司 一种氮化钛多孔陶瓷的制备方法
CN109317644A (zh) * 2018-10-17 2019-02-12 西安交通大学 一种多孔网状陶瓷增强钢铁基复合衬板的制备方法
CN112250466A (zh) * 2020-10-29 2021-01-22 中北大学 一种电子烟具加热用多孔导电陶瓷材料及其制备方法
CN114050007A (zh) * 2021-11-25 2022-02-15 萍乡市长岭电瓷制造有限公司 一种旋转腕臂瓷绝缘子及其制备方法
CN117125986A (zh) * 2022-05-19 2023-11-28 山东东大新材料研究院有限公司 一种氮化钛陶瓷及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060033225A1 (en) * 2004-08-16 2006-02-16 Jing Wang Process for producing monolithic porous carbon disks from aromatic organic precursors
JP2007128895A (ja) * 2005-11-03 2007-05-24 Samsung Sdi Co Ltd 太陽電池及びその製造方法
CN101734920A (zh) * 2009-12-04 2010-06-16 西安交通大学 一种氮化钛多孔陶瓷及其制备方法
CN101913905A (zh) * 2010-08-31 2010-12-15 麦乔智 一种多孔性陶瓷组成物及其制备方法与应用
CN102643111A (zh) * 2012-05-14 2012-08-22 刘宗蒲 一种多孔陶瓷的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060033225A1 (en) * 2004-08-16 2006-02-16 Jing Wang Process for producing monolithic porous carbon disks from aromatic organic precursors
JP2007128895A (ja) * 2005-11-03 2007-05-24 Samsung Sdi Co Ltd 太陽電池及びその製造方法
CN101734920A (zh) * 2009-12-04 2010-06-16 西安交通大学 一种氮化钛多孔陶瓷及其制备方法
CN101913905A (zh) * 2010-08-31 2010-12-15 麦乔智 一种多孔性陶瓷组成物及其制备方法与应用
CN102643111A (zh) * 2012-05-14 2012-08-22 刘宗蒲 一种多孔陶瓷的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109095944A (zh) * 2018-08-27 2018-12-28 芜湖市元奎新材料科技有限公司 一种氮化钛多孔陶瓷的制备方法
CN109317644A (zh) * 2018-10-17 2019-02-12 西安交通大学 一种多孔网状陶瓷增强钢铁基复合衬板的制备方法
CN112250466A (zh) * 2020-10-29 2021-01-22 中北大学 一种电子烟具加热用多孔导电陶瓷材料及其制备方法
CN112250466B (zh) * 2020-10-29 2022-06-28 中北大学 一种电子烟具加热用多孔导电陶瓷材料及其制备方法
CN114050007A (zh) * 2021-11-25 2022-02-15 萍乡市长岭电瓷制造有限公司 一种旋转腕臂瓷绝缘子及其制备方法
CN117125986A (zh) * 2022-05-19 2023-11-28 山东东大新材料研究院有限公司 一种氮化钛陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN107963890B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN107963890A (zh) 一种氮化钛多孔导电陶瓷的制备方法
CN106478107B (zh) 一种氮化硅晶须结合碳化硅多孔陶瓷及其制备方法
CN105418071B (zh) 高纯超细ZrC‑SiC复合粉体的合成方法
CN106699227B (zh) 一种纳米线自增强多孔氮化硅陶瓷及其制备方法
CN105884394B (zh) 一种低温制备多孔碳化硅支撑体的方法
CN108033801A (zh) 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法
CN105669205A (zh) 以颗粒级配粉体为原料制备致密固相烧结碳化硅的方法
CN110451936B (zh) 一种复相陶瓷及其制备方法和应用
CN108046833A (zh) 一种具有多孔发热膜结构的陶瓷加热体的制备工艺
CN103979507A (zh) 一种利用高气压和氟化物添加剂辅助制备球形氮化铝粉体的方法
CN102115330A (zh) 酚醛树脂为碳源的固相烧结碳化硅陶瓷的制备方法
CN105645987B (zh) 一种电场辅助低温快速烧结多孔陶瓷的方法
CN102329126B (zh) 原位形成β-Sialon结合刚玉预制件及制备方法
CN108395240A (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN103194101B (zh) 一种铝电解用硼化钛基涂层复合材料及其制备方法、涂覆方法
CN113337747B (zh) 一种高强高导铜合金的制备方法
CN114231812B (zh) 一种AlN-W-Cu复合材料及其制备方法
CN110028324A (zh) 一种氮化物陶瓷的制备方法
CN105294160A (zh) 一种凝胶注模、微波烧结制备多孔氮化硅陶瓷的方法
CN103342544A (zh) 制备多孔氧化铝陶瓷的方法
CN106747480A (zh) 一种利用温控缓释助烧剂中金属离子固化陶瓷浆料的方法
CN107935628A (zh) 一种泡沫碳化硅陶瓷及其制备方法
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
KR20120084307A (ko) 탄소 재료 및 그 제조 방법
JP2009123691A (ja) 耐食性セラミックス電極材およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant