CN106699227B - 一种纳米线自增强多孔氮化硅陶瓷及其制备方法 - Google Patents

一种纳米线自增强多孔氮化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN106699227B
CN106699227B CN201710024219.9A CN201710024219A CN106699227B CN 106699227 B CN106699227 B CN 106699227B CN 201710024219 A CN201710024219 A CN 201710024219A CN 106699227 B CN106699227 B CN 106699227B
Authority
CN
China
Prior art keywords
silicon nitride
ceramic
nano wire
porous silicon
wire self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710024219.9A
Other languages
English (en)
Other versions
CN106699227A (zh
Inventor
丁军
吴郑敏
邓承继
余超
祝洪喜
柴志南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201710024219.9A priority Critical patent/CN106699227B/zh
Publication of CN106699227A publication Critical patent/CN106699227A/zh
Application granted granted Critical
Publication of CN106699227B publication Critical patent/CN106699227B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • C04B38/106Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam by adding preformed foams
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种纳米线自增强多孔氮化硅陶瓷及其制备方法。其技术方案是:以70~80wt%的硅粉、5~10wt%的催化剂和10~20wt%的氮源为原料,外加所述原料20~30wt%的去离子水,搅拌,得到陶瓷浆料;向所述陶瓷浆料加入所述原料10~20wt%的发泡剂制成的泡沫,持续搅拌30~60min,得到陶瓷泡沫浆料;将所述陶瓷泡沫浆料倒入模具中,于氮气环境中静置,干燥,脱模,得到陶瓷坯体;将所述陶瓷坯体在氮气气氛条件下,先升温至1100~1150℃,保温;再升温至1200~1600℃,保温;自然冷却,即得纳米线自增强多孔氮化硅陶瓷。本发明工艺简单、成本低廉、原料利用率高和过程易于控制,所制备的制品气孔大小均一、气孔分布均匀和机械强度高。

Description

一种纳米线自增强多孔氮化硅陶瓷及其制备方法
技术领域
本发明属于多孔氮化硅陶瓷技术领域。具体涉及一种纳米线自增强多孔氮化硅陶瓷及其制备方法。
背景技术
多孔氮化硅陶瓷是一种将氮化硅陶瓷的性能特征与多孔材料的结构特征相结合的高级耐火材料,被广泛应用于航空航天、化工、冶金等领域。目前多孔氮化硅陶瓷的制备方法主要有添加造孔剂法、冷冻干燥法、溶胶-凝胶法和碳热还原法等。
这些方法得到的多孔氮化硅陶瓷的气孔大小不均一和气孔分布不均匀,并且在反应过程中主要是通过氮气与硅粉直接接触发生反应生成氮化硅,使得多孔氮化硅陶瓷内部的硅粉无法与氮气充分接触,不仅降低了硅粉的利用率,残存的硅粉还会与氮化硅形成结构缺陷,影响产品的性能。
发明内容
本发明旨在克服现有技术缺陷,目的是提供一种工艺简单、成本低廉、原料利用率高和过程易于控制的纳米线自增强多孔氮化硅陶瓷制备方法,用该方法制备的纳米线自增强多孔氮化硅陶瓷气孔大小均一、气孔分布均匀和机械强度高。
为实现上述目的,本发明所采用的技术方案的具体步骤是:
步骤一、以70~80wt%的硅粉、5~10wt%的催化剂和10~20wt%的氮源为原料,外加所述原料20~30wt%的去离子水,搅拌30~60min,得到陶瓷浆料。
步骤二、在搅拌条件下,向所述陶瓷浆料加入所述原料10~20wt%的发泡剂制成的泡沫,所述泡沫加入完毕,再持续搅拌30~60min,得到陶瓷泡沫浆料;所述泡沫中发泡剂和去离子水的质量比为1∶(10~15)。
步骤三、将所述陶瓷泡沫浆料倒入模具中,在室温条件和氮气环境中静置1~48h;然后在60~110℃条件下干燥12~24h,脱模,得到陶瓷坯体。
步骤四、将所述陶瓷坯体置于真空管式炉内,在氮气气氛条件下,先以5~10℃/min的速率升温至1100~1150℃,保温1~2h;再以1~4℃/min的速率升温至1200~1600℃,保温3~6h;然后自然冷却至室温,即得纳米线自增强多孔氮化硅陶瓷。
所述硅粉的纯度为85~99.9wt%;硅粉粒度为1~200μm。
所述催化剂为铁粉、钴粉、镍粉中的一种,纯度为99wt%以上;所述催化剂粒度为2~100μm。
所述氮源为叠氮化钠和氯化铵中的一种以上;所述氮源的纯度为99.0~99.9wt%。
所述发泡剂为烷基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、羟甲基纤维素钠和羟乙基纤维素中的一种以上。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明以硅粉、催化剂和氮源为原料,成本低廉;其制备工艺是在原料中加入泡沫,搅拌,浇注成型,干燥,脱模,高温烧成,即得纳米线自增强多孔氮化硅陶瓷,工艺简单和过程易于控制。
本发明采用发泡法将泡沫引入陶瓷浆料中,干燥后得到具有多孔结构的陶瓷坯体;外部通入的氮气与陶瓷坯体表面的硅粉接触发生反应生成氮化硅,同时外部通入的氮气通过气孔进入坯体内部与硅粉发生反应生成氮化硅。氮源在高温下分解产生氮气,使陶瓷坯体内部的氮气浓度提高,促进氮气与硅粉的接触,提高硅粉氮化率同时促进氮化硅形成,原料利用率高。烧成后的纳米线自增强多孔氮化硅陶瓷物相均为Si3N4,无硅粉残留。
另外,催化剂与硅粉形成活性中心,使氮气与硅粉能在较低的热处理温度下发生反应,在反应过程中,催化剂与硅粉形成小液滴,硅蒸气和氮气溶解在液滴中。随着氮化硅晶粒的生长,少量的含催化剂小液滴将被不断推动并最终产生氮化硅纳米线。热处理过程中不生成有害物质,节能环保。原位生成的氮化硅纳米线起桥连作用,提升了纳米线自增强多孔氮化硅陶瓷的机械强度。纳米线自增强多孔氮化硅陶瓷内部气孔由氮化硅纳米线连接。烧成后得到的纳米线自增强多孔氮化硅陶瓷气孔大小均一,气孔分布均匀,抗折强度为20~30MPa,耐压强度为50~70MPa。
因此,本发明具有工艺简单、成本低廉、原料利用率高和过程易于控制的特点,所制备的纳米线自增强多孔氮化硅陶瓷气孔大小均一、气孔分布均匀和机械强度高。
附图说明
图1为本发明制备的一种纳米线自增强多孔氮化硅陶瓷的XRD图谱;
图2为图1所示纳米线自增强多孔氮化硅陶瓷SEM图。
具体实施方案
下面结合附图和具体实施方式对本发明作进一步描述,并非对其保护范围的限制。实施例中所述原料及试剂均市售可得。
为避免重复,先将本具体实施方式的原料统一描述如下,实施例中不再赘述:
所述硅粉的纯度为85~99.9wt%;硅粉粒度为1~200μm。
所述催化剂的纯度为99wt%以上;所述催化剂粒度为2~100μm。
所述氮源的纯度为99.0~99.9wt%。
实施例1
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例所述制备方法的步骤是:
步骤一、以70~76wt%的硅粉、5~10wt%的催化剂和14~20wt%的氮源为原料,外加所述原料20~26wt%的去离子水,搅拌30~60min,得到陶瓷浆料。
步骤二、在搅拌条件下,向所述陶瓷浆料加入所述原料10~16wt%的发泡剂制成的泡沫,所述泡沫加入完毕,再持续搅拌30~60min,得到陶瓷泡沫浆料;所述泡沫中发泡剂和去离子水的质量比为1∶(10~13)。
步骤三、将所述陶瓷泡沫浆料倒入模具中,在室温条件和氮气环境中静置1~24h;然后在60~110℃条件下干燥12~24h,脱模,得到陶瓷坯体。
步骤四、将所述陶瓷坯体置于真空管式炉内,在氮气气氛条件下,先以5~10℃/min的速率升温至1100~1150℃,保温1~2h;再以1~4℃/min的速率升温至1200~1400℃,保温3~6h;然后自然冷却至室温,即得纳米线自增强多孔氮化硅陶瓷。
所述催化剂为铁粉。
所述氮源为叠氮化钠。
所述发泡剂为烷基酚聚氧乙烯醚。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为20~26MPa;耐压强度为50~60MPa。
实施例2
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例除发泡剂外,其余同实施例1。
本实施例所述发泡剂为烷基酚聚氧乙烯醚和脂肪醇聚氧乙烯醚的混合物。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为20~26MPa;耐压强度为50~60MPa。
实施例3
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例除发泡剂外,其余同实施例1。
本实施例所述发泡剂为脂肪醇聚氧乙烯醚、羟甲基纤维素钠和羟乙基纤维素的混合物。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为20~26MPa;耐压强度为50~60MPa。
实施例4
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例所述制备方法的步骤是:
步骤一、以72~78wt%的硅粉、5~10wt%的催化剂和12~18wt%的氮源为原料,外加所述原料22~28wt%的去离子水,搅拌30~60min,得到陶瓷浆料。
步骤二、在搅拌条件下,向所述陶瓷浆料加入所述原料12~18wt%的发泡剂制成的泡沫,所述泡沫加入完毕,再持续搅拌30~60min,得到陶瓷泡沫浆料;所述泡沫中发泡剂和去离子水的质量比为1∶(11~14)。
步骤三、将所述陶瓷泡沫浆料倒入模具中,在室温条件和氮气环境中静置12~36h;然后在60~110℃条件下干燥12~24h,脱模,得到陶瓷坯体。
步骤四、将所述陶瓷坯体置于真空管式炉内,在氮气气氛条件下,先以5~10℃/min的速率升温至1100~1150℃,保温1~2h;再以1~4℃/min的速率升温至1300~1500℃,保温3~6h;然后自然冷却至室温,即得纳米线自增强多孔氮化硅陶瓷。
所述催化剂为钴粉。
所述氮源为氯化铵。
所述发泡剂为脂肪醇聚氧乙烯醚。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为26~30MPa;耐压强度为60~70MPa。
实施例5
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例除发泡剂外,其余同实施例4。
本实施例所述发泡剂为脂肪醇聚氧乙烯醚和羟甲基纤维素钠的混合物。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为26~30MPa;耐压强度为60~70MPa。
实施例6
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例除发泡剂外,其余同实施例4。
本实施例所述发泡剂为烷基酚聚氧乙烯醚、羟甲基纤维素钠和羟乙基纤维素的混合物。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为26~30MPa;耐压强度为60~70MPa。
实施例7
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例所述制备方法的步骤是:
步骤一、以74~80wt%的硅粉、5~10wt%的催化剂和10~16wt%的氮源为原料,外加所述原料24~30wt%的去离子水,搅拌30~60min,得到陶瓷浆料。
步骤二、在搅拌条件下,向所述陶瓷浆料加入所述原料14~20wt%的发泡剂制成的泡沫,所述泡沫加入完毕,再持续搅拌30~60min,得到陶瓷泡沫浆料;所述泡沫中发泡剂和去离子水的质量比为1∶(12~15)。
步骤三、将所述陶瓷泡沫浆料倒入模具中,在室温条件和氮气环境中静置24~48h;然后在60~110℃条件下干燥12~24h,脱模,得到陶瓷坯体。
步骤四、将所述陶瓷坯体置于真空管式炉内,在氮气气氛条件下,先以5~10℃/min的速率升温至1100~1150℃,保温1~2h;再以1~4℃/min的速率升温至1400~1600℃,保温3~6h;然后自然冷却至室温,即得纳米线自增强多孔氮化硅陶瓷。
所述催化剂为镍粉。
所述氮源为叠氮化钠和氯化铵的混合物。
所述发泡剂为羟甲基纤维素钠或为羟乙基纤维素。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为24~28MPa;耐压强度为55~65MPa。
实施例8
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例除发泡剂外,其余同实施例7。
本实施例所述发泡剂为羟甲基纤维素钠和羟乙基纤维素的混合物。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为24~28MPa;耐压强度为55~65MPa。
实施例9
一种纳米线自增强多孔氮化硅陶瓷及其制备方法。本实施例除发泡剂外,其余同实施例7。
本实施例所述发泡剂为烷基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、羟甲基纤维素钠和羟乙基纤维素的混合物。
本实施例制备的纳米线自增强多孔氮化硅陶瓷经检测:抗折强度为24~28MPa;耐压强度为55~65MPa。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式以硅粉、催化剂和氮源为原料,成本低廉;其制备工艺是在原料中加入泡沫,搅拌,浇注成型,干燥,脱模,高温烧成,即得纳米线自增强多孔氮化硅陶瓷,工艺简单和过程易于控制。
本具体实施方式采用发泡法将泡沫引入陶瓷浆料中,干燥后得到具有多孔结构的陶瓷坯体;外部通入的氮气与陶瓷坯体表面的硅粉接触发生反应生成氮化硅,同时外部通入的氮气通过气孔进入坯体内部与硅粉发生反应生成氮化硅。氮源在高温下分解产生氮气,使陶瓷坯体内部的氮气浓度提高,促进氮气与硅粉的接触,提高硅粉氮化率同时促进氮化硅形成。图1为实施例1制备的一种纳米线自增强多孔氮化硅陶瓷的XRD图谱,由图1可知,烧成后的纳米线自增强多孔氮化硅陶瓷物相均为Si3N4,无硅粉残留。
另外,催化剂与硅粉形成活性中心,使氮气与硅粉能在较低的热处理温度下发生反应,在反应过程中,催化剂与硅粉形成小液滴,硅蒸气和氮气溶解在液滴中。随着氮化硅晶粒的生长,少量的含催化剂小液滴将被不断推动并最终产生氮化硅纳米线。热处理过程中不生成有害物质,节能环保。原位生成的氮化硅纳米线起桥连作用,提升了纳米线自增强多孔氮化硅陶瓷的机械强度。图2为图1所示纳米线自增强多孔氮化硅陶瓷SEM图,由图2可知,纳米线自增强多孔氮化硅陶瓷内部气孔由氮化硅纳米线连接。烧成后得到的纳米线自增强多孔氮化硅陶瓷气孔大小均一,气孔分布均匀,抗折强度为20~30MPa,耐压强度为50~70MPa。
因此,本具体实施方式具有工艺简单、成本低廉、原料利用率高和过程易于控制的特点,所制备的纳米线自增强多孔氮化硅陶瓷气孔大小均一、气孔分布均匀和机械强度高。

Claims (3)

1.一种纳米线自增强多孔氮化硅陶瓷的制备方法,其特征在于所述制备方法的步骤:
步骤一、以70~80wt%的硅粉、5~10wt%的催化剂和10~20wt%的氮源为原料,外加所述原料20~30wt%的去离子水,搅拌30~60min,得到陶瓷浆料;
步骤二、在搅拌条件下,向所述陶瓷浆料加入所述原料10~20wt%的发泡剂制成的泡沫,所述泡沫加入完毕,再持续搅拌30~60min,得到陶瓷泡沫浆料;所述泡沫中发泡剂和去离子水的质量比为1∶(10~15);
步骤三、将所述陶瓷泡沫浆料倒入模具中,在室温条件和氮气环境中静置1~48h;然后在60~110℃条件下干燥12~24h,脱模,得到陶瓷坯体;
步骤四、将所述陶瓷坯体置于真空管式炉内,在氮气气氛条件下,先以5~10℃/min的速率升温至1100~1150℃,保温1~2h;再以1~4℃/min的速率升温至1200~1600℃,保温3~6h;然后自然冷却至室温,即得纳米线自增强多孔氮化硅陶瓷;
所述催化剂为铁粉、钴粉、镍粉中的一种,纯度为99wt%以上;所述催化剂粒度为2~100μm;
所述氮源为叠氮化钠和氯化铵中的一种以上;所述氮源的纯度为99.0~99.9wt%;
所述发泡剂为烷基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、羟甲基纤维素钠和羟乙基纤维素中的一种以上。
2.根据权利要求1所述纳米线自增强多孔氮化硅陶瓷的制备方法,其特征在于所述硅粉的纯度为85~99.9wt%;硅粉粒度为1~200μm。
3.一种纳米线自增强多孔氮化硅陶瓷,其特征在于所述纳米线自增强多孔氮化硅陶瓷是根据权利要求1~2项中任一项所述纳米线自增强多孔氮化硅陶瓷的制备方法所制备的纳米线自增强多孔氮化硅陶瓷。
CN201710024219.9A 2017-01-13 2017-01-13 一种纳米线自增强多孔氮化硅陶瓷及其制备方法 Active CN106699227B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710024219.9A CN106699227B (zh) 2017-01-13 2017-01-13 一种纳米线自增强多孔氮化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710024219.9A CN106699227B (zh) 2017-01-13 2017-01-13 一种纳米线自增强多孔氮化硅陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN106699227A CN106699227A (zh) 2017-05-24
CN106699227B true CN106699227B (zh) 2019-05-24

Family

ID=58907394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710024219.9A Active CN106699227B (zh) 2017-01-13 2017-01-13 一种纳米线自增强多孔氮化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106699227B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108033801B (zh) * 2017-11-23 2020-02-18 中国人民解放军国防科技大学 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法
CN108623309A (zh) * 2018-04-25 2018-10-09 清华大学 一种氧化硅或氮化硅泡沫陶瓷材料的制备方法
CN109020628B (zh) * 2018-08-04 2021-05-04 南京航空航天大学 一种SiC纳米线增强多孔陶瓷复合材料及其制备方法
CN108947576B (zh) * 2018-08-06 2020-08-14 清华大学 一种反向模板法制备纳米线编织微球的陶瓷海绵材料方法
CN109796222A (zh) * 2019-02-20 2019-05-24 中国人民解放军海军工程大学 氮化硅纳米线强化氮化硅泡沫陶瓷的制备方法
CN111423247A (zh) * 2020-03-31 2020-07-17 深圳麦克韦尔科技有限公司 多孔陶瓷、制备方法及其发热体
CN111484334B (zh) * 2020-04-24 2022-06-07 武汉科技大学 一种高α相氮化硅粉体及其制备方法
CN111620699B (zh) * 2020-06-03 2021-08-17 北京科技大学 具有可回弹纳米纤维构架的陶瓷海绵材料及制备方法
CN112759418B (zh) * 2021-01-08 2022-05-13 武汉科技大学 氮化硅晶须增强的刚玉多孔陶瓷过滤器及其制备方法
CN112811933B (zh) * 2021-01-18 2022-11-01 中国人民解放军海军工程大学 一种纳米线增强氮化硅泡沫陶瓷复合二氧化硅气凝胶的制备方法及其产品
CN114751764B (zh) * 2021-02-09 2023-06-09 海南大学 一种多功能陶瓷纳米纤维海绵及其制备方法
CN113233902B (zh) * 2021-06-01 2022-03-22 厦门大学 一种自定型氮化硅泡沫陶瓷的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214264A (zh) * 2013-04-28 2013-07-24 武汉理工大学 一种氮化硅纳米线增强氮化硅多孔陶瓷的方法
CN103922748A (zh) * 2014-03-14 2014-07-16 河海大学 一种多孔氮化硅陶瓷的制备方法
CN104072148A (zh) * 2013-03-29 2014-10-01 北京市理化分析测试中心 一种低成本氮化硅蜂窝陶瓷的制备方法
CN104496485A (zh) * 2014-12-08 2015-04-08 武汉科技大学 一种氮化硅或氮化硅/碳化硅复合粉体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072148A (zh) * 2013-03-29 2014-10-01 北京市理化分析测试中心 一种低成本氮化硅蜂窝陶瓷的制备方法
CN103214264A (zh) * 2013-04-28 2013-07-24 武汉理工大学 一种氮化硅纳米线增强氮化硅多孔陶瓷的方法
CN103922748A (zh) * 2014-03-14 2014-07-16 河海大学 一种多孔氮化硅陶瓷的制备方法
CN104496485A (zh) * 2014-12-08 2015-04-08 武汉科技大学 一种氮化硅或氮化硅/碳化硅复合粉体的制备方法

Also Published As

Publication number Publication date
CN106699227A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
CN106699227B (zh) 一种纳米线自增强多孔氮化硅陶瓷及其制备方法
CN106747640B (zh) 一种氮化硅纳米线增强多孔碳化硅材料及其制备方法
Yuan et al. Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process
CN106478107B (zh) 一种氮化硅晶须结合碳化硅多孔陶瓷及其制备方法
CN103922748B (zh) 一种多孔氮化硅陶瓷的制备方法
CN103224405B (zh) 一种制备氮化硅泡沫陶瓷的方法
Yu et al. Study on particle-stabilized Si3N4 ceramic foams
CN108033801A (zh) 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法
CN108706978A (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN112811933B (zh) 一种纳米线增强氮化硅泡沫陶瓷复合二氧化硅气凝胶的制备方法及其产品
CN107903069A (zh) 氮化铝粉体及其制备方法
CN104130004A (zh) 高强度块状多孔氧化铝纳米陶瓷的制备方法
CN108085785A (zh) 一种氮化硅纤维材料的制备方法
CN106588026A (zh) 基于琼脂糖凝胶注模成型致密或多孔AlN陶瓷的方法
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
CN108395240A (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN109320257B (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN102976758B (zh) 一种大孔互联SiC陶瓷的制备方法
CN105084364B (zh) 一种多孔碳化硅球形粉末的制备工艺
CN110668802A (zh) 一种轻质高强堇青石多孔陶瓷的绿色制备方法及过滤器
CN109796222A (zh) 氮化硅纳米线强化氮化硅泡沫陶瓷的制备方法
CN109133986A (zh) 一种基于发泡法的AlN-SiC多孔复合陶瓷及其制备方法
CN108793911A (zh) 一种利用发泡法制备镁质轻质骨料的方法
JPS5983978A (ja) ケイ素からなる新規材料及び該材料の製造方法
Zhang et al. Highly porous ceramics based on ultralong hydroxyapatite nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant