CN107949574A - 双特异性t细胞活化性抗原结合分子 - Google Patents
双特异性t细胞活化性抗原结合分子 Download PDFInfo
- Publication number
- CN107949574A CN107949574A CN201680051890.6A CN201680051890A CN107949574A CN 107949574 A CN107949574 A CN 107949574A CN 201680051890 A CN201680051890 A CN 201680051890A CN 107949574 A CN107949574 A CN 107949574A
- Authority
- CN
- China
- Prior art keywords
- antigen binding
- fab
- molecules
- amino acid
- cell activation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/35—Valency
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/522—CH1 domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/526—CH3 domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/64—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/66—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a swap of domains, e.g. CH3-CH2, VH-CL or VL-CH1
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/71—Decreased effector function due to an Fc-modification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Urology & Nephrology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明一般涉及用于T细胞活化和对特定靶细胞重定向的新颖双特异性抗原结合分子。另外,本发明涉及编码此类双特异性抗原结合分子的多核苷酸,和包含此类多核苷酸的载体和宿主细胞。本发明进一步涉及用于生成本发明的双特异性抗原结合分子的方法,以及在疾病的治疗中使用这些双特异性抗原结合分子的方法。
Description
发明领域
本发明一般涉及用于活化T细胞的双特异性抗原结合分子。另外,本发明涉及编码此类双特异性抗原结合分子的多核苷酸,以及包含此类多核苷酸的载体和宿主细胞。本发明进一步涉及用于生成本发明的双特异性抗原结合分子的方法,以及在疾病的治疗中使用这些双特异性抗原结合分子的方法。
发明背景
在多种临床背景中常常期望选择性破坏个别细胞或特定细胞类型。例如,特异性破坏肿瘤细胞而使健康细胞和组织保持完整且不受损是癌症疗法的首要目的。
实现这点的一种有吸引力的方式是通过诱导针对肿瘤的免疫应答,使得免疫效应细胞诸如天然杀伤(NK)细胞或细胞毒性T淋巴细胞(CTL)攻击并破坏肿瘤细胞。CTL构成免疫系统最有力的效应细胞,然而它们不能通过由常规治疗性抗体的Fc域介导的效应器机制来激活。
在此点上,最近数年对双特异性抗体变得感兴趣,其设计为用一个“臂”结合靶细胞上的表面抗原,而用第二个“臂”结合T细胞受体(TCR)复合物的活化性的,不变的组分。此类抗体对其两种靶物的同时结合会迫使靶细胞和T细胞之间的暂时相互作用,引起任何细胞毒性T细胞活化和随后的靶细胞裂解。因此,免疫应答重定向于靶细胞,而且不依赖于靶细胞的肽抗原呈递或T细胞的特异性,其对于CTL的正常MHC限制性活化会是相关的。在此背景中,至关重要的是CTL仅在靶细胞向其呈递双特异性抗体时活化,即模拟免疫突触。特别期望的是不需要淋巴细胞预条件化或共刺激来引发靶细胞有效裂解的双特异性抗体。
已开发出数种双特异性抗体型式并研究了它们对调查中的T细胞介导的免疫疗法的适宜性。其中,所谓的BiTE(双特异性T细胞衔接物(engager))分子已得到非常好的表征,而且在临床中已显示出一些前景(综述见Nagorsen和Exp Cell Res 317,1255-1260(2011))。BiTE是串联scFv分子,其中两个scFv分子通过柔性接头融合。针对T细胞衔接评估的其它双特异性型式包括双抗体(Holliger等,Prot Eng 9,299-305(1996))及其衍生物,诸如串联双抗体(Kipriyanov等,J Mol Biol 293,41-66(1999))。一项最近的进展是所谓的DART(双重亲和力重靶向)分子,它们基于双抗体型式但特征在于实现额外稳定化的C端二硫桥(Moore等,Blood 117,4542-51(2011))。所谓的triomab(它们是完整杂合小鼠/大鼠IgG分子,而且目前亦在临床试验中进行评估)代表了尺寸更大的型式(综述见Seimetz等,Cancer Treat Rev 36,458-467(2010))。
正在开发的多种型式显示免疫疗法中归因于T细胞重定向和活化的极大潜力。然而,生成对此合适的双特异性抗体的任务绝不是微不足道的,而是牵涉到许多必须满足的与抗体功效,毒性,适用性和生产能力有关的挑战。
小构建体诸如例如BiTE分子(尽管能够有效交联效应器和靶细胞)具有非常短的血清半衰期,从而需要通过连续输注对患者施用它们。另一方面,IgG样型式(尽管具有长半衰期的极大益处)受制于与IgG分子固有的天然效应器功能有关的毒性。它们的免疫原性潜力构成了成功治疗性开发的IgG样双特异性抗体(尤其是非人型式)的另一个不利特征。最后,双特异性抗体的一般开发中的一项主要挑战是以临床充足的数量和纯度生产双特异性抗体构建体,原因在于具有不同特异性的抗体重和轻链在共表达后的错配,这降低了正确装配的构建体的产量且导致许多无功能的副产物,而期望的双特异性抗体可能难以与之分开。
已经采取了不同的办法来克服双特异性抗体中的链联合问题(参见例如Klein等,mAbs 6,653-663(2012))。例如,‘节-入-穴’策略的目标在于通过在CH3域中引入突变以修饰接触界面来推动两条不同抗体重链的配对。在一条链上将大氨基酸用具有短侧链的氨基酸替换以创建‘穴’。相反,在另一个CH3域中引入具有大侧链的氨基酸以创建‘节’。通过共表达这两种重链(和两条相同轻链,它们必须是对于两种重链都是适宜的),观察到异二聚体(‘节-穴’)对同二聚体(‘穴-穴’或‘节-节’)的高产量(Ridgway,J.B.等,Protein Eng.9(1996)617-621;及WO 96/027011)。通过使用噬菌体展示办法重新塑造两个CH3域的相互作用表面及引入二硫桥以稳定化异二聚体能进一步提高异二聚体的百分比(Merchant,A.M.等,Nature Biotech.16(1998)677-681;Atwell,S.等,J.Mol.Biol.270(1997)26-35)。节-入-穴技术的新办法记载于例如EP 1870459A1。
然而,‘节-入-穴’策略没有解决包含不同轻链来结合不同靶抗原的双特异性抗体中发生的重链-轻链错配的问题。
防止重链-轻链错配的一种策略是在双特异性抗体的结合臂之一的重和轻链之间交换域(参见WO 2009/080251,WO 2009/080252,WO 2009/080253,WO 2009/080254及Schaefer,W.等,PNAS,108(2011)11187-11191,其涉及具有域交换的双特异性IgG抗体)。
交换双特异性抗体的结合臂之一中的重和轻链可变域VH和VL(WO2009/080252,还可参见Schaefer,W.等,PNAS,108(2011)11187-11191)明显减少由针对第一抗原的轻链与错误的针对第二抗原的重链的错配引起的副产物(与没有此类域交换的办法相比)。不过,这些抗体制备物并非完全不含副产物。主要的副产物基于Bence Jones型相互作用(Schaefer,W.et al,PNAS,108(2011)11187-11191;附录中的图S1I)。因而想要进一步减少此类副产物以提高例如此类双特异性抗体的产量。
T细胞抗原和靶细胞抗原二者的靶抗原和适宜结合物的选项是用于治疗性应用的T细胞双特异性(TCB)抗体的生成中的又一个至关紧要方面。
STEAP-1(前列腺六次跨膜上皮抗原-1)是一种339个氨基酸的细胞表面蛋白,其在正常组织中主要在前列腺细胞中表达。STEAP-1蛋白质表达在前列腺癌的各个阶段间以高水平维持,而且STEAP-1还在其它人癌症诸如肺和结肠中高度过表达。STEAP-1在正常和癌组织中的表达概况提示它作为免疫疗法的靶物的潜在用途。WO 2008/052187报告了抗STEAP-1抗体及其免疫缀合物。STEAP-1/CD3(scFv)2双特异性抗体在WO 2014/165818中有描述。
本发明提供设计用于T细胞活化和重定向的,靶向STEAP-1和活化性T细胞抗原诸如CD3的,新颖的,改良的双特异性抗原结合分子,其组合了优良的功效和生产能力与较低的毒性和有利的药动学特性。
发明概述
发明人开发了新颖的T细胞活化性双特异性抗原结合分子,其具有出乎意料的,改善的靶向STEAP-1的特性。
如此,在第一个方面,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
(a)特异性结合第一抗原的第一抗原结合模块;
(b)特异性结合第二抗原的第二抗原结合模块;
其中所述第一抗原是活化性T细胞抗原且所述第二抗原是STEAP-1,或所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原;且
其中特异性结合STEAP-1的所述抗原结合模块包含重链可变区,特别是人源化重链可变区,其包含SEQ ID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR 2和SEQID NO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
在一个实施方案中,特异性结合STEAP-1的所述抗原结合模块包含包含与SEQ IDNO:20的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的重链可变区和包含与SEQ ID NO:21的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的轻链可变区。
在一个实施方案中,特异性结合STEAP-1的所述抗原结合模块包含包含SEQ IDNO:32的氨基酸序列的重链可变区和包含SEQ ID NO:21的氨基酸序列的轻链可变区。
在一个特定的实施方案中,所述第一抗原结合模块和/或所述第二抗原结合模块是Fab分子。在一个具体的实施方案中,所述第二抗原结合模块是特异性结合第二抗原的Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH或恒定域CL和CH1是彼此替换的(即依照此类实施方案,第二Fab分子是交换Fab分子,其中Fab轻链和Fab重链的可变或恒定域是交换的)。
在一个特定的实施方案中,所述第一Fab分子(和所述第三Fab分子,如果有的话)是常规Fab分子。在又一个特定的实施方案中,所述T细胞活化性双特异性抗原结合分子中存在不超过一个能够特异性结合活化性T细胞抗原的Fab分子(即所述T细胞活化性双特异性抗原结合分子提供对所述活化性T细胞抗原的单价结合)。
在一个实施方案中,所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原。在一个更加具体的实施方案中,所述活化性T细胞抗原是CD3,特别是CD3ε。
在一个特定的实施方案中,本发明的T细胞活化性双特异性抗原结合分子包含
(a)特异性结合第一抗原的第一Fab分子;
(b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH或恒定域CL和CH1是彼此替换的;
其中所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原;
其中(a)下的第一Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR 2和SEQ ID NO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
依照本发明的又一个方面,通过在CH1和CL域中的特定氨基酸位置处引入具有相反电荷的带电荷的氨基酸(在本文中有时称作“电荷修饰”),能提高想要的双特异性抗体与不想要的副产物(特别是在它们的结合臂之一中具有VH/VL域交换的双特异性抗体中发生的Bence Jones型副产物)相比的比率。
如此,在一些实施方案中,(a)下的第一抗原结合模块是特异性结合第一抗原的第一Fab分子,(b)下的第二抗原结合模块是特异性结合第二抗原的第二Fab分子,其中Fab轻链和Fab重链的可变域VL和VH是彼此替换的;且
i)在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引);或
ii)在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在一个此类实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在又一个实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在还有另一个实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代)且位置123处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在一个特定的实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
在另一个特定的实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用精氨酸(R)替代(编号方式依照Kabat),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
在一个备选的实施方案中,在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代),且在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在又一个实施方案中,在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在仍有另一个实施方案中,在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代)且位置123处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代),且在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在一个实施方案中,在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat),且在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照KabatEU索引)。
在另一个实施方案中,在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用精氨酸(R)替代(编号方式依照Kabat),且在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
在一个特定的实施方案中,本发明的T细胞活化性双特异性抗原结合分子包含
(a)特异性结合第一抗原的第一Fab分子;
(b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH是彼此替换的;
其中所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原;
其中(a)下的第一Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR 2和SEQ ID NO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3;且
其中在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代)且位置123处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在一些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子进一步包含特异性结合所述第一抗原的第三抗原结合模块。在特定的实施方案中,所述第三抗原结合模块与所述第一抗原结合模块相同。在一个实施方案中,所述第三抗原结合模块是Fab分子。
在特定的实施方案中,所述第三抗原结合模块和所述第一抗原结合模块各自是Fab分子且所述第三Fab分子与所述第一Fab分子相同。在这些实施方案中,所述第三Fab分子如此包含与所述第一Fab分子相同的氨基酸替代,如果有的话。像所述第一Fab分子一样,所述第三Fab分子特别是常规Fab分子。
如果存在第三抗原结合模块的话,在一个特定的实施方案中,所述第一抗原结合模块和所述第三抗原结合模块特异性结合STEAP-1,且所述第二抗原结合模块特异性结合活化性T细胞抗原,特别是CD3,更加特别是CD3ε。
在依照本发明的T细胞活化性双特异性抗原结合分子的一些实施方案中,a)下的第一抗原结合模块和b)下的第二抗原结合模块彼此融合,任选经由肽接头。在特定的实施方案中,所述第一抗原结合模块和所述第二抗原结合模块各自是Fab分子。在一个具体的此类实施方案中,所述第二Fab分子在Fab重链的C端融合至所述第一Fab分子的Fab重链的N端。在一个备选的此类实施方案中,所述第一Fab分子在Fab重链的C端融合至所述第二Fab分子的Fab重链的N端。在其中(i)所述第二Fab分子在Fab重链的C端融合至所述第一Fab分子的Fab重链的N端或(ii)所述第一Fab分子在Fab重链的C端融合至所述第二Fab分子的Fab重链的N端任一的实施方案中,另外地所述第一Fab分子的Fab轻链和所述第二Fab分子的Fab轻链可以彼此融合,任选经由肽接头。
在特定的实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子另外地包含由能够稳定联合的第一亚基和第二亚基构成的Fc域。
依照本发明的T细胞活化性双特异性抗原结合分子可以具有不同的构造,即所述第一抗原结合模块,所述第二抗原结合模块(和任选的所述第三抗原结合模块)可以以不同方式彼此融合及融合至所述Fc域。各构件可以直接地或优选经由一个或多个合适的肽接头彼此融合。在Fab分子融合至所述Fc域的一个亚基的N端的情况中,融合典型地经由免疫球蛋白铰链区。
在一个实施方案中,所述第一抗原结合模块和所述第二抗原结合模块各自是Fab分子且所述第二抗原结合模块在Fab重链的C端融合至所述Fc域的第一亚基或第二亚基的N端。在此类实施方案中,所述第一抗原结合模块可以在Fab重链的C端融合至所述第二抗原结合模块的Fab重链的N端或所述Fc域的亚基之另一的N端。
在一个实施方案中,所述第一抗原结合模块和所述第二抗原结合模块各自是Fab分子且所述第一抗原结合模块和所述第二抗原结合模块各自在Fab重链的C端融合至所述Fc域的亚基之一的N端。在这个实施方案中,所述T细胞活化性双特异性抗原结合分子基本上构成免疫球蛋白分子,其中在Fab臂之一中重和轻链可变区VH和VL(或恒定区CH1和CL,在其中在CH1和CL域中不引入本文所述电荷修饰的实施方案中)是彼此交换/替换的(见图1A,D)。
在备选的实施方案中,第三抗原结合模块,特别是第三Fab分子在Fab重链的C端融合至所述Fc域的第一亚基或第二亚基的N端。在一个特定的此类实施方案中,所述第二抗原结合模块和所述第三抗原结合模块各自在Fab重链的C端融合至所述Fc域的亚基之一的N端,且所述第一抗原结合模块在Fab重链的C端融合至所述第二Fab分子的Fab重链的N端。在这个实施方案中,所述T细胞活化性双特异性抗原结合分子基本上构成免疫球蛋白分子,其中在Fab臂之一中重和轻链可变区VH和VL(或恒定区CH1和CL,在其中在CH1和CL域中不引入本文所述电荷修饰的实施方案中)是彼此交换/替换的,且其中一个另外的(常规)Fab分子在N端融合至所述Fab臂(见图1B,E)。在另一个此类实施方案中,所述第一抗原结合模块和所述第三抗原结合模块各自在Fab重链的C端融合至所述Fc域的亚基之一的N端,且所述第二抗原结合模块在Fab重链的C端融合至所述第一抗原结合模块的Fab重链的N端。在这个实施方案中,所述T细胞活化性双特异性抗原结合分子基本上构成免疫球蛋白分子,有一个另外的Fab分子在N端融合至免疫球蛋白Fab臂之一,其中在所述另外的Fab分子中重和轻链可变区VH和VL(或恒定区CH1和CL,在其中在CH1和CL域中不引入本文所述电荷修饰的实施方案中)是彼此交换/替换的(见图1C,F)。
在一个特定的实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子中包含的免疫球蛋白分子是IgG类免疫球蛋白。在一个甚至更加特定的实施方案中,所述免疫球蛋白是IgG1亚类免疫球蛋白。在另一个实施方案中,所述免疫球蛋白是IgG4亚类免疫球蛋白。
在一个特定的实施方案中,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
a)特异性结合第一抗原的第一Fab分子;
b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH或恒定域CL和CH1是彼此替换的;
c)特异性结合所述第一抗原的第三Fab分子;和
d)由能够稳定联合的第一亚基和第二亚基构成的Fc域;
其中所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;
其中c)下的第三Fab分子与a)下的第一Fab分子相同;
其中
(i)a)下的第一Fab分子在Fab重链的C端融合至b)下的第二Fab分子的Fab重链的N端,和b)下的第二Fab分子和c)下的第三Fab分子各自在Fab重链的C端融合至d)下的Fc域的亚基之一的N端,或
(ii)b)下的第二Fab分子在Fab重链的C端融合至a)下的第一Fab分子的Fab重链的N端,且a)下的第一Fab分子和c)下的第三Fab分子各自在Fab重链的C端融合至d)下的Fc域的亚基之一的N端;且
其中a)下的第一Fab分子和c)下的第三Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQ ID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR2和SEQID NO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
在另一个实施方案中,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
a)特异性结合第一抗原的第一Fab分子;
b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH或恒定域CL和CH1是彼此替换的;
c)由能够稳定联合的第一亚基和第二亚基构成的Fc域;
其中所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;
其中
(i)a)下的第一Fab分子在Fab重链的C端融合至b)下的第二Fab分子的Fab重链的N端,且b)下的第二Fab分子在Fab重链的C端融合至c)下的Fc域的亚基之一的N端,或
(ii)b)下的第二Fab分子在Fab重链的C端融合至a)下的第一Fab分子的Fab重链的N端,且a)下的第一Fab分子在Fab重链的C端融合至c)下的Fc域的亚基之一的N端;且
其中a)下的第一Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR 2和SEQ ID NO:16的HCDR3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
在又一个实施方案中,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
a)特异性结合第一抗原的第一Fab分子;
b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH或恒定域CL和CH1是彼此替换的;和
c)由能够稳定联合的第一亚基和第二亚基构成的Fc域;
其中
(i)所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;或
(ii)所述第二抗原是STEAP-1且所述第一抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;
其中a)下的第一Fab分子和b)下的第二Fab分子各自在Fab重链的C端融合至c)下的Fc域的亚基之一的N端;且
其中特异性结合STEAP-1的Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQ ID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR 2和SEQ ID NO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
在依照本发明的T细胞活化性双特异性抗原结合分子的所有不同构造中,如果存在的话,本文所述氨基酸替代可以在所述第一Fab分子(和所述第三Fab分子,如果存在的话)的CH1和CL域中,或者在所述第二Fab分子的CH1和CL域中。优选地,它们在所述第一Fab分子(和所述第三Fab分子,如果存在的话)的CH1和CL域中。依照本发明的概念,如果在所述第一Fab分子(和所述第三Fab分子,如果存在的话)中进行本文所述氨基酸替代,那么在所述第二Fab分子中不进行此类氨基酸替代。反之,如果在所述第二Fab分子中进行本文所述氨基酸替代,那么在所述第一Fab分子(和所述第三Fab分子,如果存在的话)中不进行此类氨基酸替代。在包含其中的Fab轻链和Fab重链的恒定域CL和CH1彼此替换的Fab分子的T细胞活化性双特异性抗原结合分子中不进行氨基酸替代。
在依照本发明的T细胞活化性双特异性抗原结合分子的特定的实施方案中,特别是其中在所述第一Fab分子(和所述第三Fab分子,如果存在的话)中进行本文所述氨基酸替代的情况,所述第一Fab分子(和所述第三Fab分子,如果存在的话)的恒定域CL是卡帕同种型的。在依照本发明的T细胞活化性双特异性抗原结合分子的其它实施方案中,特别是其中在所述第二Fab分子中进行本文所述氨基酸替代的情况,所述第二Fab分子的恒定域CL是卡帕同种型的。在一些实施方案中,所述第一Fab分子(和所述第三Fab分子,如果存在的话)的恒定域CL和所述第二Fab分子的恒定域CL是卡帕同种型的。
在一个特定的实施方案中,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
a)特异性结合第一抗原的第一Fab分子;
b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH是彼此替换的;
c)特异性结合所述第一抗原的第三Fab分子;和
d)由能够稳定联合的第一亚基和第二亚基构成的Fc域;
其中所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;
其中c)下的第三Fab分子与a)下的第一Fab分子相同;
其中在a)下的第一Fab分子和c)下的第三Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)或精氨酸(R)替代(编号方式依照Kabat),且其中在a)下的第一Fab分子和c)下的第三Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引);
其中
(i)a)下的第一Fab分子在Fab重链的C端融合至b)下的第二Fab分子的Fab重链的N端,且b)下的第二Fab分子和c)下的第三Fab分子各自在Fab重链的C端融合至d)下的Fc域的亚基之一的N端,或
(ii)b)下的第二Fab分子在Fab重链的C端融合至a)下的第一Fab分子的Fab重链的N端,且a)下的第一Fab分子和c)下的第三Fab分子各自在Fab重链的C端融合至d)下的Fc域的亚基之一的N端;且
其中a)下的第一Fab分子和c)下的第三Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQ ID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR2和SEQID NO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
在一个甚至更加特定的实施方案中,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
a)特异性结合第一抗原的第一Fab分子;
b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH是彼此替换的;
c)特异性结合所述第一抗原的第三Fab分子;和
d)由能够稳定联合的第一亚基和第二亚基构成的Fc域;
其中所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;
其中c)下的第三Fab分子与a)下的第一Fab分子相同;
其中在a)下的第一Fab分子和c)下的第三Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用精氨酸(R)替代(编号方式依照Kabat),且其中在a)下的第一Fab分子和c)下的第三Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引);
其中a)下的第一Fab分子在Fab重链的C端融合至b)下的第二Fab分子的Fab重链的N端,且b)下的第二Fab分子和c)下的第三Fab分子各自在Fab重链的C端融合至d)下的Fc域的亚基之一的N端;且
其中a)下的第一Fab分子和c)下的第三Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQ ID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR2和SEQID NO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
在另一个实施方案中,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
a)特异性结合第一抗原的第一Fab分子;
b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH是彼此替换的;
c)由能够稳定联合的第一亚基和第二亚基构成的Fc域;
其中所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;
其中在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)或精氨酸(R)替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引);
其中
(i)a)下的第一Fab分子在Fab重链的C端融合至b)下的第二Fab分子的Fab重链的N端,且b)下的第二Fab分子在Fab重链的C端融合至c)下的Fc域的亚基之一的N端,或
(ii)b)下的第二Fab分子在Fab重链的C端融合至a)下的第一Fab分子的Fab重链的N端,且a)下的第一Fab分子在Fab重链的C端融合至c)下的Fc域的亚基之一的N端;且
其中a)下的第一Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR 2和SEQ ID NO:16的HCDR3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
在又一个实施方案中,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
a)特异性结合第一抗原的第一Fab分子;
b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH是彼此替换的;和
c)由能够稳定联合的第一亚基和第二亚基构成的Fc域;
其中
(i)所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;或
(ii)所述第二抗原是STEAP-1且所述第一抗原是活化性T细胞抗原,特别是CD3,更加特别是CD3ε;
其中在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)或精氨酸(R)替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引);
其中a)下的第一Fab分子和b)下的第二Fab分子各自在Fab重链的C端融合至c)下的Fc域的亚基之一的N端;且
其中特异性结合STEAP-1的Fab分子包含重链可变区,特别是人源化重链可变区,其包含SEQ ID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR 2和SEQ ID NO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
在T细胞活化性双特异性抗原结合分子的特定的实施方案中,所述Fc域是IgG Fc域。在一个具体的实施方案中,所述Fc域是IgG1Fc域。在另一个具体的实施方案中,所述Fc域是IgG4Fc域。在一个甚至更加具体的实施方案中,所述Fc域是包含氨基酸替代S228P的IgG4Fc域(Kabat编号方式)。在特定的实施方案中,所述Fc域是人Fc域。
在一个特定的实施方案中,所述Fc域包含促进所述第一Fc域亚基和所述第二Fc域亚基联合的修饰。在一个具体的此类实施方案中,所述Fc域的第一亚基的CH3域中的氨基酸残基用具有更大侧链体积的氨基酸残基替换,由此在第一亚基的CH3域内生成隆起,所述隆起可安置于第二亚基的CH3域内的空腔中,且所述Fc域的第二亚基的CH3域中的氨基酸残基用具有更小侧链体积的氨基酸残基替换,由此在第二亚基的CH3域内生成空腔,所述空腔内可安置第一亚基的CH3域内的隆起。
在一个特定的实施方案中,所述Fc域展现与天然IgG1Fc域相比降低的对Fc受体的结合亲和力和/或降低的效应器功能。在某些实施方案中,所述Fc域工程化改造成具有与非工程化改造的Fc域相比降低的对Fc受体的结合亲和力和/或降低的效应器功能。在一个实施方案中,所述Fc域包含一处或多处降低对Fc受体的结合和/或效应器功能的氨基酸替代。在一个实施方案中,所述Fc域中一处或多处降低对Fc受体的结合和/或效应器功能的氨基酸替代处于一个或多个选自下组的位置:L234,L235和P329(Kabat EU索引编号方式)。在特定的实施方案中,所述Fc域的每个亚基包含三处降低对Fc受体的结合和/或效应器功能的氨基酸替代,其中所述氨基酸替代为L234A,L235A和P329G(Kabat EU索引编号方式)。在一个此类实施方案中,所述Fc域是IgG1Fc域,特别是人IgG1Fc域。在其它实施方案中,所述Fc域的每个亚基包含两处降低对Fc受体的结合和/或效应器功能的氨基酸替代,其中所述氨基酸替代为L235E和P329G(Kabat EU索引编号方式)。在一个此类实施方案中,所述Fc域是IgG4Fc域,特别是人IgG4Fc域。在一个实施方案中,所述T细胞活化性双特异性抗原结合分子的Fc域是IgG4Fc域且包含氨基酸替代L235E和S228P(SPLE)(Kabat EU索引编号方式)。
在一个实施方案中,所述Fc受体是Fcγ受体。在一个实施方案中,所述Fc受体是人Fc受体。在一个实施方案中,所述Fc受体是活化性Fc受体。在一个具体的实施方案中,所述Fc受体是人FcγRIIa,FcγRI,和/或FcγRIIIa。在一个实施方案中,所述效应器功能是抗体依赖性细胞介导的细胞毒性(ADCC)。
在依照本发明的T细胞活化性双特异性抗原结合分子的一个具体的实施方案中,所述特异性结合活化性T细胞抗原,特别是CD3,更加特别是CD3ε的抗原结合模块包含包含SEQ ID NO:4的重链互补决定区(HCDR)1,SEQ ID NO:5的HCDR 2,SEQ ID NO:6的HCDR 3的重链可变区和包含SEQ ID NO:8的轻链互补决定区(LCDR)1,SEQ ID NO:9的LCDR 2和SEQID NO:10的LCDR 3的轻链可变区。在一个甚至更加具体的实施方案中,所述特异性结合活化性T细胞抗原,特别是CD3,更加特别是CD3ε的抗原结合模块包含包含与SEQ ID NO:3的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的重链可变区和包含与SEQ ID NO:7的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的轻链可变区。在一些实施方案中,所述特异性结合活化性T细胞抗原的抗原结合模块是Fab分子。在一个具体的实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子中包含的第二抗原结合模块,特别是Fab分子特异性结合CD3,更加特别是CD3ε,且包含SEQID NO:4的重链互补决定区(CDR)1,SEQ ID NO:5的重链CDR 2,SEQ ID NO:6的重链CDR 3,SEQ ID NO:8的轻链CDR1,SEQ ID NO:9的轻链CDR 2和SEQ ID NO:10的轻链CDR 3。在一个甚至更加具体的实施方案中,所述第二抗原结合模块,特别是Fab分子包含包含SEQ ID NO:3的氨基酸序列的重链可变区和包含SEQ ID NO:7的氨基酸序列的轻链可变区。
在依照本发明的T细胞活化性双特异性抗原结合分子的又一个具体的实施方案中,所述特异性结合STEAP-1的抗原结合模块,特别是Fab分子包含SEQ ID NO:14的重链互补决定区(CDR)1,SEQ ID NO:15的重链CDR 2,SEQ ID NO:16的重链CDR 3,SEQ ID NO:17的轻链CDR 1,SEQ ID NO:18的轻链CDR2和SEQ ID NO:19的轻链CDR 3。在一个甚至更加具体的实施方案中,所述特异性结合STEAP-1的抗原结合模块,特别是Fab分子包含包含与SEQID NO:20的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的重链可变区和包含与SEQ ID NO:21的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的轻链可变区。在一个具体的实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子中包含的第一抗原结合模块,特别是Fab分子(和第三抗原结合模块,特别是Fab分子,如果存在的话)特异性结合STEAP-1,且包含SEQ ID NO:14的重链互补决定区(CDR)1,SEQ ID NO:15的重链CDR2,SEQ ID NO:16的重链CDR 3,SEQ ID NO:17的轻链CDR1,SEQ ID NO:18的轻链CDR2和SEQ ID NO:19的轻链CDR 3。在一个甚至更加具体的实施方案中,所述第一抗原结合模块,特别是Fab分子(和所述第三抗原结合模块,特别是Fab分子,如果存在的话)包含包含SEQ ID NO:32的氨基酸序列的重链可变区和包含SEQ ID NO:21的氨基酸序列的轻链可变区。在另一个具体的实施方案中,所述第一抗原结合模块,特别是Fab分子(和第三抗原结合模块,特别是Fab分子,如果存在的话)包含包含SEQ ID NO:20的氨基酸序列的重链可变区和包含SEQ ID NO:21的氨基酸序列的轻链可变区。
在一个特定的方面,本发明提供一种T细胞活化性双特异性抗原结合分子,其包含
a)特异性结合第一抗原的第一Fab分子;
b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH或恒定域CL和CH1是彼此替换的;
c)特异性结合所述第一抗原的第三Fab分子;和
d)由能够稳定联合的第一亚基和第二亚基构成的Fc域;
其中
(i)所述第一抗原是STEAP-1且所述第二抗原是CD3,特别是CD3ε;
(ii)a)下的第一Fab分子和c)下的第三Fab分子各自包含SEQ ID NO:14的重链互补决定区(CDR)1,SEQ ID NO:15的重链CDR 2,SEQ ID NO:16的重链CDR3,SEQ ID NO:17的轻链CDR 1,SEQ ID NO:18的轻链CDR 2和SEQ ID NO:19的轻链CDR 3,且b)下的第二Fab分子包含SEQ ID NO:4的重链CDR 1,SEQ ID NO:5的重链CDR 2,SEQ ID NO:6的重链CDR 3,SEQ ID NO:8的轻链CDR 1,SEQ ID NO:9的轻链CDR 2和SEQ ID NO:10的轻链CDR 3;且
(iii)a)下的第一Fab分子在Fab重链的C端融合至b)下的第二Fab分子的Fab重链的N端,且b)下的第二Fab分子和c)下的第三Fab分子各自在Fab重链的C端融合至d)下的Fc域的亚基之一的N端。
在一个实施方案中,在b)下的第二Fab分子中,可变域VL和VH是彼此替换的且进一步地(iv)在a)下的第一Fab分子和c)下的第三Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)或精氨酸(R)替代,特别是用精氨酸(R)替代(编号方式依照Kabat),且在a)下的第一Fab分子和c)下的第三Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
依照本发明的另一个方面,提供一种或多种分离的多核苷酸,其编码本发明的T细胞活化性双特异性抗原结合分子。本发明进一步提供一种或多种包含本发明的分离的多核苷酸的表达载体,以及包含本发明的分离的多核苷酸或表达载体的宿主细胞。在一些实施方案中,所述宿主细胞是真核细胞,特别是哺乳动物细胞。
在另一个方面,提供一种生成本发明的T细胞活化性双特异性抗原结合分子的方法,其包括下述步骤:a)在适合于表达所述T细胞活化性双特异性抗原结合分子的条件下培养本发明的宿主细胞,并b)回收所述T细胞活化性双特异性抗原结合分子。本发明还涵盖通过本发明的方法生成的T细胞活化性双特异性抗原结合分子。
本发明进一步提供一种药物组合物,其包含本发明的T细胞活化性双特异性抗原结合分子和药学可接受载剂。
本发明还涵盖使用本发明的T细胞活化性双特异性抗原结合分子和药物组合物的方法。在一个方面,本发明提供本发明的T细胞活化性双特异性抗原结合分子或药物组合物,其用作药物。在一个方面,提供依照本发明的T细胞活化性双特异性抗原结合分子或药物组合物,其用于治疗有所需要的个体中的疾病。在一个具体的实施方案中,所述疾病是癌症。
还提供本发明的T细胞活化性双特异性抗原结合分子制造用于治疗有所需要的个体中的疾病的药物的用途;以及一种治疗个体中的疾病的方法,其包括对所述个体施用治疗有效量的组合物,所述组合物包含药学可接受形式的依照本发明的T细胞活化性双特异性抗原结合分子。在一个具体的实施方案中,所述疾病是癌症。在任何上述实施方案中,所述个体优选是哺乳动物,特别是人。
本发明还提供一种用于诱导靶细胞(特别是肿瘤细胞)裂解的方法,其包括在T细胞(特别是细胞毒性T细胞)存在下使靶细胞与本发明的T细胞活化性双特异性抗原结合分子接触。
附图简述
图1。本发明的T细胞活化性双特异性抗原结合分子(TCB)的例示性构造。(A,D)“1+1CrossMab”分子的示图。(B,E)“2+1 IgG Crossfab”分子的示图,其具有Crossfab和Fab构件(“倒转的”)的备选(alternative)次序。(C,F)“2+1 IgG Crossfab”分子的示图。(G,K)“1+1 IgG Crossfab”分子的示图,其具有Crossfab和Fab构件(“倒转的”)的备选(alternative)次序。(H,L)“1+1 IgG Crossfab”分子的示图。(I,M)“2+1 IgG Crossfab”分子的示图,其具有两个CrossFab。(J,N)“2+1 IgG Crossfab”分子的示图,其具有两个CrossFab和Crossfab和Fab构件(“倒转的”)的备选(alternative)次序。(O,S)“Fab-Crossfab”分子的示图。(P,T)“Crossfab-Fab”分子的示图。(Q,U)“(Fab)2-Crossfab”分子的示图。(R,V)“Crossfab-(Fab)2”分子的示图。(W,Y)“Fab-(Crossfab)2”分子的示图。(X,Z)“(Crossfab)2-Fab”分子的示图。黑点:任选的Fc域中促进异二聚化的修饰。++,--:CH1和CL域中任选引入的相反电荷的氨基酸。Crossfab分子描绘为包含VH和VL区交换,但是在其中CH1和CL域中没有引入电荷修饰的实施方案中可以备选地包含CH1和CL域的交换。
图2。实施例1中制备的TCB分子的图示。(A,F)有电荷修饰的“2+1 IgG CrossFab,倒转的”(CD3结合物中的VH/VL交换,STEAP-1结合物中的电荷修饰,EE=147E,213E;RK=123R,124K)。(B)无电荷修饰的“2+1 IgG CrossFab,倒转的”(CD3结合物中的VH/VL交换)。(C)有电荷修饰的“2+1IgG CrossFab,倒转的”(CD3结合物中的CH1/CL交换,STEAP-1结合物中的电荷修饰,EE=147E,213E;RK=123R,124K)。(D)“STEAP-1/CD3(scFv)2”。(E)有电荷修饰的“1+1 IgG CrossMab”(CD3结合物中的VH/VL交换,STEAP-1结合物中的电荷修饰,EE=147E,213E;RK=123R,124K)。
图3。实施例1中制备的TCB分子的蛋白A层析的级分,在非还原性SDS-PAGE(4-12%Bis/Tris(NuPage,Invitrogen),考马斯染色,大小标志物Mark 12(Invitrogen))上。(A)道1至10含有分子A的级分6至15。(B)道1至13含有分子B的级分D10至F10。(C)道1至12含有分子C的级分D12至G6。(D)道1至11含有分子D的级分D9至F5。(E)道1至9含有分子E的级分D6至F3。
图4。实施例1中制备的TCB分子的CE-SDS分析(最终的经过纯化的制备物,电泳图,道A=非还原的,道B=还原的)。(A)分子A,(B)分子B,(C)分子C,(D)分子D,(E)分子E,(F)分子F。
图5。STEAP-1 TCB分子F对表达STEAP-1的LnCaP细胞(A)和Jurkat(CD3+)细胞(B)的结合。
图6。温育24小时后由STEAP-1 TCB分子F诱导的表达STEAP-1的LnCaP(A)和MKN45(B)细胞的T细胞杀伤(E:T=10:1,效应=人PBMC)。
图7。24小时(A)或48小时(B)后由不同STEAP-1 TCB分子诱导的的T细胞介导的表达STEAP-1的LnCaP细胞裂解(E:T=10:1,人PBMC效应细胞)。所描绘的是一式三份及SD。
图8。不同STEAP-1 TCB分子同时结合Jurkat-NFAT报告细胞上的人CD3和LnCaP细胞上的人STEAP-1后的Jurkat活化,如通过发光测定的。所描绘的是一式三份及SD。
图9。STEAP-1 TCB对表达人STEAP-1的CHO细胞(CHO-hSTEAP1,克隆2)(A)和表达CD3的Jurkat细胞(B)的结合。通过Graph Pad Prism计算对表达人STEAP-1的细胞的结合的EC50:分子A为20.17nM。
图10。不同STEAP-1 TCB分子同时结合Jurkat-NFAT报告细胞上的人CD3和LnCaP(A)或CHO-hSTEAP1克隆2(B)细胞上的人STEAP-1后的Jurkat活化,如通过发光测定的。所描绘的是一式三份及SD。
图11。不同STEAP-1 TCB分子同时结合Jurkat-NFAT报告细胞上的人CD3和CHO-hSTEAP1克隆2细胞(A)上的人STEAP-1后的Jurkat活化,与在亲本CHO-k1细胞存在下的抗原不依赖性Jurkat活化(B)比较,如通过发光测定的。所描绘的是一式三份及SD。
图12。24小时(A)或48小时(B)后由不同STEAP-1 TCB分子诱导的T细胞介导的表达STEAP-1的LnCaP细胞裂解(E:T=10:1,人PBMC效应细胞)。所描绘的是一式三份及SD。
图13。48小时后不同STEAP-1 TCB分子同时结合T细胞上的人CD3和表达STEAP-1的LnCaP细胞上的人STEAP-1后的T细胞活化,如分别通过CD8(A)或CD4(B)T细胞上的早期活化标志物CD69,CD8(C)或CD4(D)T细胞任一上的晚期活化标志物CD25的上调测量的。所描绘的是一式三份及SD。
图14。48小时后不同STEAP-1 TCB分子与PBMC和人STEAP-1阴性亲本CHO-k1细胞一起温育后的抗原不依赖性T细胞活化,如分别通过CD8(A)或CD4(B)T细胞上的早期活化标志物CD69,CD8(C)或CD4(D)T细胞任一上的晚期活化标志物CD25的上调测量的。所描绘的是一式三份及SD。
发明详述
定义
除非在下文另外定义,术语在本文中如本领域中一般使用的那样使用。
如本文中使用的,术语“抗原结合分子”在其最广义上指特异性结合抗原性决定簇的分子。抗原结合分子的例子是免疫球蛋白及其衍生物,例如片段。
术语“双特异性”意指抗原结合分子能够特异性结合至少两种不同的抗原性决定簇。通常,双特异性抗原结合分子包含两种抗原结合位点,其中每种特异于不同的抗原性决定簇。在某些实施方案中,所述双特异性抗原结合分子能够同时结合两种抗原性决定簇,特别是在两种不同的细胞上表达的两种抗原性决定簇。
如本文中使用的,术语“价”指抗原结合分子中规定数目的抗原结合位点的存在。因而,术语“对抗原的单价结合”指抗原结合分子中一个(且不超过一个)特异于抗原的抗原结合位点的存在。
“抗原结合位点”指抗原结合分子上提供与抗原相互作用的位点,即一个或多个氨基酸残基。例如,抗体的抗原结合位点包含来自互补性决定区(CDR)的氨基酸残基。天然的免疫球蛋白分子通常具有两个抗原结合位点,Fab分子通常具有单个抗原结合位点。
如本文中使用的,术语“抗原结合模块”指特异性结合抗原性决定簇的多肽分子。在一个实施方案中,抗原结合模块能够将与其附接的实体(例如第二抗原结合模块)引导至靶部位,例如至特定类型的肿瘤细胞或携有抗原性决定簇的肿瘤基质。在另一个实施方案中,抗原结合模块能够经由其靶抗原例如T细胞受体复合物抗原来激活信号传导。抗原结合模块包括如本文中另外定义的抗体及其片段。具体的抗原结合模块包括抗体的抗原结合域,其包含抗体重链可变区和抗体轻链可变区。在某些实施方案中,抗原结合模块可以包含抗体恒定区,如本文中另外定义和本领域中已知的。可用的重链恒定区包括以下5种同种型中的任何一种:α,δ,ε,γ或μ。可用的轻链恒定区包括以下2种同种型中的任何一种:κ和λ。
如本文中使用的,术语“抗原性决定簇”与“抗原”和“表位”同义,并且指多肽大分子上与抗原结合模块结合,从而形成抗原结合模块-抗原复合物的位点(例如氨基酸的连续区段或由不连续氨基酸的不同区构成的构象性构造)。可用的抗原性决定簇可以在例如肿瘤细胞表面上,病毒感染的细胞的表面上,其它患病细胞的表面上,免疫细胞的表面上,游离在血液血清中和/或在胞外基质(ECM)中找到。除非另外指示,本文中称作抗原的蛋白质(例如CD3)可以是来自任何脊椎动物来源,包括哺乳动物如灵长类(例如人)和啮齿类(例如小鼠和大鼠)的任何天然形式蛋白质。在一个具体的实施方案中,抗原是人蛋白。在对本文中的特定蛋白质进行提述的情况下,该术语涵盖“全长”,未加工的蛋白质以及起因于细胞中加工的蛋白质的任何形式。该术语还涵盖蛋白质的天然存在变体,例如剪接变体或等位变体。可用作抗原的一种例示性人蛋白是CD3,特别是CD3的ε亚基(对于人序列,参见UniProt no.P07766(版本130),NCBI RefSeq no.NP_000724.1,SEQ ID NO:1;或对于食蟹猴[Macaca fascicularis]序列,参见UniProt no.Q95LI5(版本49),NCBI GenBankno.BAB71849.1,SEQ ID NO:2),或STEAP-1(前列腺六次跨膜上皮抗原1;UniProtno.Q9UHE8;NCBI RefSeq no.NP_036581)。在某些实施方案中,本发明的T细胞活化性双特异性抗原结合分子结合在来自不同物种的CD3或STEAP-1抗原间保守的CD3或STEAP-1的表位。
“特异性结合”意指结合对于抗原是选择性的,并且能与不想要的或非特异性的相互作用区别开来。抗原结合模块结合特定抗原性决定簇的能力能经由酶联免疫吸附测定法(ELISA)或本领域技术人员熟知的其它技术,例如表面等离振子共振(SPR)技术(在BIAcore仪上分析)(Liljeblad等,Glyco J 17,323-329(2000)),以及传统的结合测定法(Heeley,Endocr Res 28,217-229(2002))来测量。在一个实施方案中,抗原结合模块对无关蛋白质的结合程度是该抗原结合模块对抗原结合的小于约10%,如例如通过SPR测量的。在某些实施方案中,结合抗原的抗原结合模块,或包含该抗原结合模块的抗原结合分子具有≤1μM,≤100nM,≤10nM,≤1nM,≤0.1nM,≤0.01nM,或≤0.001nM(例如10-8M或更少,例如10-8M至10-13M,例如10-9M至10-13M)的解离常数(KD)。
“亲和力”指分子(例如受体)的单一结合位点与其结合配偶体(例如配体)之间非共价相互作用总和的强度。除非另外指示,如本文中使用的,“结合亲和力”指反映结合对的成员(例如抗原结合模块和抗原,或受体及其配体)之间1:1相互作用的固有结合亲和力。分子X对其配偶体Y的亲和力通常可以以解离常数(KD)来表述,其为解离与结合速率常数(分别为K解离和K结合)的比率。如此,相等的亲和力可能包含不同的速率常数,只要速率常数的比率保持相同。亲和力可以通过本领域知道的确立方法来测量,包括本文中描述的那些方法。用于测量亲和力的一种具体方法是表面等离振子共振(SPR)。
“降低的结合”,例如降低的对Fc受体的结合,指相应相互作用的亲和力降低,如例如通过SPR测量的。为了清楚,该术语还包括亲和力降低至0(或低于分析方法的检测限),即完全消除相互作用。相反,“升高的结合”指相应相互作用的结合亲和力升高。
如本文中使用的,“活化性T细胞抗原”指在T淋巴细胞,特别是细胞毒性T淋巴细胞的表面上表达的抗原性决定簇,其在与抗原结合分子相互作用后能诱导T细胞活化。特定地,抗原结合分子与活化性T细胞抗原的相互作用可诱导T细胞活化,其通过触发T细胞受体复合物的信号传导级联进行。在一个具体的实施方案中,所述活化性T细胞抗原是CD3,特别是CD3的ε亚基(对于人序列,参见UniProt no.P07766(版本130),NCBI RefSeq no.NP_000724.1,SEQ ID NO:1;或对于食蟹猴[Macaca fascicularis]序列,参见UniProtno.Q95LI5(版本49),NCBI GenBank no.BAB71849.1,SEQ ID NO:2)。
如本文中使用的,“T细胞活化”指T淋巴细胞,特别是细胞毒性T淋巴细胞的一种或多种细胞应答,其选自:增殖,分化,细胞因子分泌,细胞毒性效应分子释放,细胞毒性活性和活化标志物的表达。本发明的T细胞活化性双特异性抗原结合分子能够诱导T细胞活化。合适的测量T细胞活化的测定法是本文中所述技术领域中已知的。
如本文中使用的,“靶细胞抗原”指靶细胞表面上呈现的抗原性决定簇,所述靶细胞例如肿瘤中的细胞如癌细胞或肿瘤基质的细胞。在一个特别的实施方案中,所述靶细胞抗原是STEAP-1,特别是人STEAP-1。
如本文中使用的,术语“第一”,“第二”或“第三”就Fab分子等而言为了在有超过一个每类模块时便于区分而使用。除非明确如此陈述,这些术语的使用不意图赋予T细胞活化性双特异性抗原结合分子的特定次序或取向。
“Fab分子”指由免疫球蛋白的重链(“Fab重链”)的VH和CH1域以及轻链(“Fab轻链”)的VL和CL域组成的蛋白质。
“融合”意指组分(例如Fab分子和Fc域亚基)直接地或经由一种或多种肽接头通过肽键连接。
如本文中使用的,术语“单链”指包含通过肽键线性连接的氨基酸单体的分子。在某些实施方案中,抗原结合模块之一是单链Fab分子,即其中通过肽接头连接Fab轻链和Fab重链以形成单一肽链的Fab分子。在一个具体的此类实施方案中,在单链Fab分子中Fab轻链的C端连接于Fab重链的N端。
“交换”Fab分子(也称作“Crossfab”)意指其中Fab重链和轻链的可变域或恒定域交换(即彼此替换)的Fab分子,即交换Fab分子包含由轻链可变域VL和重链恒定域1CH1构成的肽链(VL-CH1,N至C端方向),和由重链可变域VH和轻链恒定域CL构成的肽链(VH-CL,N至C端方向)。为了清楚,在其中Fab轻链和Fab重链的可变域交换的交换Fab分子中,包含重链恒定域1CH1的肽链在本文中称作(交换)Fab分子的“重链”。相反,在其中Fab轻链和Fab重链的恒定域交换的交换Fab分子中,包含重链可变域VH的肽链在本文中称作(交换)Fab分子的“重链”。
与之相反,“常规”Fab分子意指处于它的天然型式的Fab分子,即包含由重链可变和恒定域构成的重链(VH-CH1,N至C端方向),和由轻链可变和恒定域构成的轻链(VL-CL,N至C端方向)。
术语“免疫球蛋白分子”指具有天然存在的抗体结构的蛋白质。例如,IgG类的免疫球蛋白是约150,000道尔顿的异四聚体糖蛋白,其由二硫键连接的两条轻链和两条重链构成。从N端至C端,每条重链具有可变域(VH),也称作可变重域或重链可变区,接着是3个恒定域(CH1,CH2和CH3),也称作重链恒定区。类似地,从N端至C端,每条轻链具有可变域(VL),也称作可变轻域或轻链可变区,接着是恒定轻(CL)域(也称作轻链恒定区)。免疫球蛋白的重链可以归入称作α(IgA),δ(IgD),ε(IgE),γ(IgG)或μ(IgM)的5类之一,其中一些可以进一步分成亚类,例如γ1(IgG1),γ2(IgG2),γ3(IgG3),γ4(IgG4),α1(IgA1)和α2(IgA2)。基于其恒定域的氨基酸序列,免疫球蛋白的轻链可以归入称作卡帕(κ)和拉姆达(λ)的两类之一。免疫球蛋白基本由经由免疫球蛋白铰链区连接的两个Fab分子和Fc域组成。
术语“抗体”在本文中以最广义使用且涵盖各种抗体结构,包括但不限于单克隆抗体,多克隆抗体和抗体片段,只要它们展现出期望的抗原结合活性。
“抗体片段”指完整抗体外的分子,其包含完整抗体中结合与完整抗体结合的抗原的一部分。抗体片段的例子包括但不限于Fv,Fab,Fab’,Fab’-SH,F(ab’)2,双抗体,线性抗体,单链抗体分子(例如scFv),和单域抗体。对于某些抗体片段的综述,参见Hudson等,NatMed 9,129-134(2003)。对于scFv片段的综述,参见例如Plückthun,于The Pharmacologyof Monoclonal Antibodies,vol.113,Rosenburg和Moore编,Springer-Verlag,New York,pp.269-315(1994);亦参见WO 93/16185;和美国专利No.5,571,894和5,587,458。关于包含补救受体结合表位残基且具有延长的体内半衰期的Fab和F(ab’)2片段的论述,参见美国专利No.5,869,046。双抗体是具有两个抗原结合位点的抗体片段,其可以是二价或双特异性的。参见例如EP 404,097;WO 1993/01161;Hudson等,Nat Med 9,129-134(2003);和Hollinger等,Proc Natl Acad Sci USA 90,6444-6448(1993)。三抗体和四抗体也记载于Hudson等,Nat Med 9,129-134(2003)。单域抗体是包含抗体的整个或部分重链可变域,或整个或部分轻链可变域的抗体片段。在某些实施方案中,单域抗体是人单域抗体(Domantis,Inc.,Waltham,MA;参见例如美国专利No.6,248,516B1)。可以通过各种技术来制备抗体片段,包括但不限于对完整抗体的蛋白水解消化以及通过重组宿主细胞(例如大肠杆菌或噬菌体)产生,如本文中描述的。
术语“抗原结合域”指包含特异性结合部分或整个抗原且与其互补的区域的抗体部分。抗原结合域可由例如一个或多个抗体可变域(也称作抗体可变区)提供。具体地,抗原结合域包含抗体轻链可变域(VL)和抗体重链可变域(VH)。
术语“可变区”或“可变域”指抗体重链或轻链中牵涉使抗体结合抗原的域。天然抗体的重链和轻链的可变域(分别为VH和VL)一般具有类似的结构,每个域包含4个保守的框架区(FR)和3个高变区(HVR)。参见例如Kindt等,Kuby Immunology,第6版,W.H.Freemanand Co.,第91页(2007)。单个VH或VL域可能足以赋予抗原结合特异性。
如本文中使用的,术语“高变区”或“HVR”指抗体可变域中序列中高度可变和/或形成结构上定义的环(“高变环”)的每个区域。通常,天然的四链抗体包含六个HVR;三个在VH中(H1,H2,H3),三个在VL中(L1,L2,L3)。HVR一般包含来自高变环和/或来自互补性决定区(CDR)的氨基酸残基,后者具有最高序列变异性和/或涉及抗原识别。除了VH中CDR1外,CDR一般包含形成高变环的氨基酸残基。高变区(HVR)也称作“互补性决定区”(CDR),并且在述及形成抗原结合区的可变区部分时,这些术语在本文中可交换使用。此特定区域已由Kabatet al.,Sequences of Proteins of Immunological Interest,5th Ed.Public HealthService,National Institutes of Health,Bethesda,MD(1991)及Chothia et al.,J MolBiol 196:901-917(1987)描述,其中定义包括在彼此比较时氨基酸残基的重叠或子集。然而,应用任一种定义来指抗体或其变体的CDR意图在如本文中定义和使用的术语的范围内。涵盖如由上文引用的每篇参考文献定义的CDR的适宜的氨基酸残基在下表A中列出作为比较。涵盖特定CDR的确切残基数将随着CDR的序列和大小而变化。鉴于抗体的可变区氨基酸序列,本领域技术人员可以常规确定哪些残基构成特定CDR。本文中给出的CDR序列一般是依照Kabat定义的。
表A:CDR定义1
CDR | Kabat | Chothia | AbM2 |
VH CDR1 | 31-35 | 26-32 | 26-35 |
VH CDR2 | 50-65 | 52-58 | 50-58 |
VH CDR3 | 95-102 | 95-102 | 95-102 |
VL CDR1 | 24-34 | 26-32 | 24-34 |
VL CDR2 | 50-56 | 50-52 | 50-56 |
VL CDR3 | 89-97 | 91-96 | 89-97 |
1表A中所有CDR定义的编号方式依照由Kabat等提出的编号惯例(见下文)。
2如表A中使用的具有小写字母“b”的“AbM”指由Oxford Molecular的“AbM”抗体建模软件定义的CDR。
Kabat等还定义针对可变区序列的编号系统,其可应用于任何抗体。本领域的普通技术人员可以明确地将此“Kabat编号”系统归入任何可变区序列,不依赖于序列本身外的任何实验数据。如本文中结合可变区序列使用的,“Kabat编号方式”指由Kabat et al.,Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service,National Institutes of Health,Bethesda,MD(1991)提出的编号系统。除非另外说明,提及抗体可变区中特定氨基酸残基位置的编号方式依照Kabat编号系统。
如本文中使用的,所有重和轻链的恒定区和域的氨基酸位置是依照Kabat,etal.,Sequences of Proteins of Immunological Interest,5th ed.,Public HealthService,National Institutes of Health,Bethesda,MD(1991)中描述的Kabat编号系统编号的且在本文中称作“依照Kabat的编号方式”或“Kabat编号方式”。具体而言,将Kabat编号系统(参见Kabat,et al.,Sequences of Proteins of Immunological Interest,5thed.,Public Health Service,National Institutes of Health,Bethesda,MD(1991)的第647-660页)用于卡帕和拉姆达同种型的轻链恒定域CL并将Kabat EU索引编号系统(参见第661-723页)用于重链恒定域(CH1,铰链,CH2和CH3),在这种情况中在本文中通过提到“依照Kabat EU索引的编号方式”来进一步澄清。
序列表的多肽序列并不依照Kabat编号系统编号。然而,本领域中普通技术人员完全能将序列表的序列编号方式转变成Kabat编号方式。
“框架”或“FR”指除高变区(HVR)残基外的可变域残基。可变域的FR一般由4个FR域组成:FR1,FR2,FR3和FR4。因而,HVR和FR序列一般以下列顺序出现在VH(或VL)中:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。
“人源化”抗体指包含来自非人HVR的氨基酸残基和来自人FR的氨基酸残基的嵌合抗体。在某些实施方案中,人源化抗体会包含至少一个,通常两个基本上整个可变域,其中所有或基本上所有HVR(例如,CDR)对应于非人抗体的那些,且所有或基本上所有FR对应于人抗体的那些。此类可变域在本文中称作“人源化可变区”。任选地,人源化抗体可以至少包含自人抗体衍生的抗体恒定区的一部分。抗体(例如非人抗体)的“人源化形式”指已经经历人源化的抗体。本发明涵盖的“人源化抗体”的其它形式是那些其中的恒定区已经另外自初始抗体的恒定区进行过修饰或改变以生成依照本发明的特性(特别地关于C1q结合和/或Fc受体(FcR)结合)的。
抗体或免疫球蛋白的“类”指其重链拥有的恒定域或恒定区的类型。抗体有5种主要的类:IgA,IgD,IgE,IgG和IgM,并且这些中数种可以进一步分成亚类(同种型),例如IgG1,IgG2,IgG3,IgG4,IgA1和IgA2。对应于不同免疫球蛋白类的重链恒定域分别称作α,δ,ε,γ和μ。
本文中术语“Fc域”或“Fc区”用于定义免疫球蛋白重链中至少含有恒定区的一部分的C端区域。该术语包括天然序列Fc区和变体Fc区。虽然IgG重链的Fc区的边界可以略微变化,但是人IgG重链Fc区通常定义为自Cys226或Pro230延伸至重链的羧基端。然而,由宿主细胞生成的抗体可能经历翻译后切割,自重链的C端切除一个或多个,特别是一个或两个氨基酸。因此,通过表达编码全长重链的特定核酸分子由宿主细胞生成的抗体可包括全长重链,或者它可包括全长重链的切割变体(在本文中也称作“切割变体重链”)。当重链的最终两个C端氨基酸是甘氨酸(G446)和赖氨酸(K447,编号方式依照Kabat EU索引)时可能就是这种情况。因此,Fc区的C端赖氨酸(Lys447),或C端甘氨酸(Gly446)和赖氨酸(K447)可以存在或不存在。如果没有另外指明的话,包括Fc域(或本文中定义的Fc域的亚基)的重链的氨基酸序列在本文中表示无C端甘氨酸-赖氨酸二肽的。在本发明的一个实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子中包含的包括本文中规定的Fc域的一个亚基的重链包含另外的C端甘氨酸-赖氨酸二肽(G446和K447,编号方式依照Kabat的EU索引)。在本发明的一个实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子中包含的包括本文中规定的Fc域的一个亚基的重链包含另外的C端甘氨酸残基(G446,编号方式依照Kabat的EU索引)。本发明的组合物,诸如本文所述药物组合物,包含本发明的T细胞活化性双特异性抗原结合分子的群体。T细胞活化性双特异性抗原结合分子的群体可包含具有全长重链的分子和具有切割变体重链的分子。T细胞活化性双特异性抗原结合分子的群体可以由具有全长重链的分子和具有切割变体重链的分子的混合物组成,其中至少50%,至少60%,至少70%,至少80%或至少90%的T细胞活化性双特异性抗原结合分子具有切割变体重链。在本发明的一个实施方案中,包含本发明的T细胞活化性双特异性抗原结合分子的群体的组合物包含如下的T细胞活化性双特异性抗原结合分子,其包含包括本文中规定的Fc域的一个亚基及另外的C端甘氨酸-赖氨酸二肽(G446和K447,编号方式依照Kabat的EU索引)的重链。在本发明的一个实施方案中,包含本发明的T细胞活化性双特异性抗原结合分子的群体的组合物包含如下的T细胞活化性双特异性抗原结合分子,其包含包括本文中规定的Fc域的一个亚基及另外的C端甘氨酸残基(G446,编号方式依照Kabat的EU索引)的重链。在本发明的一个实施方案中,此类组合物包含由如下分子构成的T细胞活化性双特异性抗原结合分子的群体:包含包括本文中规定的Fc域的一个亚基的重链的分子;包含包括本文中规定的Fc域的一个亚基及另外的C端甘氨酸残基(G446,编号方式依照Kabat的EU索引)的重链的分子,和包含包括本文中规定的Fc域的一个亚基及另外的C端甘氨酸-赖氨酸二肽(G446和K447,编号方式依照Kabat的EU索引)的重链的分子。除非本文中另外指定,Fc区或恒定区中氨基酸残基的编号方式依照EU编号系统,也称作EU索引,如记载于Kabat等,Sequences of Proteins of Immunological Interest,第5版Public Health Service,National Institutes of Health,Bethesda,MD,1991(也参见上文)。如本文中使用的,Fc域的“亚基”指形成二聚体Fc域的两个多肽之一,即包含免疫球蛋白重链中能够稳定自身联合的C端恒定区的多肽。例如,IgG Fc域的亚基包含IgG CH2和IgG CH3恒定域。
“促进Fc域的第一亚基和第二亚基联合的修饰”是降低或防止包含Fc域亚基的多肽与相同多肽联合以形成同二聚体的肽主链操作或Fc域亚基的翻译后修饰。如本文中使用的,具体地,促进联合的修饰包括对期望联合的两个Fc域亚基(即Fc域的第一亚基和第二亚基)中的每一个进行的分开的修饰,其中所述修饰彼此互补,从而促进两个Fc域亚基的联合。例如,促进联合的修饰可以改变一种或两种Fc域亚基的结构或电荷,从而在立体或静电上分别促进它们的联合。如此,(异)二聚化在包含第一Fc域亚基的多肽和包含第二Fc域亚基的多肽之间发生,其在融合至每个亚基的别的组分(例如抗原结合模块)不同这一意义上讲可能是不相同的。在一些实施方案中,促进联合的修饰包含在Fc域中的氨基酸突变,具体为氨基酸替代。在一个具体的实施方案中,促进联合的修饰包含Fc域的两个亚基的每一个中分开的氨基酸突变,具体为氨基酸替代。
术语“效应器功能”指那些可归于抗体Fc区且随抗体同种型而变化的生物学活性。抗体效应器功能的例子包括:C1q结合和补体依赖性细胞毒性(CDC),Fc受体结合,抗体依赖性细胞介导的细胞毒性(ADCC),抗体依赖性细胞吞噬作用(ADCP),细胞因子分泌,免疫复合物介导的抗原呈递细胞的抗原摄取,细胞表面受体(例如B细胞受体)下调和B细胞活化。
如本文中使用的,术语“工程化”视为包括对肽主链的任何操作或对天然存在或重组的多肽或其片段的翻译后修饰。工程化包括对氨基酸序列,糖基化模式或各氨基酸侧链基团的修饰,以及这些办法的组合。
如本文中使用的,术语“氨基酸突变”意为涵盖氨基酸替代,缺失,插入和修饰。可以进行替代,缺失,插入和修饰的任意组合来实现最终构建体,只要最终构建体拥有期望的特性,例如降低的对Fc受体的结合,或与另一种肽的增加的联合。氨基酸序列缺失和插入包括氨基和/或羧基端缺失和氨基酸插入。具体的氨基酸突变是氨基酸替代。为了改变例如Fc区的结合特征,特别优选非保守性的氨基酸替代,即将一个氨基酸用具有不同结构和/或化学特性的另一种氨基酸替换。氨基酸替代包括由非天然存在的氨基酸或由20种标准氨基酸的天然存在的氨基酸衍生物(例如4-羟脯氨酸,3-甲基组氨酸,鸟氨酸,高丝氨酸,5-羟赖氨酸)替换。可以使用本领域中公知的遗传或化学方法生成氨基酸突变。遗传方法可以包括定点诱变,PCR,基因合成等。通过与遗传工程化不同的方法如化学修饰来改变氨基酸侧链基团的方法也可能可用。本文中可使用各种名称来指示同一氨基酸突变。例如,从Fc域第329位脯氨酸到甘氨酸的替代可指示为329G,G329,G329,P329G或Pro329Gly。
如本文中使用的,术语“多肽”指由通过酰胺键(也称作肽键)线性连接的单体(氨基酸)构成的分子。术语“多肽”指具有两个或更多个氨基酸的任何链,并且不指特定长度的产物。如此,肽,二肽,三肽,寡肽,“蛋白质”,“氨基酸链”或任何其它用于指具有两个或更多个氨基酸的链的术语均包括在“多肽”的定义中,而且术语“多肽”可以代替这些术语中任一个或与其交换使用。术语“多肽”还意图指多肽的表达后修饰的产物,包括但不限于糖基化,乙酰化,磷酸化,酰化,通过已知的保护性/封闭性基团衍生化,蛋白水解切割,或通过非天然存在的氨基酸的修饰。多肽可以自天然的生物学来源衍生或通过重组技术生成,但不必从指定的核酸序列翻译。它可以以任何方式来生成,包括通过化学合成。本发明的多肽大小可以是约3个或更多,5个或更多,10个或更多,20个或更多,25个或更多,50个或更多,75个或更多,100个或更多,200个或更多,500个或更多,1,000个或更多,或2,000个或更多的氨基酸。多肽可以具有限定的三维结构,尽管它们不必具有此类结构。具有限定的三维结构的多肽被称作折叠的,而不具有限定的三维结构而可以采用大量不同构象的多肽被称作未折叠的。
“分离的”多肽或其变体或衍生物意图为不处于其天然环境中的多肽。不需要特定水平的纯化。例如,分离的多肽可以是从其天然或自然环境中取出。就本发明的目的而言,在宿主细胞中表达的重组生成的多肽和蛋白质被视为分离的,已通过任何合适的技术分开,分级,或部分或基本上纯化的天然的或重组的多肽也是如此。
关于参照多肽序列的“百分比(%)氨基酸序列同一性”定义为在比对序列并在必要时引入缺口以获取最大百分比序列同一性后,且不将任何保守性替代视为序列同一性的一部分时,候选序列中与参照多肽序列中的氨基酸残基相同的氨基酸残基的百分比。为测定百分比氨基酸序列同一性目的比对可以以本领域技术范围内的多种方式进行,例如使用公众可得到的计算机软件,如BLAST,BLAST-2,ALIGN或Megalign(DNASTAR)软件。本领域技术人员可决定用于比对序列的适宜参数,包括在比较序列的全长里获得最大比对需要的任何算法。然而,就本文中目的而言,使用序列比较计算机程序ALIGN-2来生成%氨基酸序列同一性值。ALIGN-2序列比较计算机程序由Genentech,Inc.创作,并且源代码已与用户文档一起提交到美国版权局(U.S.Copyright Office),Washington D.C.,20559,其在美国版权注册No.TXU510087下注册。ALIGN-2程序可从Genentech,Inc.,South San Francisco,California公开获得,或可从源代码汇编。ALIGN-2程序应当汇编用于UNIX操作系统,包括数字UNIX V4.0D。所有序列比较参数均由ALIGN-2程序设定且不改变。在采用ALIGN-2进行氨基酸序列比较的情况下,给定的氨基酸序列A对,与,或相对给定的氨基酸序列B的%氨基酸序列同一性(或其可以用短语表示为对,与,或相对给定的氨基酸序列B具有或包含特定%氨基酸序列同一性的给定氨基酸序列A)如下计算:
分数X/Y的100倍
其中X是由序列比对程序ALIGN-2在所述程序对A和B的比对中评分为相同匹配的氨基酸残基数,而其中Y是B中氨基酸残基的总数。会领会的是,当氨基酸序列A的长度不等于氨基酸序列B的长度时,A对B的%氨基酸序列同一性将不等于B对A的%氨基酸序列同一性。除非另外明确说明,本文中使用的所有%氨基酸序列同一性值如在上一段中描述的那样使用ALIGN-2计算机程序获得。
术语“多核苷酸”指分离的核酸分子或构建体,例如信使RNA(mRNA),病毒衍生的RNA或质粒DNA(pDNA)。多核苷酸可以包含常规的磷酸二酯键或非常规的键(例如酰胺键,如在肽核酸(PNA)中发现的)。术语“核酸分子”指任何一种或多种存在于多核苷酸中的核酸区段,例如DNA或RNA片段。
“分离的”核酸分子或多核苷酸意指已从其天然环境取出的核酸分子,DNA或RNA。例如,就本发明的目的而言,包含在载体中的编码多肽的重组多核苷酸被视为分离的。分离的多核苷酸的别的例子包括在异源宿主细胞中保持的重组多核苷酸或溶液中的(部分或基本上)纯化的多核苷酸。分离的多核苷酸包括在普遍含有该多核苷酸分子的细胞中含有的多核苷酸分子,但该多核苷酸分子存在于染色体外或在不同于其天然染色体位置的染色体位置处。分离的RNA分子包括本发明的体内或体外RNA转录本,以及正链和负链形式,和双链形式。依照本发明的分离的多核苷酸或核酸还包括合成生成的此类分子。另外,多核苷酸或核酸可以为或可以包括调节元件如启动子,核糖体结合位点或转录终止子。
与本发明的参照核苷酸序列具有至少例如95%“相同的”核苷酸序列的核酸或多核苷酸意指该多核苷酸的核苷酸序列与参照序列相同,只不过按照参照核苷酸序列的每100个核苷酸,该多核苷酸序列可以包含多达5处点突变。换言之,为了获得与参照核苷酸序列具有至少95%相同的核苷酸序列的多核苷酸,可以删除或用另一种核苷酸替代参照序列中高达5%的核苷酸,或者可以将参照序列中占总核苷酸的高达5%的数目的核苷酸插入到参照序列中。参照序列的这些变更可以发生在参照核苷酸序列的5’或3’端位置或那些末端位置之间的任何地方,个别分散在参照序列中的残基中或分散在参照序列内的一或多个连续组中。作为一个实际问题,可以使用已知的计算机程序,如上文针对多肽论述的程序(例如ALIGN-2)来常规确定任何特定的多核苷酸序列是否与本发明的核苷酸序列为至少80%,85%,90%,95%,96%,97%,98%或99%相同。
术语“表达盒”指重组或合成生成的,具有一系列允许特定核酸在靶细胞中转录的指定核酸元件的多核苷酸。可以将重组表达盒掺入质粒,染色体,线粒体DNA,质体DNA,病毒或核酸片段中。通常,表达载体的重组表达盒部分包含要转录的核酸序列和启动子等。在某些实施方案中,本发明的表达盒包含编码本发明的双特异性抗原结合分子或其片段的多核苷酸序列。
术语“载体”或“表达载体”与“表达构建体”同义,并指用于在靶细胞中导入与其可操作联合的特定基因及指导其表达的DNA分子。该术语包括作为自主复制核酸结构的载体以及掺入到已经接受其导入的宿主细胞的基因组中的载体。本发明的表达载体包含表达盒。表达载体允许转录大量稳定的mRNA。一旦表达载体在靶细胞内,就通过细胞转录和/或翻译装置生成基因编码的核糖核酸分子或蛋白质。在一个实施方案中,本发明的表达载体包含表达盒,其包含编码本发明的双特异性抗原结合分子或其片段的多核苷酸序列。
术语“宿主细胞”,“宿主细胞系”和“宿主细胞培养物”可交换使用并指已引入外源核酸的细胞,包括此类细胞的后代。宿主细胞包括“转化体”和“经转化的细胞”,其包括初始转化的细胞和自其衍生的后代(不考虑传代数)。后代在核酸内含物上可能与亲本细胞不完全相同,但可以含有突变。本文中包括具有如原始转化细胞中筛选或选择的相同的功能或生物学活性的突变体后代。宿主细胞是能用于生成本发明的双特异性抗原结合分子的任何类型的细胞系统。宿主细胞包括培养的细胞,例如哺乳动物培养细胞如CHO细胞,BHK细胞,NS0细胞,SP2/0细胞,YO骨髓瘤细胞,P3X63小鼠骨髓瘤细胞,PER细胞,PER.C6细胞或杂交瘤细胞,酵母细胞,昆虫细胞和植物细胞等,而且还包括在转基因动物,转基因植物或培养的植物或动物组织中包含的细胞。
“激活Fc受体”是一种在抗体的Fc域衔接后,引发刺激携带该受体的细胞实施效应器功能的信号传导事件的Fc受体。人激活Fc受体包括FcγRIIIa(CD16a),FcγRI(CD64),FcγRIIa(CD32)和FcαRI(CD89)。
抗体依赖性细胞介导的细胞毒性(ADCC)是一种导致通过免疫效应器细胞对抗体包被的靶细胞裂解的免疫机制。靶细胞是包含Fc区的抗体或其衍生物一般经由Fc区的N端的蛋白质部分特异性结合的细胞。如本文中使用的,术语“降低的ADCC”定义为通过上文定义的ADCC机制,以靶细胞周围介质中给定浓度的抗体,在给定的时间内裂解的靶细胞数目的降低,和/或通过ADCC机制,实现给定时间内给定数目的靶细胞裂解需要的靶细胞周围介质中抗体浓度的增加。ADCC的降低相对于使用相同的标准生产,纯化,配制和贮存方法(其是本领域技术人员已知的),由同一类型的宿主细胞生成但尚未工程化改造的相同抗体介导的ADCC。例如,由在其Fc域包含降低ADCC的氨基酸替代的抗体所介导的ADCC中的降低,是相对于由在Fc域中无此氨基酸替代的相同抗体介导的ADCC而言。测量ADCC的合适测定法是本领域中公知的(参见例如PCT公开文本no.WO 2006/082515或PCT公开文本no.WO 2012/130831)。
药剂的“有效量”指引起接受其施用的细胞或组织中的生理学变化必需的量。
药剂例如药物组合物的“治疗有效量”指有效实现期望的治疗或预防结果的量(以必要的剂量且持续必要的时间)。治疗有效量的药剂例如消除,降低,延迟,最小化或预防疾病的不良作用。
“个体”或“受试者”是哺乳动物。哺乳动物包括但不限于驯养的动物(例如牛,绵羊,猫,犬和马),灵长类(例如人和非人灵长类如猴),家兔和啮齿动物(例如小鼠和大鼠)。优选地,所述个体或受试者是人。
术语“药物组合物”指其形式使得容许其中含有的活性成分的生物学活性有效,且不含对会接受配制剂施用的受试者有不可接受的毒性的别的成分的制剂。
“药学可接受载体”指药物组合物中活性成分以外对受试者无毒的成分。药学可接受载体包括但不限于缓冲剂,赋形剂,稳定剂或防腐剂。
如本文中使用的,“治疗/处理”(及其语法变体)指试图改变治疗个体中疾病的自然进程,并且可以是为了预防或在临床病理学的过程期间实施的临床干预。治疗的期望效果包括但不限于预防疾病的发生或复发,缓解症状,降低疾病的任何直接或间接病理学后果,预防转移,减缓疾病进展率,改善或减轻疾病状态,及消退或改善的预后。在一些实施方案中,本发明的T细胞活化性双特异性抗原结合分子用于延迟疾病的形成或延缓疾病的进展。
术语“包装插页”用于指治疗产品的商业化包装中通常含有的说明书,其含有关于适应症,使用,剂量,施用,组合疗法,禁忌症的信息和/或关于使用此类治疗产品的警告。
实施方案的详细描述
本发明提供一种T细胞活化性双特异性抗原结合分子,其具有对于治疗性应用有利的特性,特别是就功效和安全性以及生产力而言(例如就纯度,产量而言)。
电荷修饰
本发明的T细胞活化性双特异性抗原结合分子可以在其中包含的Fab分子中包含如下的氨基酸替代,其特别有效地减少轻链与非匹配重链的错配(Bence-Jones型副产物),在它们的一个(或多个,在分子包含超过两个抗原结合Fab分子的情况中)结合臂具有VH/VL交换的基于Fab的双/多特异性抗原结合分子的生产中可发生所述错配(还可参见PCT申请No.PCT/EP2015/057165,特别是其中的实施例,通过援引完整收入本文)。
因而,在具体的实施方案中,本发明的T细胞活化性双特异性抗原结合分子包含
(a)特异性结合第一抗原的第一Fab分子,
(b)特异性结合第二抗原的第二Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH是彼此替换的,
其中第一抗原是活化性T细胞抗原且第二抗原是STEAP-1,或第一抗原是STEAP-1且第二抗原是活化性T细胞抗原;且
其中
i)在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用带正电荷的氨基酸替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用带负电荷的氨基酸替代(编号方式依照Kabat EU索引);或
ii)在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用带正电荷的氨基酸替代(编号方式依照Kabat),且其中在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用带负电荷的氨基酸替代(编号方式依照Kabat EU索引)。
T细胞活化性双特异性抗原结合分子没有同时包含i)和ii)下提到的修饰。第二Fab分子的恒定域CL和CH1没有彼此替换(即保持不交换)。
在依照本发明的T细胞活化性双特异性抗原结合分子的一个实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在又一个实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在一个具体的实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代)且位置123处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)(在一个优选的实施方案中,用赖氨酸(K)或精氨酸(R)独立替代),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
在一个更加具体的实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)或精氨酸(R)替代(编号方式依照Kabat),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
在一个甚至更加具体的实施方案中,在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用精氨酸(R)替代(编号方式依照Kabat),且在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
在具体的实施方案中,a)下的第一Fab分子的恒定域CL是卡帕同种型的。
或者,依照上文实施方案的氨基酸替代可以在b)下的第二Fab分子的恒定域CL和恒定域CH1中进行,代替在a)下的第一Fab分子的恒定域CL和恒定域CH1中进行。在特定的此类实施方案中,b)下的第二Fab分子的恒定域CL是卡帕同种型的。
依照本发明的T细胞活化性双特异性抗原结合分子可以进一步包含特异性结合所述第一抗原的第三Fab分子。在具体的实施方案中,所述第三Fab分子与a)下的第一Fab分子相同。在这些实施方案中,依照上文实施方案的氨基酸替代会在第一Fab分子和第三Fab分子每一个的恒定域CL和恒定域CH1中进行。或者,依照上文实施方案的氨基酸替代可以在b)下的第二Fab分子的恒定域CL和恒定域CH1中进行,但是不在第一Fab分子和第三Fab分子的恒定域CL和恒定域CH1中进行。
在具体的实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子进一步包含由能够稳定联合的第一亚基和第二亚基构成的Fc域。
T细胞活化性双特异性抗原结合分子型式
T细胞活化性双特异性抗原结合分子的各组分可以以多种构造彼此融合。例示性的构造绘于图1中。
在具体的实施方案中,T细胞活化性双特异性抗原结合分子中包含的抗原结合模块是Fab分子。在此类实施方案中,第一,第二,第三等抗原结合模块在本文中分别可以称作第一,第二,第三等Fab分子。而且,在具体的实施方案中,T细胞活化性双特异性抗原结合分子包含由能够稳定联合的第一亚基和第二亚基构成的Fc域。
在一些实施方案中,第二Fab分子在Fab重链的C端融合至Fc域的第一或第二亚基的N端。
在一个此类类实施方案中,第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端。在一个特定的此类实施方案中,T细胞活化性双特异性抗原结合分子基本由以下组成:第一和第二Fab分子,由第一亚基和第二亚基构成的Fc域,和任选的一个或多个肽接头,其中第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端,且第二Fab分子在Fab重链的C端融合至Fc域的第一或第二亚基的N端。此类构造示意性描绘于图1G和1K。任选地,第一Fab分子的Fab轻链和第二Fab分子的Fab轻链可以另外彼此融合。
在另一个此类实施方案中,第一Fab分子在Fab重链的C端融合至Fc域的第一或第二亚基的N端。在一个特定的此类实施方案中,T细胞活化性双特异性抗原结合分子基本由以下组成:第一和第二Fab分子,由第一和第二亚基构成的Fc域和任选地一个或多个肽接头,其中第一和第二Fab分子各自在Fab重链的C端融合至Fc域的亚基之一的N端。此类构造示意性描绘于图1A和1D。第一和第二Fab分子可以直接或经由肽接头融合至Fc域。在一个具体的实施方案中,第一和第二Fab分子各自经由免疫球蛋白铰链区融合至Fc域。在一个具体的实施方案中,所述免疫球蛋白铰链区是人IgG1铰链区,特别是在Fc域是IgG1Fc域的情况中。
在其它实施方案中,第一Fab分子在Fab重链的C端融合至Fc域的第一或第二亚基的N端。
在一个此类实施方案中,第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端。在一个具体的此类实施方案中,T细胞活化性双特异性抗原结合分子基本由以下组成:第一和第二Fab分子,由第一和第二亚基构成的Fc域和任选地一个或多个肽接头,其中第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端,且第一Fab分子在Fab重链的C端融合至Fc域的第一或第二亚基的N端。此类构造示意性描绘于图1H和1L。任选地,第一Fab分子的Fab轻链和第二Fab分子的Fab轻链可以另外彼此融合。
Fab分子可以直接或经由肽接头融合至Fc域或彼此融合,所述肽接头包含一个或多个氨基酸,通常约2-20个氨基酸。肽接头是本领域中已知且本文中记载的。合适的,非免疫原性的肽接头包括例如(G4S)n,(SG4)n,(G4S)n或G4(SG4)n肽接头。“n”一般是1至10,通常是2至4的整数。在一个实施方案中,所述肽接头具有至少5个氨基酸的长度,在一个实施方案中5至100个氨基酸的长度,在又一个实施方案中10至50个氨基酸的长度。在一个实施方案中,所述肽接头是(GxS)n或(GxS)nGm,其中G=甘氨酸,S=丝氨酸,且(x=3,n=3,4,5或6,和m=0,1,2或3)或(x=4,n=2,3,4或5和m=0,1,2或3),在一个实施方案中,x=4和n=2或3,在又一个实施方案中,x=4和n=2。在一个实施方案中,所述肽接头是(G4S)2。一种特别适合于将第一和第二Fab分子的Fab轻链彼此融合的肽接头是(G4S)2。一种适合于连接第一和第二Fab片段的Fab重链的例示性肽接头包含序列(D)-(G4S)2(SEQ ID NO11和12)。另一种合适的此类接头包含序列(G4S)4。另外,接头可包含免疫球蛋白铰链区(的一部分)。特别地,当Fab分子融合至Fc域亚基的N端时,其可以在有或无另外的肽接头的情况下经由免疫球蛋白铰链区或其部分融合。
具有单个能够特异性结合靶细胞抗原的抗原结合模块(诸如Fab分子)的T细胞活化性双特异性抗原结合分子(例如如图1A,D,G,H,K,L中显示的)是有用的,特别是在高亲和力抗原结合模块结合后预期靶细胞抗原内在化的情况中。在此类情况中,存在超过一个特异于靶细胞抗原的抗原结合模块可能增强靶细胞抗原的内在化,由此降低其利用度。
然而,在许多其它情况中,会有利的是具有包含两个或更多个特异于靶细胞抗原的抗原结合模块(诸如Fab分子)的T细胞活化性双特异性抗原结合分子(见图1B,1C,1E,1F,1I,1J,1M或1N中所示例子),从而例如优化对靶部位的靶向或允许靶细胞抗原的交联。
因而,在特定的实施方案中,本发明的T细胞活化性双特异性抗原结合分子进一步包含特异性结合第一抗原的第三Fab分子。第一抗原优选是靶细胞抗原,即STEAP-1。在一个实施方案中,第三Fab分子是常规Fab分子。在一个实施方案中,第三Fab分子与第一Fab分子相同(即第一和第三Fab分子包含相同的重和轻链氨基酸序列且具有相同的域布局(即常规或交换))。在一个特定的实施方案中,第二Fab分子特异性结合活化性T细胞抗原,特别是CD3,且第一和第三Fab分子特异性结合STEAP-1。
在备选实施方案中,本发明的T细胞活化性双特异性抗原结合分子进一步包含特异性结合第二抗原的第三Fab分子。在这些实施方案中,第二抗原优选是靶细胞抗原,即STEAP-1。在一个此类实施方案中,第三Fab分子是交换Fab分子(其中Fab重和轻链的可变域VH和VL或恒定域CL和CH1彼此交换/替换的Fab分子)。在一个此类实施方案中,第三Fab分子与第二Fab分子相同(即第二和第三Fab分子包含相同的重和轻链氨基酸序列且具有相同的域布局(即常规或交换))。在一个此类实施方案中,第一Fab分子特异性结合活化性T细胞抗原,特别是CD3,且第二和第三Fab分子特异性结合STEAP-1。
在一个实施方案中,第三Fab分子在Fab重链的C端融合至Fc域的第一或第二亚基的N端。
在一个具体的实施方案中,第二和第三Fab分子各自在Fab重链的C端融合至Fc域的亚基之一的N端,且第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端。在一个具体的此类实施方案中,T细胞活化性双特异性抗原结合分子基本上由以下组成:第一,第二和第三Fab分子,由第一亚基和第二亚基构成的Fc域,和任选的一个或多个肽接头,其中第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端,且第二Fab分子在Fab重链的C端融合至Fc域的第一亚基的N端,且其中第三Fab分子在Fab重链的C端融合至Fc域的第二亚基的N端。此类构造示意性描绘于图1B和1E(特定的实施方案,其中第三Fab分子是常规Fab分子且优选与第一Fab分子相同),和图1I和1M(备选的实施方案,其中第三Fab分子是交换Fab分子且优选与第二Fab分子相同)。第二和第三Fab分子可以直接或经由肽接头融合至Fc域。在一个具体的实施方案中,第二和第三Fab分子各自经由免疫球蛋白铰链区融合至Fc域。在一个特定的实施方案中,免疫球蛋白铰链区是人IgG1铰链区,特别是Fc域是人IgG1Fc域的情况。任选地,第一Fab分子的Fab轻链和第二Fab分子的Fab轻链可以另外彼此融合。
在另一个实施方案中,第一和第三Fab分子各自在Fab重链的C端融合至Fc域的亚基之一的N端,且第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端。在一个具体的此类实施方案中,T细胞活化性双特异性抗原结合分子基本上由以下组成:第一,第二和第三Fab分子,由第一亚基和第二亚基构成的Fc域,和任选的一个或多个肽接头,其中第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端,且第一Fab分子在Fab重链的C端融合至Fc域的第一亚基的N端,且其中第三Fab分子在Fab重链的C端融合至Fc域的第二亚基的N端。此类构造示意性描绘于图1C和1F(特定的实施方案,其中第三Fab分子是常规Fab分子且优选与第一Fab分子相同)和图1J和1N(备选的实施方案,其中第三Fab分子是交换Fab分子且优选与第二Fab分子相同)。第一和第三Fab分子可以直接或经由肽接头融合至Fc域。在一个特定的实施方案中,第一和第三Fab分子各自经由免疫球蛋白铰链区融合至Fc域。在一个具体的实施方案中,免疫球蛋白铰链区是人IgG1铰链区,特别是Fc域是IgG1Fc域的情况。任选地,第一Fab分子的Fab轻链和第二Fab分子的Fab轻链可以另外彼此融合。
在其中一个Fab分子在Fab重链的C端经由免疫球蛋白铰链区融合至Fc域的每个亚基的N端的T细胞活化性双特异性抗原结合分子的构造中,所述两个Fab分子,所述铰链区和所述Fc域基本上形成免疫球蛋白分子。在一个具体的实施方案中,免疫球蛋白分子是IgG类免疫球蛋白。在一个甚至更具体的实施方案中,免疫球蛋白是IgG1亚类免疫球蛋白。在另一个实施方案中,免疫球蛋白是IgG4亚类免疫球蛋白。在又一个具体的实施方案中,免疫球蛋白是人免疫球蛋白。在其它实施方案中,免疫球蛋白是嵌合免疫球蛋白或人源化免疫球蛋白。
在本发明的一些T细胞活化性双特异性抗原结合分子中,第一Fab分子的Fab轻链和第二Fab分子的Fab轻链彼此融合,任选地经由肽接头。根据第一和第二Fab分子的构造,第一Fab分子的Fab轻链可在其C端融合至第二Fab分子的Fab轻链的N端,或者第二Fab分子的Fab轻链可在其C端融合至第一Fab分子的Fab轻链的N端。第一和第二Fab分子的Fab轻链的融合进一步降低不匹配的Fab重链和轻链的错配,并且还降低表达本发明的一些T细胞活化性双特异性抗原结合分子需要的质粒数。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换),第二Fab分子的Fab重链恒定区继而与Fc域亚基共享羧基末端肽键的多肽(VL(2)-CH1(2)-CH2-CH3(-CH4)),和其中的第一Fab分子的Fab重链与Fc域亚基共享羧基末端肽键的多肽(VH(1)-CH1(1)-CH2-CH3(-CH4))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(2)-CL(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在某些实施方案中,所述多肽共价连接,例如通过二硫键。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换),第二Fab分子的Fab轻链恒定区继而与Fc域亚基共享羧基末端肽键的多肽(VH(2)-CL(2)-CH2-CH3(-CH4)),和其中的第一Fab分子的Fab重链与Fc域亚基共享羧基末端肽键的多肽(VH(1)-CH1(1)-CH2-CH3(-CH4))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键的多肽(VL(2)-CH1(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在某些实施方案中,所述多肽共价连接,例如通过二硫键。
在一些实施方案中,T细胞活化性双特异性抗原结合分子包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换),第二Fab分子的Fab重链恒定区继而与第一Fab分子的Fab重链共享羧基末端肽键,第一Fab分子的Fab重链继而与Fc域亚基共享羧基末端肽键的多肽(VL(2)-CH1(2)-VH(1)-CH1(1)-CH2-CH3(-CH4))。在其它实施方案中,T细胞活化性双特异性抗原结合分子包含其中的第一Fab分子的Fab重链与第二Fab分子的Fab轻链可变区共享羧基末端肽键,第二Fab分子的Fab轻链可变区继而与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换),第二Fab分子的Fab重链恒定区继而与Fc域亚基共享羧基末端肽键的多肽(VH(1)-CH1(1)-VL(2)-CH1(2)-CH2-CH3(-CH4))。
在这些中的一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含第二Fab分子的交换Fab轻链多肽,其中第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(VH(2)-CL(2)),和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在这些中的其它实施方案中,在适当时,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键,第二Fab分子的Fab轻链恒定区继而与第一Fab分子的Fab轻链多肽共享羧基末端肽键的多肽(VH(2)-CL(2)-VL(1)-CL(1)),或其中的第一Fab分子的Fab轻链多肽与第二Fab分子的Fab重链可变区共享羧基末端肽键,第二Fab分子的Fab重链可变区继而与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VL(1)-CL(1)-VH(2)-CL(2))。
依照这些实施方案的T细胞活化性双特异性抗原结合分子可以进一步包含(i)Fc域亚基多肽(CH2-CH3(-CH4)),或(ii)其中的第三Fab分子的Fab重链与Fc域亚基共享羧基末端肽键的多肽(VH(3)-CH1(3)-CH2-CH3(-CH4))和第三Fab分子的Fab轻链多肽(VL(3)-CL(3))。在某些实施方案中,所述多肽共价连接,例如通过二硫键。
在某些实施方案中,T细胞活化性双特异性抗原结合分子包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换),第二Fab分子的Fab轻链恒定区继而与第一Fab分子的Fab重链共享羧基末端肽键,第一Fab分子的Fab重链继而与Fc域亚基共享羧基末端肽键的多肽(VH(2)-CL(2)-VH(1)-CH1(1)-CH2-CH3(-CH4))。在其它实施方案中,T细胞活化性双特异性抗原结合分子包含其中的第一Fab分子的Fab重链与第二Fab分子的Fab重链可变区共享羧基末端肽键,第二Fab分子的Fab重链可变区继而与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换),第二Fab分子的Fab轻链恒定区继而与Fc域亚基共享羧基末端肽键的多肽(VH(1)-CH1(1)-VH(2)-CL(2)-CH2-CH3(-CH4))。
在这些中的一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含第二Fab分子的交换Fab轻链多肽,其中第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键(VL(2)-CH1(2)),和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在这些中的其它实施方案中,在适当时,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键,第二Fab分子的Fab重链恒定区继而与第一Fab分子的Fab轻链多肽共享羧基末端肽键的多肽(VL(2)-CH1(2)-VL(1)-CL(1)),或其中的第一Fab分子的Fab轻链多肽与第二Fab分子的Fab重链可变区共享羧基末端肽键,第二Fab分子的Fab重链可变区继而与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VL(1)-CL(1)-VH(2)-CL(2))。依照这些实施方案的T细胞活化性双特异性抗原结合分子可以进一步包含(i)Fc域亚基多肽(CH2-CH3(-CH4)),或(ii)其中的第三Fab分子的Fab重链与Fc域亚基共享羧基末端肽键的多肽(VH(3)-CH1(3)-CH2-CH3(-CH4))和第三Fab分子的Fab轻链多肽(VL(3)-CL(3))。在某些实施方案中,所述多肽共价连接,例如通过二硫键。
在一些实施方案中,第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端。在某些此类实施方案中,T细胞活化性双特异性抗原结合分子不包含Fc域。在某些实施方案中,T细胞活化性双特异性抗原结合分子基本上由以下组成:第一和第二Fab分子,和任选的一个或多个肽接头,其中第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端。此类构造示意性描绘于图1O和1S。
在其它实施方案中,第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端。在某些此类实施方案中,T细胞活化性双特异性抗原结合分子不包含Fc域。在某些实施方案中,T细胞活化性双特异性抗原结合分子基本上由以下组成:第一和第二Fab分子,和任选的一个或多个肽接头,其中第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端。此类构造示意性描绘于图1P和1T。
在一些实施方案中,第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端,且T细胞活化性双特异性抗原结合分子进一步包含第三Fab分子,其中所述第三Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端。在特定的此类实施方案中,所述第三Fab分子是常规Fab分子。在其它此类实施方案中,所述第三Fab分子是本文所述交换Fab分子,即其中Fab重和轻链的可变域VH和VL或恒定域CL和CH1彼此交换/替换的Fab分子。在某些此类实施方案中,T细胞活化性双特异性抗原结合分子基本上由以下组成:第一,第二和第三Fab分子,和任选的一个或多个肽接头,其中第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端,且第三Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端。此类构造示意性描绘于图1Q和1U(具体的实施方案,其中第三Fab分子是常规Fab分子且优选与第一Fab分子相同)。
在一些实施方案中,第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端,且T细胞活化性双特异性抗原结合分子进一步包含第三Fab分子,其中所述第三Fab分子在Fab重链的N端融合至第二Fab分子的Fab重链的C端。在特定的此类实施方案中,所述第三Fab分子是本文所述交换Fab分子,即其中Fab重和轻链的可变域VH和VL或恒定域CH1和CL彼此交换/替换的Fab分子。在其它此类实施方案中,所述第三Fab分子是常规Fab分子。在某些此类实施方案中,T细胞活化性双特异性抗原结合分子基本上由以下组成:第一,第二和第三Fab分子,和任选的一个或多个肽接头,其中第一Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端,且第三Fab分子在Fab重链的N端融合至第二Fab分子的Fab重链的C端。此类构造示意性描绘于图1W和1Y(具体的实施方案,其中第三Fab分子是交换Fab分子且优选与第二Fab分子相同)。
在一些实施方案中,第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端,且T细胞活化性双特异性抗原结合分子进一步包含第三Fab分子,其中所述第三Fab分子在Fab重链的N端融合至第一Fab分子的Fab重链的C端。在特定的此类实施方案中,所述第三Fab分子是常规Fab分子。在其它此类实施方案中,所述第三Fab分子是本文所述交换Fab分子,即其中Fab重和轻链的可变域VH和VL或恒定域CH1和CL彼此交换/替换的Fab分子。在某些此类实施方案中,T细胞活化性双特异性抗原结合分子基本上由以下组成:第一,第二和第三Fab分子,和任选的一个或多个肽接头,其中第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端,且第三Fab分子在Fab重链的N端融合至第一Fab分子的Fab重链的C端。此类构造示意性描绘于图1R和1V(具体的实施方案,其中第三Fab分子是常规Fab分子且优选与第一Fab分子相同)。
在一些实施方案中,第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端,且T细胞活化性双特异性抗原结合分子进一步包含第三Fab分子,其中所述第三Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端。在特定的此类实施方案中,所述第三Fab分子是本文所述交换Fab分子,即其中Fab重和轻链的可变域VH和VL或恒定域CH1和CL彼此交换/替换的Fab分子。在其它此类实施方案中,所述第三Fab分子是常规Fab分子。在某些此类实施方案中,T细胞活化性双特异性抗原结合分子基本上由以下组成:第一,第二和第三Fab分子,和任选的一个或多个肽接头,其中第二Fab分子在Fab重链的C端融合至第一Fab分子的Fab重链的N端,且第三Fab分子在Fab重链的C端融合至第二Fab分子的Fab重链的N端。此类构造示意性描绘于图1X和1Z(具体的实施方案,其中第三Fab分子是交换Fab分子且优选与第一Fab分子相同)。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第一Fab分子的Fab重链与第二Fab分子的Fab轻链可变区共享羧基末端肽键,第二Fab分子的Fab轻链可变区继而与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换)的多肽(VH(1)-CH1(1)-VL(2)-CH1(2))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(2)-CL(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换),第二Fab分子的Fab重链恒定区继而与第一Fab分子的Fab重链共享羧基末端肽键的多肽(VL(2)-CH1(2)-VH(1)-CH1(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(2)-CL(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换),第二Fab分子的Fab轻链恒定区继而与第一Fab分子的Fab重链共享羧基末端肽键的多肽(VH(2)-CL(2)-VH(1)-CH1(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键的多肽(VL(2)-CH1(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第三Fab分子的Fab重链与第一Fab分子的Fab重链共享羧基末端肽键,第一Fab分子的Fab重链继而与第二Fab分子的Fab轻链可变区共享羧基末端肽键,第二Fab分子的Fab轻链可变区继而与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换)的多肽(VH(3)-CH1(3)-VH(1)-CH1(1)-VL(2)-CH1(2))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(2)-CL(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含第三Fab分子的Fab轻链多肽(VL(3)-CL(3))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第三Fab分子的Fab重链与第一Fab分子的Fab重链共享羧基末端肽键,第一Fab分子的Fab重链继而与第二Fab分子的Fab重链可变区共享羧基末端肽键,第二Fab分子的Fab重链可变区继而与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换)的多肽(VH(3)-CH1(3)-VH(1)-CH1(1)-VH(2)-CL(2))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键的多肽(VL(2)-CH1(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含第三Fab分子的Fab轻链多肽(VL(3)-CL(3))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换),第二Fab分子的Fab重链恒定区继而与第一Fab分子的Fab重链共享羧基末端肽键,第一Fab分子的Fab重链继而与第三Fab分子的Fab重链共享羧基末端肽键的多肽(VL(2)-CH1(2)-VH(1)-CH1(1)-VH(3)-CH1(3))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(2)-CL(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含第三Fab分子的Fab轻链多肽(VL(3)-CL(3))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换),第二Fab分子的Fab轻链恒定区继而与第一Fab分子的Fab重链共享羧基末端肽键,第一Fab分子的Fab重链继而与第三Fab分子的Fab重链共享羧基末端肽键的多肽(VH(2)-CL(2)-VH(1)-CH1(1)-VH(3)-CH1(3))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键的多肽(VL(2)-CH1(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含第三Fab分子的Fab轻链多肽(VL(3)-CL(3))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第一Fab分子的Fab重链与第二Fab分子的Fab轻链可变区共享羧基末端肽键,第二Fab分子的Fab轻链可变区继而与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换),第二Fab分子的Fab重链恒定区继而与第三Fab分子的Fab轻链可变区共享羧基末端肽键,第三Fab分子的Fab轻链可变区继而与第三Fab分子的Fab重链恒定区共享羧基末端肽键(即第三Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换)的多肽(VH(1)-CH1(1)-VL(2)-CH1(2)-VL(3)-CH1(3))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(2)-CL(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第三Fab分子的Fab重链可变区与第三Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(3)-CL(3))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第一Fab分子的Fab重链与第二Fab分子的Fab重链可变区共享羧基末端肽键,第二Fab分子的Fab重链可变区继而与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换),第二Fab分子的Fab轻链恒定区继而与第三Fab分子的Fab重链可变区共享羧基末端肽键,第三Fab分子的Fab重链可变区继而与第三Fab分子的Fab轻链恒定区共享羧基末端肽键(即第三Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换)的多肽(VH(1)-CH1(1)-VH(2)-CL(2)-VH(3)-CL(3))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键的多肽(VL(2)-CH1(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第三Fab分子的Fab轻链可变区与第三Fab分子的Fab重链恒定区共享羧基末端肽键的多肽(VL(3)-CH1(3))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第三Fab分子的Fab轻链可变区与第三Fab分子的Fab重链恒定区共享羧基末端肽键(即第三Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换),第三Fab分子的Fab重链恒定区继而与第二Fab分子的Fab轻链可变区共享羧基末端肽键,第二Fab分子的Fab轻链可变区继而与第二Fab分子的Fab重链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链可变区用轻链可变区替换),第二Fab分子的Fab重链恒定区继而与第一Fab分子的Fab重链共享羧基末端肽键的多肽(VL(3)-CH1(3)-VL(2)-CH1(2)-VH(1)-CH1(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab重链可变区与第二Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(2)-CL(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第三Fab分子的Fab重链可变区与第三Fab分子的Fab轻链恒定区共享羧基末端肽键的多肽(VH(3)-CL(3))。
在某些实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子包含其中的第三Fab分子的Fab重链可变区与第三Fab分子的Fab轻链恒定区共享羧基末端肽键(即第三Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换),第三Fab分子的Fab轻链恒定区继而与第二Fab分子的Fab重链可变区共享羧基末端肽键,第二Fab分子的Fab重链可变区继而与第二Fab分子的Fab轻链恒定区共享羧基末端肽键(即第二Fab分子包含交换Fab重链,其中重链恒定区用轻链恒定区替换),第二Fab分子的Fab轻链恒定区继而与第一Fab分子的Fab重链共享羧基末端肽键的多肽(VH(3)-CL(3)-VH(2)-CL(2)-VH(1)-CH1(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第二Fab分子的Fab轻链可变区与第二Fab分子的Fab重链恒定区共享羧基末端肽键的多肽(VL(2)-CH1(2))和第一Fab分子的Fab轻链多肽(VL(1)-CL(1))。在一些实施方案中,T细胞活化性双特异性抗原结合分子进一步包含其中的第三Fab分子的Fab轻链可变区与第三Fab分子的Fab重链恒定区共享羧基末端肽键的多肽(VL(3)-CH1(3))。
依照任何上述实施方案,T细胞活化性双特异性抗原结合分子的各组分(例如Fab分子,Fc域)可直接地或经由本文中描述或本领域已知的各种接头(特别是包含一个或多个氨基酸,通常约2-20个氨基酸的肽接头)融合。合适的,非免疫原性的肽接头包括例如(G4S)n,(SG4)n,(G4S)n或G4(SG4)n肽接头,其中n一般是1至10,通常是2至4的整数。
Fc域
T细胞活化性双特异性抗原结合分子的Fc域由一对包含免疫球蛋白分子重链域的多肽链组成。例如,免疫球蛋白G(IgG)分子的Fc域是二聚体,其每个亚基包含CH2和CH3IgG重链恒定域。Fc域的两个亚基能够彼此稳定联合。在一个实施方案中,本发明的T细胞活化性双特异性抗原结合分子包含不超过一个Fc域。
在依照本发明的一个实施方案中,T细胞活化性双特异性抗原结合分子的Fc域是IgG Fc域。在一个具体的实施方案中,Fc域是IgG1Fc域。在另一个实施方案中,Fc域是IgG4Fc域。在一个更加具体的实施方案中,Fc域是包含位置S228(Kabat编号方式)处的氨基酸替代,特别是氨基酸替代S228P的IgG4Fc域。此氨基酸替代降低IgG4抗体的体内Fab臂交换(参见Stubenrauch等,Drug Metabolism and Disposition 38,84-91(2010))。在又一个具体的实施方案中,Fc域是人的。人IgG1Fc区的一种例示性序列在SEQ ID NO:13中给出。
促进异二聚化的Fc域修饰
依照本发明的T细胞活化性双特异性抗原结合分子包含不同的Fab分子,其融合至Fc域的两个亚基之一个或另一个,如此Fc域的两个亚基通常包含在两条不相同的多肽链中。这些多肽的重组共表达和随后二聚化导致两种多肽的数种可能组合。为了改进重组生产中T细胞活化性双特异性抗原结合分子的产量和纯度,如此在T细胞活化性双特异性抗原结合分子的Fc域中引入促进期望多肽联合的修饰会是有利的。
因而,在具体的实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子的Fc域包含促进Fc域的第一和第二亚基联合的修饰。人IgG Fc域的两个亚基之间最广泛的蛋白质-蛋白质相互作用的位点在Fc域的CH3域中。如此,在一个实施方案中,所述修饰在Fc域的CH3域中。
有数种办法来修饰Fc域的CH3域以加强异二聚化,它们详细记载于例如WO 96/27011,WO 98/050431,EP 1870459,WO 2007/110205,WO 2007/147901,WO 2009/089004,WO2010/129304,WO 2011/90754,WO 2011/143545,WO 2012058768,WO 2013157954,WO2013096291。典型地,在所有此类办法中,Fc域的第一亚基的CH3域和Fc域的第二亚基的CH3域二者以互补方式进行工程化改造使得每个CH3域(或包含它的重链)不再能与其自身同二聚化但被迫与互补工程化改造的其它CH3域异二聚化(使得第一和第二CH3域异二聚化且两个第一CH3域或两个第二CH3域之间不形成同二聚体)。涵盖这些用于改善重链异二聚化的不同办法作为不同备选,与依照本发明的T细胞活化性双特异性抗原结合分子中的减少轻链错配和Bence Jones型副产物的重-轻链修饰(一个结合臂中的VH和VL交换/替换及在CH1/CL界面中引入具有相反电荷的带电荷的氨基酸的替代)组合。
在一个特定的实施方案中,所述促进Fc域的第一亚基和第二亚基联合的修饰是所谓的“节-入-穴”修饰,其包含在Fc域的两个亚基之一中的“节”修饰和在Fc域的两个亚基之另一中的“穴”修饰。
节-入-穴技术记载于例如US 5,731,168;US 7,695,936;Ridgway等,Prot Eng 9,617-621(1996)和Carter,J Immunol Meth 248,7-15(2001)。一般地,该方法牵涉在第一多肽的界面处引入隆起(“节”)并在第二多肽的界面中引入相应的空腔(“穴”),使得隆起可以置于空腔中从而促进异二聚体形成并阻碍同二聚体形成。通过将来自第一多肽界面的小氨基酸侧链用更大的侧链(例如酪氨酸或色氨酸)替换来构建隆起。在第二多肽的界面中创建具有与隆起相同或相似大小的互补性空腔,其通过将大氨基酸侧链用更小的氨基酸侧链(例如丙氨酸或苏氨酸)替换进行。
因而,在一个具体的实施方案中,在T细胞活化性双特异性抗原结合分子的Fc域的第一亚基的CH3域中,一个氨基酸残基用具有更大侧链体积的氨基酸残基替换,由此在第一亚基的CH3域内生成隆起,其可安置于第二亚基的CH3域内的空腔中,而且在Fc域的第二亚基的CH3域中,一个氨基酸残基用具有更小侧链体积的氨基酸残基替换,由此在第二亚基的CH3域内生成空腔,其中可安置第一亚基的CH3域内的隆起。
优选地,所述具有更大侧链体积的氨基酸残基选自下组:精氨酸(R),苯丙氨酸(F),酪氨酸(Y),和色氨酸(W)。
优选地,所述具有更小侧链体积的氨基酸残基选自下组:丙氨酸(A),丝氨酸(S),苏氨酸(T),和缬氨酸(V)。
可以通过改变编码多肽的核酸,例如通过位点特异性诱变或通过肽合成来生成隆起和空腔。
在一个特定的实施方案中,在Fc域第一亚基的CH3域(“节”亚基)中,第366位的苏氨酸残基用色氨酸残基替换(T366W),而在Fc域第二亚基的CH3域(“穴”亚基)中,第407位的酪氨酸残基用缬氨酸残基替换(Y407V)。在一个实施方案中,在Fc域第二亚基中,另外,第366位的苏氨酸残基用丝氨酸残基替换(T366S)且第368位的亮氨酸残基用丙氨酸残基替换(L368A)(编号方式依照Kabat EU索引)。
在还有又一个实施方案中,在Fc域的第一亚基中,另外,第354位的丝氨酸残基用半胱氨酸残基替换(S354C)或第356位的谷氨酸残基用半胱氨酸残基替换(E356C),而在Fc域的第二亚基中,另外,第349位的酪氨酸残基用半胱氨酸残基替换(Y349C)(编号方式依照Kabat EU索引)。这两个半胱氨酸残基的引入导致在Fc域的两个亚基之间形成二硫桥,进一步稳定了二聚体(Carter,J Immunol Methods 248,7-15(2001))。
在一个具体的实施方案中,Fc域的第一亚基包含氨基酸替代S354C和T366W,且Fc域的第二亚基包含氨基酸替代Y349C,T366S,L368A和Y407V(编号方式依照Kabat EU索引)。
在一个具体的实施方案中,将特异性结合活化性T细胞抗原的Fab分子融合(任选地经由特异性结合靶细胞抗原的Fab分子)至Fc域的第一亚基(其包含“节”修饰)。不希望受理论束缚,特异性结合活化性T细胞抗原的Fab分子与Fc域的含节的亚基的融合会(进一步)使包含两个结合活化性T细胞抗原的Fab分子的抗原结合分子的生成最小化(两条含节的多肽的空间碰撞)。
涵盖修饰CH3以增强异二聚化的其它技术作为依照本发明的备选,它们记载于例如WO 96/27011,WO 98/050431,EP 1870459,WO 2007/110205,WO 2007/147901,WO 2009/089004,WO 2010/129304,WO 2011/90754,WO 2011/143545,WO 2012/058768,WO 2013/157954,WO 2013/096291。
在一个实施方案中,备选地使用EP 1870459A1中记载的异二聚化办法。这种办法基于在Fc域的两个亚基之间的CH3/CH3域界面中的特定氨基酸位置引入具有相反电荷的带电荷的氨基酸。本发明的T细胞活化性双特异性抗原结合分子的一个优选的实施方案是(Fc域的)两个CH3域之一中的氨基酸突变R409D;K370E和Fc域的CH3域之另一中的氨基酸突变D399K;E357K(编号方式依照Kabat EU索引)。
在另一个实施方案中,本发明的T细胞活化性双特异性抗原结合分子包含Fc域的第一亚基的CH3域中的氨基酸突变T366W和Fc域的第二亚基的CH3域中的氨基酸突变T366S,L368A,Y407V,和另外的Fc域的第一亚基的CH3域中的氨基酸突变R409D;K370E和Fc域的第二亚基的CH3域中的氨基酸突变D399K;E357K(编号方式依照Kabat EU索引)。
在另一个实施方案中,本发明的T细胞活化性双特异性抗原结合分子包含Fc域的第一亚基的CH3域中的氨基酸突变S354C,T366W和Fc域的第二亚基的CH3域中的氨基酸突变Y349C,T366S,L368A,Y407V,或所述T细胞活化性双特异性抗原结合分子包含Fc域的第一亚基的CH3域中的氨基酸突变Y349C,T366W和Fc域的第二亚基的CH3域中的氨基酸突变S354C,T366S,L368A,Y407V和另外的Fc域的第一亚基的CH3域中的氨基酸突变R409D;K370E和Fc域的第二亚基的CH3域中的氨基酸突变D399K;E357K(所有编号方式依照Kabat EU索引)。
在一个实施方案中,备选地使用WO 2013/157953中记载的异二聚化办法。在一个实施方案中,第一CH3域包含氨基酸突变T366K且第二CH3域包含氨基酸突变L351D(编号方式依照Kabat EU索引)。在又一个实施方案中,第一CH3域进一步包含氨基酸突变L351K。在又一个实施方案中,第二CH3域进一步包含选自Y349E,Y349D和L368E的氨基酸突变(优选L368E)(编号方式依照Kabat EU索引)。
在一个实施方案中,备选地使用WO 2012/058768中记载的异二聚化办法。在一个实施方案中,第一CH3域包含氨基酸突变L351Y,Y407A且第二CH3域包含氨基酸突变T366A,K409F。在又一个实施方案中,第二CH3域进一步包含位置T411,D399,S400,F405,N390,或K392处的氨基酸突变,例如选自a)T411N,T411R,T411Q,T411K,T411D,T411E或T411W,b)D399R,D399W,D399Y或D399K,c)S400E,S400D,S400R,或S400K,d)F405I,F405M,F405T,F405S,F405V或F405W,e)N390R,N390K或N390D,f)K392V,K392M,K392R,K392L,K392F或K392E(编号方式依照Kabat EU索引)。在又一个实施方案中,第一CH3域包含氨基酸突变L351Y,Y407A且第二CH3域包含氨基酸突变T366V,K409F。在又一个实施方案中,第一CH3域包含氨基酸突变Y407A且第二CH3域包含氨基酸突变T366A,K409F。在又一个实施方案中,第二CH3域进一步包含氨基酸突变K392E,T411E,D399R和S400R(编号方式依照Kabat EU索引)。
在一个实施方案中,备选地使用WO 2011/143545中记载的异二聚化办法,例如进行选自下组的位置处的氨基酸修饰:368和409(编号方式依照Kabat EU索引)。
在一个实施方案中,备选地使用WO2011/090762中记载的异二聚化办法,它也使用上文所述节-入-穴技术。在一个实施方案中,第一CH3域包含氨基酸突变T366W且第二CH3域包含氨基酸突变Y407A。在一个实施方案中,第一CH3域包含氨基酸突变T366Y且第二CH3域包含氨基酸突变Y407T(编号方式依照Kabat EU索引)。
在一个实施方案中,T细胞活化性双特异性抗原结合分子或它的Fc域是IgG2亚类的且备选地使用WO 2010/129304记载的异二聚化办法。
在一个备选的实施方案中,促进Fc域的第一和第二亚基联合的修饰包含介导静电操纵效应(electrostatic steering effect)的修饰,例如如记载于PCT公开文本No.WO2009/089004的。一般地,此方法涉及将在两个Fc域亚基界面处的一个或多个氨基酸残基替换为带电荷的氨基酸残基,从而在静电上不利于同二聚体形成而在静电上有利于异二聚化。在一个此类实施方案中,第一CH3域包含带负电荷的氨基酸(例如谷氨酸(E),或天冬氨酸(D))对K392或N392的氨基酸替代(优选K392D或N392D)且第二CH3域包含带正电荷的氨基酸(例如赖氨酸(K)或精氨酸(R))对D399,E356,D356,或E357的氨基酸替代(优选D399K,E356K,D356K,或E357K,更优选D399K和E356K)。在又一个实施方案中,第一CH3域进一步包含带负电荷的氨基酸(例如谷氨酸(E),或天冬氨酸(D))对K409或R409的氨基酸替代,优选K409D或R409D。在又一个实施方案中,第一CH3域进一步或二选一地包含带负电荷的氨基酸(例如谷氨酸(E),或天冬氨酸(D))对K439和/或K370的氨基酸替代(所有编号方式依照Kabat EU索引)。
在还有又一个实施方案中,备选地使用WO 2007/147901中记载的异二聚化办法。在一个实施方案中,第一CH3域包含氨基酸突变K253E,D282K,和K322D且第二CH3域包含氨基酸突变D239K,E240K,和K292D(编号方式依照Kabat EU索引)。
在仍有另一个实施方案中,可以备选地使用WO 2007/110205中记载的异二聚化办法。
在一个实施方案中,Fc域的第一亚基包含氨基酸替代K392D和K409D,且Fc域的第二亚基包含氨基酸替代D356K和D399K(编号方式依照Kabat EU索引)。
降低Fc受体结合和/或效应器功能的Fc域修饰
Fc域赋予T细胞活化性双特异性抗原结合分子以有利的药动学特性,包括长血清半衰期,其有助于在靶组织中的较好积累和有利的组织-血液分配比。然而,同时它可能导致不想要的T细胞活化性双特异性抗原结合分子对表达Fc受体的细胞而非优选的携带抗原的细胞的靶向。此外,Fc受体信号传导途径的共激活可能导致细胞因子释放,其与抗原结合分子的T细胞活化特性和长半衰期组合,在系统性施用后引起细胞因子受体的过度活化和严重的副作用。(携带Fc受体的)免疫细胞而非T细胞的活化甚至可能降低T细胞活化性双特异性抗原结合分子的功效,原因是例如通过NK细胞对T细胞的潜在破坏。
因而,在具体的实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子的Fc域展现出与天然IgG1Fc域相比降低的对Fc受体的结合亲和力和/或降低的效应器功能。在一个此类实施方案中,Fc域(或包含所述Fc域的T细胞活化性双特异性抗原结合分子)展现出与天然IgG1Fc域(或包含天然IgG1Fc域的T细胞活化性双特异性抗原结合分子)相比少于50%,优选少于20%,更优选少于10%且最优选少于5%的对Fc受体的结合亲和力,和/或与天然IgG1Fc域(或包含天然IgG1Fc域的T细胞活化性双特异性抗原结合分子)相比少于50%,优选少于20%,更优选少于10%且最优选少于5%的效应器功能。在一个实施方案中,Fc域(或包含所述Fc域的T细胞活化性双特异性抗原结合分子)没有实质性结合Fc受体和/或诱导效应器功能。在一个具体的实施方案中,所述Fc受体是Fcγ受体。在一个实施方案中,所述Fc受体是人Fc受体。在一个实施方案中,所述Fc受体是活化性Fc受体。在一个特定的实施方案中,所述Fc受体是活化性人Fcγ受体,更具体地是人FcγRIIIa,FcγRI或FcγRIIa,最具体地是人FcγRIIIa。在一个实施方案中,效应器功能是选自下组的一项或多项:CDC,ADCC,ADCP,和细胞因子分泌。在一个具体的实施方案中,所述效应器功能是ADCC。在一个实施方案中,所述Fc域展现出与天然IgG1Fc域相比基本相似的对新生儿Fc受体(FcRn)的结合亲和力。当Fc域(或包含所述Fc域的T细胞活化性双特异性抗原结合分子)展现出超过约70%,特别是超过约80%,更特别是超过约90%的天然IgG1Fc域(或包含天然IgG1Fc域的T细胞活化性双特异性抗原结合分子)对FcRn的结合亲和力时,实现基本相似的对FcRn的结合。
在某些实施方案中,Fc域工程化改造为具有与非工程化Fc域相比降低的对Fc受体的结合亲和力和/或降低的效应器功能。在具体的实施方案中,T细胞活化性双特异性抗原结合分子的Fc域包含一处或多处降低Fc域对Fc受体的结合亲和力和/或效应器功能的氨基酸突变。通常,Fc域的两个亚基的每一个中存在相同的一处或多处氨基酸突变。在一个实施方案中,所述氨基酸突变降低Fc域对Fc受体的结合亲和力。在一个实施方案中,所述氨基酸突变将Fc域对Fc受体的结合亲和力降低至少2倍,至少5倍,或至少10倍。在有超过一处降低Fc域对Fc受体的结合亲和力的氨基酸突变的实施方案中,这些氨基酸突变的组合可以将Fc域对Fc受体的结合亲和力降低至少10倍,至少20倍,或甚至至少50倍。在一个实施方案中,包含工程化Fc域的T细胞活化性双特异性抗原结合分子展现出与包含非工程化Fc域的T细胞活化性双特异性抗原结合分子相比少于20%,特别是少于10%,更特别是少于5%的对Fc受体的结合亲和力。在一个具体的实施方案中,Fc受体是Fcγ受体。在一些实施方案中,所述Fc受体是人Fc受体。在一些实施方案中,Fc受体是活化性Fc受体。在一个特定的实施方案中,Fc受体是活化性人Fcγ受体,更特别是人FcγRIIIa,FcγRI或FcγRIIa,最特别是人FcγRIIIa。优选地,对这些受体的每一种的结合是降低的。在一些实施方案中,对补体成分的结合亲和力,特别是对C1q的结合亲和力也是降低的。在一个实施方案中,对新生儿Fc受体(FcRn)的结合亲和力没有降低。当Fc域(或包含所述Fc域的T细胞活化性双特异性抗原结合分子)展现出非工程化形式的Fc域(或包含所述非工程化形式的Fc域的T细胞活化性双特异性抗原结合分子)对FcRn的结合亲和力的超过约70%时,实现基本相似的对FcRn的结合,即保留该Fc域对所述受体的结合亲和力。Fc域或包含所述Fc域的本发明的T细胞活化性双特异性抗原结合分子可以展现出超过约80%和甚至超过约90%的此类亲和力。在某些实施方案中,T细胞活化性双特异性抗原结合分子的Fc域工程化改造为具有与非工程化Fc域相比降低的效应器功能。所述降低的效应器功能可包括但不限于下列一项或多项:降低的补体依赖性细胞毒性(CDC),降低的抗体依赖性细胞介导的细胞毒性(ADCC),降低的抗体依赖性细胞吞噬作用(ADCP),降低的细胞因子分泌,降低的免疫复合物介导的抗原呈递细胞的抗原摄取,降低的对NK细胞的结合,降低的对巨噬细胞的结合,降低的对单核细胞的结合,降低的对多形核细胞的结合,降低的诱导凋亡的直接信号传导,降低的靶物结合的抗体的交联,降低的树突细胞成熟,或降低的T细胞引发。在一个实施方案中,所述降低的效应器功能是选自下组的一项或多项:降低的CDC,降低的ADCC,降低的ADCP,和降低的细胞因子分泌。在一个具体的实施方案中,所述降低的效应器功能是降低的ADCC。在一个实施方案中,所述降低的ADCC是小于20%的由非工程化Fc域(或包含非工程化Fc域的T细胞活化性双特异性抗原结合分子)诱导的ADCC。
在一个实施方案中,所述降低Fc域对Fc受体的结合亲和力和/或效应器功能的氨基酸突变是氨基酸替代。在一个实施方案中,Fc域包含在选自下组的位置处的氨基酸替代:E233,L234,L235,N297,P331和P329(编号方式依照Kabat EU索引)。在一个更特定的实施方案中,Fc域包含在选自下组的位置处的氨基酸替代:L234,L235和P329(编号方式依照KabatEU索引)。在一些实施方案中,Fc域包含氨基酸替代L234A和L235A(编号方式依照Kabat EU索引)。在一个此类实施方案中,Fc域是IgG1Fc域,特别是人IgG1Fc域。在一个实施方案中,Fc域包含在位置P329处的氨基酸替代。在一个更加特定的实施方案中,氨基酸替代是P329A或P329G,特别是P329G(编号方式依照Kabat EU索引)。在一个实施方案中,Fc域包含在位置P329处的氨基酸替代和又一处在选自以下位置处的氨基酸替代:E233,L234,L235,N297和P331(编号方式依照Kabat EU索引)。在一个更加特定的实施方案中,所述又一处氨基酸替代是E233P,L234A,L235A,L235E,N297A,N297D或P331S。在具体的实施方案中,所述Fc域包含在位置P329,L234和L235处的氨基酸替代(编号方式依照Kabat EU索引)。在更具体的实施方案中,所述Fc域包含氨基酸突变L234A,L235A和P329G(“P329G LALA”)。在一个此类实施方案中,Fc域是IgG1Fc域,特别是人IgG1Fc域。氨基酸替代组合“P329G LALA”几乎完全消除了人IgG1Fc域的Fcγ受体(以及补体)结合,如记载于PCT公开文本no.WO 2012/130831,其通过提述完整并入本文。WO 2012/130831还描述了制备此类突变体Fc域的方法和用于测定其特性(诸如Fc受体结合或效应器功能)的方法。
IgG4抗体展现出与IgG1抗体相比降低的对Fc受体的结合亲和力和降低的效应器功能。因此,在一些实施方案中,本发明的T细胞活化性双特异性抗原结合分子的Fc域是IgG4Fc域,特别是人IgG4Fc域。在一个实施方案中,所述IgG4Fc域包含在位置S228处的氨基酸替代,具体是氨基酸替代S228P(编号方式依照Kabat EU索引)。为了进一步降低其对Fc受体的结合亲和力和/或其效应器功能,在一个实施方案中,所述IgG4Fc域包含在位置L235处的氨基酸替代,具体是氨基酸替代L235E(编号方式依照Kabat EU索引)。在另一个实施方案中,所述IgG4Fc域包含在位置P329处的氨基酸替代,具体是氨基酸替代P329G(编号方式依照Kabat EU索引)。在一个具体的实施方案中,所述IgG4Fc域包含在位置S228,L235和P329处的氨基酸替代,具体是氨基酸替代S228P,L235E和P329G(编号方式依照Kabat EU索引)。此类IgG4Fc域突变体及其Fcγ受体结合特性记载于PCT公开文本No.WO 2012/130831,其通过提述完整并入本文。
在一个具体的实施方案中,展现出与天然IgG1Fc域相比降低的对Fc受体的结合亲和力和/或降低的效应器功能的Fc域是包含氨基酸替代L234A,L235A和任选地P329G的人IgG1Fc域,或包含氨基酸替代S228P,L235E和任选地P329G的人IgG4Fc域(编号方式依照Kabat EU索引)。
在某些实施方案中,已消除Fc域的N-糖基化。在一个此类实施方案中,所述Fc域包含在位置N297处的氨基酸突变,特别是用丙氨酸(N297A)或天冬氨酸(N297D)替换天冬酰胺的氨基酸替代(编号方式依照Kabat EU索引)。
在上文和PCT公开文本no.WO 2012/130831中描述的Fc域以外,具有降低的Fc受体结合和/或效应器功能的Fc域还包括那些具有Fc域残基238,265,269,270,297,327和329中一个或多个的替代的(美国专利No.6,737,056)(编号方式依照Kabat EU索引)。此类Fc突变体包括具有在氨基酸位置265,269,270,297和327的两个或更多个处的替代的Fc突变体,包括所谓的“DANA”Fc突变体,其具有残基265和297到丙氨酸的替代(美国专利No.7,332,581)。
可以使用本领域中公知的遗传或化学方法通过氨基酸删除,替代,插入或修饰来制备突变体Fc域。遗传方法可以包括编码DNA序列的位点特异性诱变,PCR,基因合成等。正确的核苷酸变化可以通过例如测序来验证。
可以容易地测定对Fc受体的结合,例如通过ELISA或通过使用标准仪器诸如BIAcore仪(GE Healthcare)的表面等离振子共振(SPR)进行,并且Fc受体诸如可通过重组表达获得。本文中描述了一种合适的此类结合测定法。或者,可使用已知表达特定Fc受体的细胞系,如表达FcγIIIa受体的人NK细胞来估测Fc域或包含Fc域的细胞活化性双特异性抗原结合分子对Fc受体的结合亲和力。
可通过本领域中已知的方法来测量Fc域或包含Fc域的T细胞活化性双特异性抗原结合分子的效应器功能。本文中描述了用于测量ADCC的一种合适的测定法。评估感兴趣分子的ADCC活性的体外测定法的其它例子记载于美国专利No.5,500,362;Hellstrom等,ProcNatl Acad Sci USA 83,7059-7063(1986)和Hellstrom等,Proc Natl Acad Sci USA 82,1499-1502(1985);美国专利No.5,821,337;Bruggemann等,J Exp Med 166,1351-1361(1987)。或者,可采用非放射性测定方法(参见例如用于流式细胞术的ACTITM非放射性细胞毒性测定法(CellTechnology,Inc.Mountain View,CA);和CytoTox非放射性细胞毒性测定法(Promega,Madison,WI))。对于此类测定法有用的效应细胞包括外周血单个核细胞(PBMC)和天然杀伤(NK)细胞。或者/另外,可体内评估感兴趣分子的ADCC活性,例如在动物模型中,诸如披露于Clynes等,Proc Natl Acad Sci USA 95,652-656(1998)的。
在一些实施方案中,Fc域对补体成分(特别是对C1q)的结合是降低的。因而,在其中Fc域工程化为具有降低的效应器功能的一些实施方案中,所述降低的效应器功能包括降低的CDC。可实施C1q结合测定法来测定T细胞活化性双特异性抗原结合分子是否能够结合C1q并因此具有CDC活性。参见例如WO 2006/029879和WO 2005/100402中的C1q和C3c结合ELISA。为了评估补体激活,可实施CDC测定法(参见例如Gazzano-Santoro等,J ImmunolMethods 202,163(1996);Cragg等,Blood 101,1045-1052(2003);以及Cragg和Glennie,Blood 103,2738-2743(2004))。
抗原结合模块
本发明的抗原结合分子是双特异性的,即它包含至少两种能够特异性结合两种不同抗原性决定簇的抗原结合模块。依照本发明的具体实施方案,所述抗原结合模块是Fab分子(即由各自包含可变域和恒定域的重链和轻链构成的抗原结合域)。在一个实施方案中,所述Fab分子是人的。在另一个实施方案中,所述Fab分子是人源化的。在再一个实施方案中,所述Fab分子包含人重链和轻链恒定域。
优选地,抗原结合模块中至少一个是交换Fab分子。此类修饰减少来自不同Fab分子的重链和轻链的错误配对,由此改进了重组生产中本发明的T细胞活化性双特异性抗原结合分子的产量和纯度。在可用于本发明的T细胞活化性双特异性抗原结合分子的一种具体的交换Fab分子中,Fab轻链和Fab重链的可变域(分别是VL和VH)是交换的。然而,甚至在有这种域交换的情况下,由于错配的重和轻链之间所谓的Bence Jones型相互作用,T细胞活化性双特异性抗原结合分子的制备物仍然可能包含某些副产物(参见Schaefer et al,PNAS,108(2011)11187-11191)。为了进一步减少来自不同Fab分子的重和轻链的错配及如此提高想要的T细胞活化性双特异性抗原结合分子的纯度和产量,依照本发明,可以在特异性结合靶细胞抗原的Fab分子或特异性结合活化性T细胞抗原的Fab分子任一的CH1和CL域中的特定氨基酸位置引入具有相反电荷的带电荷的氨基酸。在T细胞活化性双特异性抗原结合分子中包含的常规Fab分子中(诸如例如图1A-C,G-J中所示)或在T细胞活化性双特异性抗原结合分子中包含的VH/VL交换Fab分子中(诸如例如图1D-F,K-N中所示)(但并不在二者中都)进行电荷修饰。在具体的实施方案中,在T细胞活化性双特异性抗原结合分子中包含的常规Fab分子(它在具体的实施方案中特异性结合靶细胞抗原)中进行电荷修饰。
在依照本发明的一个具体的实施方案中,所述T细胞活化性双特异性抗原结合分子能够同时结合靶细胞抗原(特别是肿瘤细胞抗原)和活化性T细胞抗原,特别是CD3。在一个实施方案中,所述T细胞活化性双特异性抗原结合分子能够通过同时结合靶细胞抗原和活化性T细胞抗原来交联T细胞和靶细胞。在一个甚至更具体的实施方案中,此类同时结合导致靶细胞(特别是肿瘤细胞)的裂解。在一个实施方案中,此类同时结合导致T细胞的活化。在其它实施方案中,此类同时结合导致T淋巴细胞(特别是细胞毒性T淋巴细胞)的细胞应答,其选自下组:增殖,分化,细胞因子分泌,细胞毒性效应分子释放,细胞毒性活性,和活化标志物的表达。在一个实施方案中,在没有同时结合靶细胞抗原的情况下T细胞活化性双特异性抗原结合分子对活化性T细胞抗原,特别是CD3的结合不导致T细胞活化。
在一个实施方案中,T细胞活化性双特异性抗原结合分子能够将T细胞的细胞毒性活性重定向于靶细胞。在一个具体的实施方案中,所述重定向不依赖于靶细胞的MHC介导的肽抗原呈递和/或T细胞的特异性。
具体地,依照本发明任何实施方案的T细胞是细胞毒性T细胞。在一些实施方案中,所述T细胞是CD4+或CD8+T细胞,特别是CD8+T细胞。
活化性T细胞抗原结合模块
本发明的T细胞活化性双特异性抗原结合分子包含至少一个特异性结合活化性T细胞抗原的抗原结合模块,特别是Fab分子(本文中也称作“活化性T细胞抗原结合模块,或活化性T细胞抗原结合Fab分子”)。在一个具体的实施方案中,所述T细胞活化性双特异性抗原结合分子包含不超过一个能够特异性结合活化性T细胞抗原的抗原结合模块。在一个实施方案中,所述T细胞活化性双特异性抗原结合分子提供对活化性T细胞抗原的单价结合。
在具体的实施方案中,特异性结合活化性T细胞抗原的抗原结合模块是本文所述交换Fab分子,即其中Fab重和轻链的可变域VH和VL或恒定域CH1和CL彼此交换/替换的Fab分子。在此类实施方案中,特异性结合靶细胞抗原的抗原结合模块优选是常规Fab分子。在T细胞活化性双特异性抗原结合分子中包含超过一个特异性结合靶细胞抗原的抗原结合模块,特别是Fab分子的实施方案中,特异性结合活化性T细胞抗原的抗原结合模块优选是交换Fab分子且特异性结合靶细胞抗原的抗原结合模块是常规Fab分子。
在备选实施方案中,特异性结合活化性T细胞抗原的抗原结合模块是常规Fab分子。在此类实施方案中,特异性结合靶细胞抗原的抗原结合模块是本文所述交换Fab分子,即其中Fab重和轻链的可变域VH和VL或恒定域CH1和CL彼此交换/替换的Fab分子。
在一个具体的实施方案中,所述活化性T细胞抗原是CD3,特别是人CD3(SEQ IDNO:1)或食蟹猴CD3(SEQ ID NO:2),最特别是人CD3。在一个具体的实施方案中,活化性T细胞抗原结合模块对于人和食蟹猴CD3是交叉反应性的(即特异性结合)。在一些实施方案中,所述活化性T细胞抗原是CD3的ε亚基(CD3ε)。
在一些实施方案中,活化性T细胞抗原结合模块特异性结合CD3,特别是CD3ε,且包含至少一个选自下组的重链互补决定区(CDR):SEQ ID NO:4,SEQ ID NO:5和SEQ ID NO:6和至少一个选自下组的轻链CDR:SEQ ID NO:8,SEQ ID NO:9,SEQ ID NO:10。
在一个实施方案中,所述CD3结合抗原结合模块,特别是Fab分子包含包含SEQ IDNO:4的重链CDR1,SEQ ID NO:5的重链CDR2,SEQ ID NO:6的重链CDR3的重链可变区,和包含SEQ ID NO:8的轻链CDR1,SEQ ID NO:9的轻链CDR2,和SEQ ID NO:10的轻链CDR3的轻链可变区。
在另一个实施方案中,所述CD3结合抗原结合模块,特别是Fab分子包含包含SEQID NO:4的重链CDR1,SEQ ID NO:28的重链CDR2,SEQ ID NO:6的重链CDR3的重链可变区,和包含SEQ ID NO:29的轻链CDR1,SEQ ID NO:9的轻链CDR2,和SEQ ID NO:10的轻链CDR3的轻链可变区。
在具体的实施方案中,所述CD3结合抗原结合模块,特别是Fab分子包含与SEQ IDNO:3至少约95%,96%,97%,98%,99%或100%相同的重链可变区序列和与SEQ ID NO:7至少约95%,96%,97%,98%,99%或100%相同的轻链可变区序列。
在一个实施方案中,所述CD3结合抗原结合模块,特别是Fab分子包含包含SEQ IDNO:3的氨基酸序列的重链可变区和包含SEQ ID NO:7的氨基酸序列的轻链可变区。
在一个实施方案中,所述CD3结合抗原结合模块,特别是Fab分子包含SEQ ID NO:3的重链可变区序列和SEQ ID NO:7的轻链可变区序列。
在其它实施方案中,所述CD3结合抗原结合模块,特别是Fab分子包含与SEQ IDNO:30至少约95%,96%,97%,98%,99%或100%相同的重链可变区序列和与SEQ ID NO:31至少约95%,96%,97%,98%,99%或100%相同的轻链可变区序列。
在一个实施方案中,所述CD3结合抗原结合模块,特别是Fab分子包含包含SEQ IDNO:30的氨基酸序列的重链可变区和包含SEQ ID NO:31的氨基酸序列的轻链可变区。
在一个实施方案中,所述CD3结合抗原结合模块,特别是Fab分子包含SEQ ID NO:30的重链可变区序列和SEQ ID NO:31的轻链可变区序列。
靶细胞抗原结合模块
本发明的T细胞活化性双特异性抗原结合分子包含至少一个特异性结合STEAP-1(靶细胞抗原)的抗原结合模块,特别是Fab分子。在某些实施方案中,所述T细胞活化性双特异性抗原结合分子包含两个特异性结合STEAP-1的抗原结合模块,特别是Fab分子。在一个具体的此类实施方案中,这些抗原结合模块中的每一个特异性结合相同抗原性决定簇。在一个甚至更加具体的实施方案中,这些抗原结合模块都是相同的,即它们包含相同的氨基酸序列,包括相同的本文所述CH1和CL域中的氨基酸替代(如果有的话)。在一个实施方案中,所述T细胞活化性双特异性抗原结合分子包含特异性结合STEAP-1的免疫球蛋白分子。在一个实施方案中,所述T细胞活化性双特异性抗原结合分子包含不超过两个特异性结合STEAP-1的抗原结合模块,特别是Fab分子。
在具体的实施方案中,特异性结合STEAP-1的抗原结合模块是常规Fab分子。在此类实施方案中,特异性结合活化性T细胞抗原的抗原结合模块是本文所述交换Fab分子,即其中Fab重和轻链的可变域VH和VL或恒定域CH1和CL彼此交换/替换的Fab分子。
在备选实施方案中,特异性结合STEAP-1的抗原结合模块是本文所述交换Fab分子,即其中Fab重和轻链的可变域VH和VL或恒定域CH1和CL彼此交换/替换的Fab分子。在此类实施方案中,特异性结合活化性T细胞抗原的抗原结合模块是常规Fab分子。
所述STEAP-1结合模块能够将T细胞活化性双特异性抗原结合分子引导至靶部位(例如表达STEAP-1的特定类型肿瘤细胞)。
在一个实施方案中,特异性结合STEAP-1的抗原结合模块,特别是Fab分子包含包含SEQ ID NO:14的重链互补决定区(CDR)1,SEQ ID NO:15的重链CDR 2,和SEQ ID NO:16的重链CDR 3的重链可变区,和包含SEQ ID NO:17的轻链CDR 1,SEQ ID NO:18的轻链CDR 2和SEQ ID NO:19的轻链CDR 3的轻链可变区。在又一个实施方案中,特异性结合STEAP-1的抗原结合模块,特别是Fab分子包含与SEQ ID NO:20的序列至少95%,96%,97%,98%,或99%相同的重链可变区,和与SEQ ID NO:21的序列至少95%,96%,97%,98%,或99%相同的轻链可变区。
在具体的实施方案中,特异性结合STEAP-1的抗原结合模块,特别是Fab分子包含SEQ ID NO:32的重链可变区序列,和SEQ ID NO:21的轻链可变区序列。在一个具体的实施方案中,T细胞活化性双特异性抗原结合分子包含与SEQ ID NO:24的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:25的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:33的序列至少95%,96%,97%,98%,或99%相同的多肽,和与SEQ ID NO:34的序列至少95%,96%,97%,98%,或99%相同的多肽。在又一个具体的实施方案中,T细胞活化性双特异性抗原结合分子包含SEQ ID NO:24的多肽序列,SEQ ID NO:25的多肽序列,SEQ ID NO:33的多肽序列和SEQ ID NO:34的多肽序列。在另一个实施方案中,T细胞活化性双特异性抗原结合分子包含与SEQ ID NO:24的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:35的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:36的序列至少95%,96%,97%,98%,或99%相同的多肽,和与SEQID NO:37的序列至少95%,96%,97%,98%,或99%相同的多肽。在又一个实施方案中,T细胞活化性双特异性抗原结合分子包含SEQ ID NO:24的多肽序列,SEQ ID NO:35的多肽序列,SEQ ID NO:36的多肽序列和SEQ ID NO:37的多肽序列。在仍有另一个实施方案中,T细胞活化性双特异性抗原结合分子包含与SEQ ID NO:25的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:33的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:38的序列至少95%,96%,97%,98%,或99%相同的多肽,和与SEQ IDNO:39的序列至少95%,96%,97%,98%,或99%相同的多肽。在又一个实施方案中,T细胞活化性双特异性抗原结合分子包含SEQ ID NO:25的多肽序列,SEQ ID NO:33的多肽序列,SEQ ID NO:38的多肽序列和SEQ ID NO:39的多肽序列。在仍有另一个实施方案中,T细胞活化性双特异性抗原结合分子包含与SEQ ID NO:24的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:25的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:33的序列至少95%,96%,97%,98%,或99%相同的多肽,和与SEQ ID NO:41的序列至少95%,96%,97%,98%,或99%相同的多肽。在又一个实施方案中,T细胞活化性双特异性抗原结合分子包含SEQ ID NO:24的多肽序列,SEQ ID NO:25的多肽序列,SEQ IDNO:33的多肽序列和SEQ ID NO:41的多肽序列。
在其它实施方案中,特异性结合STEAP-1的抗原结合模块,特别是Fab分子包含SEQID NO:20的重链可变区序列,和SEQ ID NO:21的轻链可变区序列。在一个实施方案中,T细胞活化性双特异性抗原结合分子包含与SEQ ID NO:22的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:23的序列至少95%,96%,97%,98%,或99%相同的多肽,与SEQ ID NO:24的序列至少95%,96%,97%,98%,或99%相同的多肽,和与SEQ IDNO:25的序列至少95%,96%,97%,98%,或99%相同的多肽。在又一个具体的实施方案中,T细胞活化性双特异性抗原结合分子包含SEQ ID NO:22的多肽序列,SEQ ID NO:23的多肽序列,SEQ ID NO:24的多肽序列和SEQ ID NO:25的多肽序列。
多核苷酸
本发明还提供分离的多核苷酸,其编码如本文中描述的T细胞活化性双特异性抗原结合分子或其片段。在一些实施方案中,所述片段是抗原结合片段。
可以将编码本发明的T细胞活化性双特异性抗原结合分子的多核苷酸以编码完整T细胞活化性双特异性抗原结合分子的单一多核苷酸表达,或以共表达的多种(例如两种或更多种)多核苷酸表达。由共表达的多核苷酸编码的多肽可以经由例如二硫键或其它手段联合以形成功能性T细胞活化性双特异性抗原结合分子。例如,Fab分子的轻链部分可以与T细胞活化性双特异性抗原结合分子中包含Fab分子重链部分,Fc域亚基和任选地(部分的)另一个Fab分子的部分由分开的多核苷酸编码。当共表达时,重链多肽会与轻链多肽联合以形成Fab分子。在另一个例子中,T细胞活化性双特异性抗原结合分子中包含两个Fc域亚基之一和任选地(部分的)一个或多个Fab分子的部分可以与T细胞活化性双特异性抗原结合分子中包含两个Fc域亚基中另一个和任选地(部分的)Fab分子的部分由分开的多核苷酸编码。当共表达时,Fc域亚基会联合以形成Fc域。
在一些实施方案中,所述分离的多核苷酸编码整个依照本文所述发明的T细胞活化性双特异性抗原结合分子。在其它实施方案中,所述分离的多核苷酸编码依照本文所述发明的T细胞活化性双特异性抗原结合分子中包含的多肽。
在某些实施方案中,所述多核苷酸或核酸是DNA。在其它实施方案中,本发明的多核苷酸是RNA,例如以信使RNA(mRNA)的形式。本发明的RNA可以是单链或双链的。
重组方法
可以获得本发明的T细胞活化性双特异性抗原结合分子,例如通过固相肽合成(例如Merrifield固相合成)或重组生成进行。对于重组生成,分离一种或多种编码所述T细胞活化性双特异性抗原结合分子(片段)的多核苷酸(例如如上文描述的),并将其插入一种或多种载体中用于在宿主细胞中进一步克隆和/或表达。可以使用常规规程容易分离并测序此类多核苷酸。在一个实施方案中,提供包含一种或多种本发明的多核苷酸的载体(优选为表达载体)。可以使用本领域技术人员公知的方法来构建含有T细胞活化性双特异性抗原结合分子(片段)的编码序列以及适宜的转录/翻译控制信号的表达载体。这些方法包括体外重组DNA技术,合成技术和体内重组/遗传重组。参见例如记载于Maniatis等,MOLECULARCLONING:A LABORATORY MANUAL,Cold Spring Harbor Laboratory,N.Y.(1989);和Ausubel等,CURRENT PROTOCOLS IN MOLECULAR BIOLOGY,Greene Publishing Associatesand Wiley Interscience,N.Y(1989)的技术。表达载体可以是质粒,病毒的一部分或可以是核酸片段。表达载体包含表达盒,其中在与启动子和/或其它转录或翻译控制元件的可操作联合中克隆编码T细胞活化性双特异性抗原结合分子(片段)的多核苷酸(即编码区)。如本文中使用的,“编码区”是核酸中由翻译成氨基酸的密码子组成的一部分。尽管“终止密码子”(TAG,TGA或TAA)不翻译成氨基酸,但可将其视为编码区的一部分(若存在的话),但任何侧翼序列例如启动子,核糖体结合位点,转录终止子,内含子,5’和3’非翻译区等,不是编码区的一部分。两个或更多个编码区可以存在于单一多核苷酸构建体中(例如单一载体上),或存在于分开的多核苷酸构建体中,例如在分开的(不同的)载体上。此外,任何载体可含有单个编码区,或可包含两个或更多个编码区,例如本发明的载体可以编码一种或多种多肽,其经由蛋白水解切割在翻译后或共翻译分开成最终蛋白质。另外,本发明的载体,多核苷酸或核酸可以编码异源编码区,其与编码本发明的T细胞活化性双特异性抗原结合分子(片段)或其变体或衍生物的多核苷酸融合或未融合。异源编码区包括但不限于特殊化的元件或基序,如分泌信号肽或异源功能域。当基因产物例如多肽的编码区与一种或多种调节序列以某种方式联合从而使得该基因产物的表达置于该调节序列的影响或控制下时,即为可操作联合。若诱导启动子功能导致编码期望的基因产物的mRNA的转录并且如果两个DNA片段之间的连接的性质不干扰表达调节序列指导该基因产物表达的能力或不干扰DNA模板被转录的能力,则两个DNA片段(如多肽编码区和与其联合的启动子)为“可操作联合的”。如此,如果启动子能够实现编码多肽的核酸的转录,那么该启动子区将是与该核酸可操作联合。所述启动子可以是细胞特异性启动子,其仅在预先确定的细胞中指导DNA的实质性转录。除启动子以外,其它转录控制元件例如增强子,操纵基因,阻遏物和转录终止信号能与多核苷酸可操作联合以指导细胞特异性转录。在本文中公开了合适的启动子和其它转录控制区。多种转录控制区是本领域技术人员已知的。这些包括但不限于在脊椎动物细胞中发挥功能的转录控制区,如但不限于来自巨细胞病毒的启动子和增强子区段(例如立即早期启动子,以及内含子-A),猿病毒40(例如早期启动子)和逆转录病毒(如例如劳斯(Rous)肉瘤病毒)。其它转录控制区包括那些自脊椎动物基因如肌动蛋白,热休克蛋白,牛生长激素和家兔球蛋白衍生的,以及能够控制真核细胞中基因表达的其它序列。另外的合适的转录控制区包括组织特异性启动子和增强子以及诱导型启动子(例如四环素诱导型启动子)。类似地,多种翻译控制元件是本领域普通技术人员已知的。这些包括但不限于核糖体结合位点,翻译起始和终止密码子以及自病毒系统衍生的元件(具体地,内部核糖体进入位点或IRES,也称作CITE序列)。表达盒还可以包含其它特征,如复制起点和/或染色体整合元件,如逆转录病毒长末端重复(LTR)或腺伴随病毒(AAV)反向末端重复(ITR)。
本发明的多核苷酸和核酸编码区可以与编码分泌或信号肽的另外的编码区联合,所述分泌或信号肽指导由本发明的多核苷酸编码的多肽的分泌。例如,如果期望分泌所述T细胞活化性双特异性抗原结合分子,那么可以将编码信号序列的DNA置于编码本发明T细胞活化性双特异性抗原结合分子或其片段的核酸上游。依照信号假说,由哺乳动物细胞分泌的蛋白质具有信号肽或分泌前导序列,一旦启动将生长的蛋白质链跨越粗面内质网输出,就将该信号肽或分泌前导序列从成熟的蛋白质切去。本领域中普通技术人员知晓由脊椎动物细胞分泌的多肽一般具有融合至多肽N端的信号肽,其从所翻译的多肽切去以生成分泌性或“成熟”形式的多肽。在某些实施方案中,使用天然的信号肽,例如免疫球蛋白重链或轻链信号肽,或该序列的保留指导与其可操作联合的多肽分泌的能力的功能性衍生物。或者,可以使用异源哺乳动物信号肽或其功能性衍生物。例如,可以将野生型前导序列用人组织血纤维蛋白溶酶原激活剂(TPA)或小鼠β-葡糖醛酸糖苷酶的前导序列替代。
可以将编码能用于促进后期纯化(例如组氨酸标签)或辅助标记T细胞活化性双特异性抗原结合分子的短蛋白序列的DNA纳入T细胞活化性双特异性抗原结合分子(片段)编码多核苷酸内或其末端。
在一个别的实施方案中,提供包含本发明的一种或多种多核苷酸的宿主细胞。在某些实施方案中,提供包含本发明的一种或多种载体的宿主细胞。多核苷酸和载体可以单独地或组合地掺入本文中分别关于多核苷酸和载体所描述的任何特征。在一个此类实施方案中,宿主细胞包含载体(例如已用该载体转化或转染),所述载体包含编码本发明T细胞活化性双特异性抗原结合分子(的部分)的多核苷酸。如本文中使用的,术语“宿主细胞”指任何能工程化以生成本发明的T细胞活化性双特异性抗原结合分子或其片段的细胞系统种类。适用于复制并支持T细胞活化性双特异性抗原结合分子表达的宿主细胞是本领域中公知的。在适当时,可用特定的表达载体转染或转导此类细胞,并且可以培养大量的含载体细胞以用于接种大规模发酵罐,从而获得充足量的T细胞活化性双特异性抗原结合分子用于临床应用。合适的宿主细胞包括原核微生物如大肠杆菌,或各种真核细胞,如中国仓鼠卵巢细胞(CHO),昆虫细胞等。例如,可以在细菌中生成多肽,尤其在不需要糖基化时。在表达后,可以将多肽在可溶性级分中从细菌细胞糊分离并可以进一步纯化。除了原核生物外,真核微生物如丝状真菌或酵母也是适合编码多肽的载体的克隆或表达宿主,包括其糖基化途径已被“人源化”,导致生成具有部分或完全人的糖基化样式的多肽的真菌和酵母菌株。参见Gerngross,Nat Biotech 22,1409-1414(2004),和Li等,Nat Biotech 24,210-215(2006)。适用于表达(糖基化)多肽的宿主细胞还自多细胞生物体(无脊椎动物和脊椎动物)衍生。无脊椎动物细胞的例子包括植物和昆虫细胞。已鉴定出可与昆虫细胞一起使用的大量杆状病毒株,特别是用于转染草地贪夜蛾(Spodoptera frugiperda)细胞。也可以将植物细胞培养物用作宿主。参见例如美国专利No.5,959,177,6,040,498,6,420,548,7,125,978和6,417,429(描述用于在转基因植物中生成抗体的PLANTIBODIESTM技术)。脊椎动物细胞也可以用作宿主。例如,适应于在悬液中生长的哺乳动物细胞系可以是有用的。可用的哺乳动物宿主细胞系的其它例子是由SV40转化的猴肾CV1系(COS-7);人胚肾系(293或293T细胞,如例如记载于Graham等,J Gen Virol 36,59(1977)),幼仓鼠肾细胞(BHK),小鼠塞托利(sertoli)细胞(TM4细胞,如例如记载于Mather,Biol Reprod 23,243-251(1980)的),猴肾细胞(CV1),非洲绿猴肾细胞(VERO-76),人宫颈癌细胞(HELA),犬肾细胞(MDCK),牛鼠(buffalo rat)肝细胞(BRL 3A),人肺细胞(W138),人肝细胞(Hep G2),小鼠乳房肿瘤细胞(MMT 060562),TRI细胞(如例如记载于Mather等,Annals N.Y.Acad Sci 383,44-68(1982)的),MRC 5细胞和FS4细胞。其它可用的哺乳动物宿主细胞系包括中国仓鼠卵巢(CHO)细胞,包括dhfr-CHO细胞(Urlaub等,Proc Natl Acad Sci USA 77,4216(1980));和骨髓瘤细胞系如YO,NS0,P3X63和Sp2/0。对于某些适用于蛋白质生产的哺乳动物宿主细胞系的综述,参见例如Yazaki和Wu,Methods in Molecular Biology,第248卷(B.K.C.Lo编,Humana Press,Totowa,NJ),pp.255-268(2003)。宿主细胞包括培养的细胞,例如哺乳动物培养细胞,酵母细胞,昆虫细胞,细菌细胞和植物细胞等,但还包括在转基因动物,转基因植物或培养的植物或动物组织中包含的细胞。在一个实施方案中,宿主细胞是真核细胞,优选为哺乳动物细胞如中国仓鼠卵巢(CHO)细胞,人胚肾(HEK)细胞或淋巴样细胞(例如Y0,NS0,Sp20细胞)。
本领域中已知在这些系统中表达外来基因的标准技术。可以将表达包含抗原结合域如抗体的重链或轻链的多肽的细胞工程化改造为使得还表达另一抗体链,从而使得表达的产物是具有重链和轻链两者的抗体。
在一个实施方案中,提供了生成依照本发明的T细胞活化性双特异性抗原结合分子的方法,其中所述方法包括在适合于所述T细胞活化性双特异性抗原结合分子表达的条件下培养包含编码T细胞活化性双特异性抗原结合分子的多核苷酸的宿主细胞(如本文中提供的),并从宿主细胞(或宿主细胞培养基)回收所述T细胞活化性双特异性抗原结合分子。
所述T细胞活化性双特异性抗原结合分子的组分彼此遗传融合。T细胞活化性双特异性抗原结合分子可设计为使其组分直接彼此融合或经由接头序列间接融合。可依照本领域中公知的方法测定接头的组成和长度,并可以测试功效。T细胞活化性双特异性抗原结合分子不同组分之间的接头序列的例子见于本文中提供的序列。还包含另外的序列以纳入切割位点来分开融合的各个组分(若期望的话),例如内肽酶识别序列。
在某些实施方案中,所述T细胞活化性双特异性抗原结合分子的一个或多个抗原结合模块至少包含能结合抗原性决定簇的抗体可变区。可变区可形成天然或非天然存在的抗体及其片段的一部分和自其衍生。生成多克隆抗体和单克隆抗体的方法是本领域中公知的(参见例如Harlow和Lane,“Antibodies,a laboratory manual”,Cold Spring HarborLaboratory,1988)。非天然存在的抗体可以使用固相肽合成构建生成,可以重组生成(例如如记载于美国专利No.4,186,567的)或可通过例如筛选包含可变重链和可变轻链的组合库获得(参见例如McCafferty的美国专利No.5,969,108)。
可以将抗体,抗体片段,抗原结合域或可变区的任何动物种类用于本发明的T细胞活化性双特异性抗原结合分子。可用于本发明的非限制性抗体,抗体片段,抗原结合域或可变区可以是鼠,灵长类或人起源的。如果T细胞活化性双特异性抗原结合分子意图供人使用,那么可以使用嵌合形式的抗体,其中抗体的恒定区来自人。也可以依照本领域中公知的方法制备人源化或全人形式的抗体(参见例如Winter的美国专利No.5,565,332)。人源化可以通过各种方法实现,包括但不限于(a)将非人(例如供体抗体)CDR嫁接到人(例如受体抗体)框架和恒定区上,保留或不保留关键的框架残基(例如那些对于保留较好的抗原结合亲和力或抗体功能重要的残基),(b)仅将非人特异性决定区(SDR或a-CDR;对于抗体-抗原相互作用关键的残基)嫁接到人框架和恒定区上,或(c)移植完整的非人可变域,但通过替换表面残基用人样部分来“掩饰(cloak)”它们。人源化的抗体及其制备方法综述于例如Almagro和Fransson,Front Biosci 13,1619-1633(2008),并且还记载于例如Riechmann等,Nature 332,323-329(1988);Queen等,Proc Natl Acad Sci USA 86,10029-10033(1989);美国专利No.5,821,337,7,527,791,6,982,321和7,087,409;Jones等,Nature321,522-525(1986);Morrison等,Proc Natl Acad Sci 81,6851-6855(1984);Morrison和Oi,Adv Immunol 44,65-92(1988);Verhoeyen等,Science 239,1534-1536(1988);Padlan,Molec Immun 31(3),169-217(1994);Kashmiri等,Methods 36,25-34(2005)(描述SDR(a-CDR)嫁接);Padlan,Mol Immunol 28,489-498(1991)(描述“表面重建”);Dall’Acqua等,Methods 36,43-60(2005)(描述“FR改组”);和Osbourn等,Methods 36,61-68(2005)以及Klimka等,Br J Cancer 83,252-260(2000)(描述了FR改组的“引导选择”办法)。可以使用本领域中已知的各种技术来生成人抗体和人可变区。人抗体一般记载于van Dijk和van deWinkel,Curr Opin Pharmacol 5,368-74(2001)以及Lonberg,Curr Opin Immunol 20,450-459(2008)。人可变区能形成通过杂交瘤方法制备的人单克隆抗体的一部分和自其衍生(参见例如Monoclonal Antibody Production Techniques and Applications,pp.51-63(Marcel Dekker,Inc.,New York,1987))。还可以通过对转基因动物施用免疫原来制备人抗体和人可变区,所述转基因动物已经过修饰以应答抗原攻击而生成完整的人抗体或具有人可变区的完整抗体(参见例如Lonberg,Nat Biotech 23,1117-1125(2005)。还可以通过分离选自人衍生的噬菌体展示库的Fv克隆可变区序列来生成人抗体和人可变区(参见例如Hoogenboom等,于Methods in Molecular Biology 178,1-37(O’Brien等编,HumanPress,Totowa,NJ,2001);和McCafferty等,Nature 348,552-554;Clackson等,Nature352,624-628(1991))。噬菌体通常展示抗体片段,作为单链Fv(scFv)片段或作为Fab片段。
在某些实施方案中,将可用于本发明的抗原结合模块工程化改造为具有增强的结合亲和力,其依照例如公开于美国专利申请公开文本No.2004/0132066的方法进行,其完整内容通过提述据此并入。可以经由酶联免疫吸附测定法(ELISA)或本领域技术人员熟知的其它技术来测量本发明的T细胞活化性双特异性抗原结合分子结合特定抗原性决定簇的能力,所述其它技术例如表面等离振子共振技术(在BIACORE T100系统上分析)(Liljeblad等,Glyco J 17,323-329(2000))和传统的结合测定法(Heeley,Endocr Res 28,217-229(2002))。可以使用竞争测定法来鉴定与参照抗体竞争对特定抗原的结合的抗体,抗体片段,抗原结合域或可变域,例如与V9抗体竞争对CD3的结合的抗体。在某些实施方案中,此类竞争性抗体结合由参照抗体结合的相同表位(例如线性或构象性表位)。用于定位抗体结合的表位的详细的例示性方法在Morris(1996)“Epitope Mapping Protocols,”于Methodsin Molecular Biology vol.66(Humana Press,Totowa,NJ)中提供。在一种例示性竞争测定法中,将固定化的抗原(例如CD3)在溶液中温育,所述溶液包含结合该抗原的第一标记抗体(例如V9抗体,记载于US 6,054,297)和测试其与第一抗体竞争对抗原的结合的能力的第二未标记抗体。第二抗体可以存在于杂交瘤上清液中。作为对照,将固定化的抗原在溶液中温育,所述溶液包含第一标记抗体但没有第二未标记抗体。在允许第一抗体结合抗原的条件下温育后,除去过量的未结合的抗体,并测量与固定化抗原联合的标记物的量。如果与固定化抗原联合的标记物的量在测试样品中相对于对照样品实质性降低,那么这指示第二抗体在与第一抗体竞争对抗原的结合。参见Harlow和Lane(1988)Antibodies:A LaboratoryManual ch.14(Cold Spring Harbor Laboratory,Cold Spring Harbor,NY)。
可以通过本领域已知的技术来纯化如本文中描述的那样制备的T细胞活化性双特异性抗原结合分子,所述技术如高效液相层析,离子交换层析,凝胶电泳,亲和层析,大小排阻层析等。用于纯化具体蛋白质的实际条件将部分取决于因素,如净电荷,疏水性,亲水性等,而且对于本领域中的技术人员将是明显的。对于亲和层析纯化,能使用T细胞活化性双特异性抗原结合分子结合的抗体,配体,受体或抗原。例如,对于本发明的T细胞活化性双特异性抗原结合分子的亲和层析纯化,可以使用具有蛋白A或蛋白G的基质。可以使用连续的蛋白A或G亲和层析和大小排阻层析来分离T细胞活化性双特异性抗原结合分子,基本如实施例中描述的。可以通过多种公知的分析方法中的任一种来测定T细胞活化性双特异性抗原结合分子的纯度,包括凝胶电泳,高压液相层析等。例如,如实施例中所描述的那样表达的重链融合蛋白显示为完整且正确装配的,如通过还原性SDS-PAGE证明的(见例如图3)。在约Mr 25,000,Mr 50,000和Mr 75,000处解析出三条条带,其对应于预测的T细胞活化性双特异性抗原结合分子轻链,重链和重链/轻链融合蛋白的分子量。
测定法
通过本领域中已知的各种测定法,可以鉴定,筛选或表征本文中提供的T细胞活化性双特异性抗原结合分子的物理/化学特性和/或生物学活性。
亲和力测定法
可以依照实施例中提出的方法使用标准的仪器如BIAcore仪(GE Healthcare)通过表面等离振子共振(SPR)测定T细胞活化性双特异性抗原结合分子对Fc受体或靶抗原的亲和力,而且可以诸如通过重组表达获得受体或靶蛋白。或者,可以例如通过流式细胞术(FACS),使用表达特定受体或靶抗原的细胞系来评估T细胞活化性双特异性抗原结合分子对不同受体或靶抗原的结合。一个用于测量结合亲和力的特定的说明性和例示性实施方案记载于下文和下文实施例。
依照一个实施方案,通过表面等离振子共振使用 T100仪(GEHealthcare)于25℃测量KD。
为了分析Fc部分与Fc受体之间的相互作用,通过固定化于CM5芯片上的抗五His抗体(Qiagen)来捕捉带His标签的重组Fc受体并将双特异性构建体用作分析物。简言之,将羧甲基化的葡聚糖生物传感器芯片(CM5,GE Healthcare)依照供应商说明书用N-乙基-N’-(3-二甲基氨丙基)-碳二亚胺氢氯化物(EDC)和N-羟基琥珀酰亚胺(NHS)活化。将抗五His抗体用10mM醋酸钠pH 5.0稀释至40μg/ml,接着以5μl/分钟的流速注射以实现约6500响应单位(RU)的偶联蛋白。在注射配体后,注射1M乙醇胺以封闭未反应的基团。然后,在4或10nM捕捉Fc受体60秒。对于动力学测量,将双特异性构建体的4倍连续稀释液(范围为约500nM至4000nM)在HBS-EP(GE Healthcare,10mM HEPES,150mM NaCl,3mM EDTA,0.05%表面活性剂P20,pH 7.4)中于25℃以约30μl/分钟的流速注射120秒。
为了测定对靶抗原的亲和力,通过固定化于活化CM5传感器芯片表面上的抗人Fab特异性抗体(GE Healthcare)来捕捉双特异性构建体,如对于抗五-His抗体所描述的。偶联蛋白质的最终量为约12000RU。双特异性构建体在300nM捕捉90秒。使靶抗原在从250至1000nM的浓度范围以30μl/min的流速通过流动池达180秒。监测解离达180秒。
通过扣除在参照流动池上获得的响应来校正批量折射率(bulk refractiveindex)差异。使用稳定态响应通过Langmuir结合等温线的非线性曲线拟合来导出解离常数KD。使用简单的1对1Langmuir结合模型( T100评估软件版本1.1.1)通过同时拟合结合和解离传感图来计算结合速率(k结合)和解离速率(k解离)。平衡解离常数(KD)计算为比率k解离/k结合。参见例如Chen等,J Mol Biol 293,865-881(1999)。
活性测定法
可以通过各种测定法来测量本发明的T细胞活化性双特异性抗原结合分子的生物学活性,如实施例中描述的。生物学活性可例如包括诱导T细胞的增殖,诱导T细胞中的信号传导,诱导T细胞中活化标志物的表达,诱导通过T细胞的细胞因子分泌,诱导靶细胞如肿瘤细胞的裂解,和诱导肿瘤消退和/或改善存活。
组合物,配制剂和施用路径
在一个别的方面,本发明提供包含本文中提供的任一种T细胞活化性双特异性抗原结合分子的药物组合物,例如用于以下任一种治疗方法。在一个实施方案中,药物组合物包含本文中提供的任一种T细胞活化性双特异性抗原结合分子以及药学可接受载体。在另一个实施方案中,药物组合物包含本文中提供的任一种T细胞活化性双特异性抗原结合分子以及至少一种另外的治疗剂,例如如下文描述的。
还提供以适于体内施用的形式生成本发明的T细胞活化性双特异性抗原结合分子的方法,所述方法包括(a)获得依照本发明的T细胞活化性双特异性抗原结合分子,并(b)将所述T细胞活化性双特异性抗原结合分子与至少一种药学可接受载体配制在一起,由此配制成用于体内施用的T细胞活化性双特异性抗原结合分子制剂。
本发明的药物组合物包含治疗有效量的在药学可接受载体中溶解或分散的一种或多种T细胞活化性双特异性抗原结合分子。短语“药学或药理学可接受的”指在所采用的剂量和浓度一般对接受者无毒性,即在适当时对动物如例如人施用时不产生不利,变应性或其它不当反应的分子实体和组合物。根据本公开,制备含有至少一种T细胞活化性双特异性抗原结合分子以及任选地另外的活性成分的药物组合物将是本领域技术人员已知的,如由Remington’s Pharmaceutical Sciences,18th Ed.Mack Printing Company,1990例示的,其通过提述并入本文。此外,对于动物(例如人)施用,会理解制剂应当满足FDA生物标准部门(FDA Office of Biological Standards)或其它国家的相应机构要求的无菌性,热原性(pyrogenicity),一般安全性和纯度标准。优选的组合物是冻干配制剂或水性溶液。如本文中使用的,“药学可接受载体”包括任何和所有的溶剂,缓冲剂,分散介质,涂料材料,表面活性剂,抗氧化剂,防腐剂(例如抗细菌剂,抗真菌剂),等张剂,吸收延缓剂,盐,防腐剂,抗氧化剂,蛋白质,药物,药物稳定剂,聚合物,凝胶,粘合剂,赋形剂,崩解剂(disintegrationagent),润滑剂,甜味剂,芳香剂,染料,此类类似的材料及其组合,如本领域普通技术人员将已知的(参见例如Remington’s Pharmaceutical Sciences,18th Ed.Mack PrintingCompany,1990,pp.1289-1329,通过提述并入本文)。除非任何常规载体与活性成分不相容,涵盖其在治疗或药物组合物中的使用。
所述组合物可以包含不同类型的载体,这取决于其要以固体,液体还是气雾剂形式施用,以及其对于此类施用路径如注射是否需要是无菌的。可以静脉内,皮内,动脉内,腹膜内,损伤内,颅内,关节内,前列腺内,脾内,肾内,胸膜内,气管内,鼻内,玻璃体内,阴道内,直肠内,肿瘤内,肌内,腹膜内,皮下,结膜下,囊泡内,粘膜,心包内,脐内,眼内,口服,表面(topically),局部(locally),通过吸入(例如气雾剂吸入),注射,输注,连续输注,直接浸洗靶细胞的局部灌注,经由导管,经由灌洗,以乳剂,以液体组合物(例如脂质体),或通过其它方法或前述项的任意组合施用本发明的T细胞活化性双特异性抗原结合分子(以及任何另外的治疗剂),如本领域中普通技术人员会知晓的(参见例如Remington’sPharmaceutical Sciences,18th Ed.Mack Printing Company,1990,通过提述并入本文)。胃肠外施用,特别是静脉内注射,最常用于施用多肽分子如本发明的T细胞活化性双特异性抗原结合分子。
胃肠外组合物包括那些设计用于通过注射施用,例如皮下,皮内,损伤内,静脉内,动脉内,肌内,鞘内或腹膜内注射施用的组合物。对于注射,可以将本发明的T细胞活化性双特异性抗原结合分子在水性溶液,优选地在生理学相容的缓冲液中配制,所述生理学相容的缓冲液如汉克(Hanks)氏溶液,林格(Ringer)氏溶液或生理学盐水缓冲液。溶液可以含有配制剂如悬浮剂,稳定剂和/或分散剂。或者,T细胞活化性双特异性抗原结合分子可以为粉末形式,用于在使用前用合适的媒介物例如无菌无热原水构成。根据需要,通过将本发明的T细胞活化性双特异性抗原结合分子以需要的量掺入到具有下文列举的各种其它成分的合适溶剂中来制备无菌可注射溶液。可以容易地实现无菌,例如通过过滤流过无菌过滤膜进行。一般地,通过将各种无菌活性成分掺入到无菌媒介物中来制备分散剂,所述无菌媒介物含有基础分散介质和/或其它成分。在制备无菌可注射溶液,悬液或乳剂的无菌粉末的情况中,优选的制备方法是真空干燥或冷冻干燥技术,其将活性成分以及任何另外的期望成分的粉末从其先前无菌过滤的液体介质产生。液体介质在必要时应当是适当缓冲的,并且在用充足的盐水或葡萄糖注射前首先使液体稀释液等张。组合物在制备和贮存条件下必须是稳定的,并且针对微生物如细菌和真菌的污染作用提供保护。会领会的是,应当将内毒素污染最少保持于安全水平,例如低于0.5ng/mg蛋白质。合适的药学可接受载体包括但不限于:缓冲剂如磷酸,柠檬酸和其它有机酸;抗氧化剂,包括抗坏血酸和甲硫氨酸;防腐剂(如十八烷基二甲基苄基氯化铵;氯化六甲双铵(hexamethonium chloride);氯化苯甲烃铵(benzalkonium chloride);氯化苄乙铵(benzethonium chloride);酚,丁醇或苯甲醇;烷基对羟基苯甲酸酯如对羟基苯甲酸甲酯或对羟基苯甲酸丙酯;儿茶酚;间苯二酚;环己醇;3-戊醇;和间甲酚);低分子量(低于约10个残基)多肽;蛋白质,如血清清蛋白,明胶,或免疫球蛋白;亲水性聚合物如聚乙烯吡咯烷酮;氨基酸如甘氨酸,谷氨酰胺,天冬酰胺,组氨酸,精氨酸或赖氨酸;单糖,二糖,和其它碳水化合物,包括葡萄糖,甘露糖或糊精;螯合剂如EDTA;糖如蔗糖,甘露醇,海藻糖或山梨糖醇;形成盐的反荷离子如钠;金属复合物(例如Zn-蛋白复合物);和/或非离子型表面活性剂如聚乙二醇(PEG)。水性注射悬液可以含有提高悬液粘度的化合物,如羧甲基纤维素钠,山梨糖醇,葡聚糖等。任选地,悬液还可以含有合适的稳定剂或增加化合物溶解度以允许制备高度浓缩的溶液的试剂。另外,可以将活性化合物的悬液制备为合适的油性注射悬液。合适的亲脂溶剂或媒介物包括脂肪油如芝麻油或合成的脂肪酸酯,如乙基cleats或甘油三酯或脂质体。
可以将活性成分在例如分别通过凝聚技术或通过界面聚合作用制备的微囊剂,例如羟甲基纤维素或明胶微囊剂和聚-(甲基丙烯酸酯)微囊剂中,在胶体药物投递系统(例如脂质体,清蛋白微球,微乳剂,纳米颗粒和纳米胶囊)或在粗乳液(macroemulsion)中包载。此类技术披露于Remington’s Pharmaceutical Sciences(18th Ed.Mack PrintingCompany,1990)。可以制备持续释放的制剂。合适的持续释放制剂的例子包括含多肽的固体疏水性聚合物的半透性基质,该基质为成形制品例如膜或微囊剂的形式。在具体的实施方案中,可以通过在组合物中使用吸收延迟剂如例如单硬脂酸铝,明胶或其组合,来产生可注射组合物的延长吸收。
在先前描述的组合物外,T细胞活化性双特异性抗原结合分子还可以配制为贮存(depot)制剂。可以通过植入(例如皮下或肌内)或通过肌内注射来施用此类长效配制剂。如此,例如所述T细胞活化性双特异性抗原结合分子可以用合适的聚合或疏水性材料(例如作为可接受油中的乳剂)或离子交换树脂配制,或配制为微溶性衍生物,例如微溶性盐。
可以通过常规的混合,溶解,乳化,包囊,包载或冻干过程来制备包含本发明的T细胞活化性双特异性抗原结合分子的药物组合物。可以以常规方式配制药物组合物,其使用一种或多种有助于将蛋白质加工成可药学使用的制剂的生理学可接受载体,稀释剂,赋形剂或辅助剂。合适的配制剂依赖于选择的施用路径。
可以将T细胞活化性双特异性抗原结合分子以游离酸或碱,中性或盐形式配制成组合物。药学可接受盐是基本保留游离酸或碱的生物学活性的盐。这些包括酸加成盐(acidaddition salt),例如与蛋白质性组合物的游离氨基基团形成的那些,或与无机酸(如例如氢氯酸或磷酸)或与有机酸如乙酸,草酸,酒石酸或扁桃酸形成的。与游离羧基基团形成的盐还可以自无机碱如例如氢氧化钠,钾,铵,钙或铁;或有机碱如异丙胺,三甲胺,组氨酸或普鲁卡因(procaine)衍生。药用盐倾向于比相应的游离碱形式更可溶于水性溶剂和其它质子溶剂中。
治疗方法和组合物
可以将本文中提供的任一种T细胞活化性双特异性抗原结合分子用在治疗方法中。本发明的T细胞活化性双特异性抗原结合分子可用作免疫治疗剂,例如在癌症的治疗中。
对于在治疗方法中的使用,将以与优良医学实践一致的方式配制,给药和施用本发明的T细胞活化性双特异性抗原结合分子。在此背景中考虑的因素包括治疗的特定病症,治疗的特定哺乳动物,个体患者的临床状况,病症的起因,药剂的投递部位,施用方法,施用时间安排以及医学从业人员已知的其它因素。
在一个方面,提供用作药物的本发明的T细胞活化性双特异性抗原结合分子。在别的方面,提供用于治疗疾病的本发明的T细胞活化性双特异性抗原结合分子。在某些实施方案中,提供用于治疗方法的本发明的T细胞活化性双特异性抗原结合分子。在一个实施方案中,本发明提供如本文中描述的T细胞活化性双特异性抗原结合分子,用于治疗有此需要的个体中的疾病。在某些实施方案中,本发明提供T细胞活化性双特异性抗原结合分子,用于治疗患有疾病的个体的方法,所述方法包括对所述个体施用治疗有效量的T细胞活化性双特异性抗原结合分子。在某些实施方案中,待治疗的疾病是增殖性病症。在一个具体的实施方案中,所述疾病是癌症。在某些实施方案中,所述方法进一步包括对个体施用治疗有效量的至少一种另外的治疗剂,例如抗癌剂(如果待治疗的疾病是癌症的话)。在别的实施方案中,本发明提供如本文中描述的T细胞活化性双特异性抗原结合分子,用于诱导靶细胞,特别是肿瘤细胞的裂解。在某些实施方案中,本发明提供T细胞活化性双特异性抗原结合分子,用于在个体中诱导靶细胞,特别是细胞裂解的方法,该方法包括对该个体施用有效量的T细胞活化性双特异性抗原结合分子以诱导靶细胞的裂解。依照上文任何实施方案的“个体”是哺乳动物,优选是人。
在一个别的方面,本发明提供本发明的T细胞活化性双特异性抗原结合分子在制造或制备药物中的用途。在一个实施方案中,所述药物用于治疗有此需要的个体中的疾病。在一个别的实施方案中,所述药物用于治疗疾病的方法,该方法包括对患疾病的个体施用治疗有效量的药物。在某些实施方案中,待治疗的疾病是增殖性病症。在一个具体的实施方案中,所述疾病是癌症。在一个实施方案中,所述方法进一步包括对个体施用治疗有效量的至少一种另外的治疗剂,例如抗癌剂(如果待治疗的疾病是癌症的话)。在一个别的实施方案中,所述药物用于诱导靶细胞,特别是肿瘤细胞的裂解。仍在别的实施方案中,所述药物用于在个体中诱导靶细胞,特别是肿瘤细胞裂解的方法,所述方法包括对该个体施用有效量的药物以诱导靶细胞的裂解。依照上文任何实施方案的“个体”可以是哺乳动物,优选是人。
在一个别的方面,本发明提供用于治疗疾病的方法。在一个实施方案中,所述方法包括对患有此类疾病的个体施用治疗有效量的本发明的T细胞活化性双特异性抗原结合分子。在一个实施方案中,对所述个体施用组合物,其包含药学可接受的形式的本发明的T细胞活化性双特异性抗原结合分子。在某些实施方案中,待治疗的疾病是增殖性病症。在一个具体的实施方案中,所述疾病是癌症。在某些实施方案中,所述方法进一步包括对个体施用治疗有效量的至少一种另外的治疗剂,例如抗癌剂(如果待治疗的疾病是癌症的话)。依照上文任何实施方案的“个体”可以是哺乳动物,优选是人。
在一个别的方面,本发明提供一种用于诱导靶细胞,特别是肿瘤细胞裂解的方法。在一个实施方案中,所述方法包括在存在T细胞,特别是细胞毒性T细胞的情况下使靶细胞与本发明的T细胞活化性双特异性抗原结合分子接触。在一个别的方面,提供一种用于在个体中诱导靶细胞,特别是肿瘤细胞裂解的方法。在一个此类实施方案中,所述方法包括对个体施用有效量的T细胞活化性双特异性抗原结合分子以诱导靶细胞裂解。在一个实施方案中,“个体”是人。
在某些实施方案中,所述待治疗的疾病是增殖性病症,特别是癌症。癌症的非限制性例子包括膀胱癌,脑癌,头和颈癌,胰腺癌,肺癌,乳腺癌,卵巢癌,子宫癌,宫颈癌,子宫内膜癌,食道癌,结肠癌,结肠直肠癌,直肠癌,胃癌,前列腺癌,血液癌,皮肤癌,鳞状细胞癌,骨癌和肾癌。其它可使用本发明的T细胞活化性双特异性抗原结合分子治疗的细胞增殖病症包括但不限于位于下列各项中的新生物:腹部,骨,乳房,消化系统,肝,胰,腹膜,内分泌腺(肾上腺,副甲状腺,垂体,睾丸,卵巢,胸腺,甲状腺),眼,头和颈,神经系统(中枢和外周),淋巴系统,骨盆,皮肤,软组织,脾,胸区,和泌尿生殖系统。还包括癌症前期状况或损伤以及癌症转移。在某些实施方案中,癌症选自下组:肾细胞癌,膀胱癌,皮肤癌,肺癌,结肠直肠癌,乳腺癌,脑癌,头和颈癌和前列腺癌。在一个实施方案中,癌症是前列腺癌。熟练技术人员容易地认可在许多情况下,T细胞活化性双特异性抗原结合分子可能不提供治愈而仅可以提供部分益处。在一些实施方案中,具有一些益处的生理学变化也被视为治疗有益的。如此,在一些实施方案中,提供生理学变化的T细胞活化性双特异性抗原结合分子的量被视为“有效量”或“治疗有效量”。需要治疗的受试者,患者或个体通常为哺乳动物,更特定地为人。
在一些实施方案中,对细胞施用有效量的本发明的T细胞活化性双特异性抗原结合分子。在其它实施方案中,对个体施用治疗有效量的本发明的T细胞活化性双特异性抗原结合分子以治疗疾病。
为了预防或治疗疾病,本发明的T细胞活化性双特异性抗原结合分子的合适剂量(当单独或与一种或多种其它另外的治疗剂组合使用时)将取决于待治疗的疾病的类型,施用路径,患者的体重,T细胞活化性双特异性抗原结合分子的类型,疾病的严重程度和进程,施用T细胞活化性双特异性抗原结合分子是为了预防还是治疗目的,先前或同时的治疗干预,患者的临床史和对T细胞活化性双特异性抗原结合分子的响应,以及主治医师的判断。负责施用的从业人员将在任何事件中确定组合物中活性成分的浓度和用于个体受试者的合适剂量。本文中涵盖各种给药方案,包括但不限于在各个时间点的单次或多次施用,推注施用,和脉冲输注。
所述T细胞活化性双特异性抗原结合分子适宜地在一次或一系列治疗里对患者施用。根据疾病的类型和严重程度,约1μg/kg至15mg/kg(例如0.1mg/kg-10mg/kg)的T细胞活化性双特异性抗原结合分子可以是用于对患者施用的起始候选剂量,不管是例如通过一次或多次分开的施用,还是通过连续输注进行。根据上文提及的因素,一种典型的每日剂量的范围可以从约1μg/kg至100mg/kg或更多。对于在数天或更长时间里的重复施用,根据状况,治疗一般将持续直至发生对疾病症状的期望的抑制。T细胞活化性双特异性抗原结合分子的一种例示性剂量将在约0.005mg/kg至约10mg/kg的范围内。在其它非限制性例子中,剂量还可包括每次施用从约1微克/kg体重,约5微克/kg体重,约10微克/kg体重,约50微克/kg体重,约100微克/kg体重,约200微克/kg体重,约350微克/kg体重,约500微克/kg体重,约1毫克/kg体重,约5毫克/kg体重,约10毫克/kg体重,约50毫克/kg体重,约100毫克/kg体重,约200毫克/kg体重,约350毫克/kg体重,约500毫克/kg体重,至约1000mg/kg体重或更多,以及其中可导出的任何范围。在从本文列出的数量可导出的范围的非限制性例子中,基于上文描述的数目,可以施用约5mg/kg体重至约100mg/kg体重的范围,约5微克/kg体重至约500毫克/kg体重的范围等。如此,可以对患者施用一剂或多剂的约0.5mg/kg,2.0mg/kg,5.0mg/kg或10mg/kg(或其任意组合)。可以间歇地施用此类剂量,例如每周或每3周(例如使得患者接受约2至约20,或例如约6剂的T细胞活化性双特异性抗原结合分子)。可以施用起始较高的加载剂量,继之以一剂或多剂较低剂量。然而,可以使用其它剂量方案。通过常规技术和测定法容易监测该疗法的进行。
本发明的T细胞活化性双特异性抗原结合分子一般将以对于实现意图的目的有效的量使用。对于治疗或预防疾病状况的用途,以治疗有效量施用或应用本发明的T细胞活化性双特异性抗原结合分子,或其药物组合物。治疗有效量的确定完全在本领域技术人员的能力以内,尤其根据本文中提供的详细公开内容。
对于系统性施用,能从体外测定法如细胞培养测定法初步估算出治疗有效剂量。然后可以在动物模型中配制剂量以达到包含如在细胞培养中测定的IC50的循环浓度范围。可以将此类信息用于更准确地确定人中的可用剂量。
使用本领域中公知的技术,还能从体内数据例如动物模型估算出初始剂量。本领域中的普通技术人员能容易地基于动物数据优化对人的施用。
可以分别调整剂量量和时间间隔以提供足以维持治疗效果的T细胞活化性双特异性抗原结合分子的血浆水平。通过注射施用的可用患者剂量的范围为从约0.1至50mg/kg/天,通常约0.5至1mg/kg/天。可以通过每日施用多剂实现治疗有效的血浆水平。可以例如通过HPLC测量血浆中的水平。
在局部施用或选择性摄取的情况中,T细胞活化性双特异性抗原结合分子的有效局部浓度可能与血浆浓度无关。本领域技术人员会能够在无需过度实验的情况下优化治疗有效的局部剂量。
本文中描述的T细胞活化性双特异性抗原结合分子的治疗有效剂量一般将提供治疗益处,而不导致实质性毒性。可以通过在细胞培养物或实验动物中的标准药学规程来测定T细胞活化性双特异性抗原结合分子的毒性和治疗功效。可以使用细胞培养测定法和动物研究来测定LD50(对50%的群体致命的剂量)和ED50(在50%的群体中治疗有效的剂量)。毒性和治疗效果之间的剂量比率为治疗指数,其可以表述为LD50/ED50比。优选展现出较大治疗指数的T细胞活化性双特异性抗原结合分子。在一个实施方案中,依照本发明的T细胞活化性双特异性抗原结合分子展现出高治疗指数。可以将从细胞培养测定法和动物研究获得的数据用来制定适用于人的剂量范围。优选地,剂量处于具有很小或无毒性的循环浓度(包含ED50)的范围内。剂量在此范围内可以随多种因素,例如采用的剂量形式,利用的施用路径,受试者的状况等而变化。鉴于患者的状况,各个内科医生可以选择确切的配制剂,施用路径和剂量(参见例如Fingl等,1975,于:The Pharmacological Basis ofTherapeutics,Ch.1,p.1,通过提述完整并入本文)。
用本发明的T细胞活化性双特异性抗原结合分子治疗的患者的主治内科医生将知晓如何及何时终止,中断或调整施用(由于毒性,器官功能障碍等)。相反,如果临床应答不适当(排除毒性),主治内科医生还将知晓如何将治疗调整至更高水平。在感兴趣的病症的管理中的施用剂量的量级将随待治疗的状况的严重程度,施用路径等而变化。可以例如部分地通过标准的预后评估方法来评估状况的严重程度。另外,剂量以及可能的给药频率也将随个体患者的年龄,体重和应答而变化。
其它药剂和治疗
本发明的T细胞活化性双特异性抗原结合分子可以与一种或多种其它药剂在疗法中组合施用。例如,本发明的T细胞活化性双特异性抗原结合分子可以与至少一种另外的治疗剂共施用。术语“治疗剂”涵盖施用以治疗需要此类治疗的个体中的症状或疾病的任何药剂。此类另外的治疗剂可以包含任何适用于所治疗的特定适应征的活性成分,优选地具有不会彼此不利影响的互补活性的那些活性成分。在某些实施方案中,另外的治疗剂是免疫调控剂,细胞抑制剂,细胞粘着的抑制剂,细胞毒剂,细胞凋亡的激活剂,或提高细胞对凋亡诱导剂的敏感性的药剂。在一个具体的实施方案中,另外的治疗剂是抗癌剂,例如微管破坏物,抗代谢物,拓扑异构酶抑制剂,DNA嵌入剂,烷化剂,激素疗法,激酶抑制剂,受体拮抗剂,肿瘤细胞凋亡的激活剂,或抗血管生成剂。
此类其它药剂以对意图目的有效的量适宜地组合存在。此类其它药剂的有效量取决于使用的T细胞活化性双特异性抗原结合分子的量,病症或治疗的类型以及上文所述其它因素。所述T细胞活化性双特异性抗原结合分子一般以与本文中描述的相同的剂量和施用路径,或以本文中描述的剂量的约1至99%,或通过凭经验/临床上确定为合适的任何剂量和任何路径使用。
上文记载的此类组合疗法涵盖组合施用(其中在同一组合物或分别的组合物中包含两种或更多种治疗剂)和分开施用,在该情况中,本发明的T细胞活化性双特异性抗原结合分子的施用可以在施用另外的治疗剂和/或辅助剂之前,同时和/或之后发生。本发明的T细胞活化性双特异性抗原结合分子还可以与放射疗法组合使用。
制品
在本发明的另一个方面,提供含有可用于治疗,预防和/或诊断上文描述的病症的材料的制品。所述制品包含容器和容器上或与容器联合的标签或包装插页。合适的容器包括例如瓶,管形瓶,注射器,IV溶液袋等。所述容器可从多种材料如玻璃或塑料形成。所述容器容纳组合物,其自身或与其它组合物组合对于治疗,预防和/或诊断状况是有效的,并且可以具有无菌的存取口(例如,容器可以是具有由皮下注射针可穿过的塞子的静脉内溶液袋或管形瓶)。组合物中至少一种活性成分是本发明的T细胞活化性双特异性抗原结合分子。标签或包装插页指示该组合物用于治疗选择的状况。此外,所述制品可以包含(a)其中含有组合物的第一容器,其中所述组合物包含本发明的T细胞活化性双特异性抗原结合分子;和(b)其中含有组合物的第二容器,其中所述组合物包含另外的细胞毒性或其它方面治疗剂。本发明的这一实施方案中的制品还可以包含包装插页,其指示该组合物可用于治疗特定状况。或者/另外,所述制品还可以包含第二(或第三)容器,其包含药学可接受缓冲液,如抑菌性注射用水(BWFI),磷酸盐缓冲盐水,林格(Ringer)氏溶液和右旋糖溶液。它可以进一步包含从商业和用户观点看期望的其它材料,包括其它缓冲液,稀释剂,滤器,针,和注射器。
实施例
下面是本发明的方法和组合物的实施例。应当理解,鉴于上文提供的一般性描述,可以实践各种其他实施方案。
通用方法
重组DNA技术
使用标准方法操作DNA,如Sambrook et al.,Molecular cloning:A laboratorymanual;Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York,1989中描述的。依照制造商的说明书使用分子生物学试剂。关于人免疫球蛋白轻和重链的核苷酸序列的一般信息参见:Kabat,E.A.et al.,(1991)Sequences of Proteins ofImmunological Interest,5th ed.,NIH Publication No 91-3242。
DNA测序
通过双链测序来测定DNA序列。
基因合成
在需要的情况下,期望的基因区段使用适宜的模板通过PCR来生成或由GeneartAG(Regensburg,Germany)通过自动化基因合成从合成的寡核苷酸和PCR产物合成。在确切基因序列不可得的情况下,基于来自最近的同源物的序列设计寡核苷酸引物,并通过RT-PCR从源自适宜组织的RNA分离基因。将侧翼为单一限制性内切核酸酶切割位点的基因区段克隆入标准的克隆/测序载体。从经转化的细菌纯化质粒DNA,并通过UV分光术测定浓度。通过DNA测序确认亚克隆的基因片段的DNA序列。基因区段设计为具有合适的限制性位点以允许亚克隆入相应的表达载体。所有构建体均设计为具有编码前导肽的5’端DNA序列,该前导肽在真核细胞中将蛋白质靶向分泌。
实施例1
抗STEAP-1/抗CD3 T细胞双特异性(TCB)分子的制备
在这个实施例中制备了下述分子,它们的示意图显示于图2:
A.有电荷修饰的“2+1 IgG CrossFab,倒转的”(CD3结合物中的VH/VL交换,STEAP-1结合物中的电荷修饰)(图2A,SEQ ID NO 24,25,33和34)
B.无电荷修饰的“2+1 IgG CrossFab,倒转的”(CD3结合物中的VH/VL交换)(图2B,SEQ ID NO 24,35,36和37)
C.有电荷修饰的“2+1 IgG CrossFab,倒转的”(CD3结合物中的CH1/CL交换,STEAP-1结合物中的电荷修饰)(图2C,SEQ ID NO 25,33,38和39)
D.“STEAP-1/CD3(scFv)2”(图2D,SEQ ID NO 40;还可见WO 2014/165818)
E.有电荷修饰的“1+1 IgG CrossMab”(CD3结合物中的VH/VL交换,STEAP-1结合物中的电荷修饰)(图2E,SEQ ID NO 24,25,33和41)
F.有电荷修饰的“2+1 IgG CrossFab,倒转的”(CD3结合物中的VH/VL交换,STEAP-1结合物中的电荷修饰)(图2F,SEQ ID NO 22-25)。
将编码CD3和STEAP-1结合物的可变重和轻链区的DNA序列与预先插入相应接受哺乳动物表达载体中的相应恒定区同框亚克隆。抗体表达受嵌合MPSV启动子或CMV启动子任一驱动。聚腺苷酸化受到位于CDS的3’端的合成的polyA信号序列驱动。另外,每种载体含有用于自主复制的EBV OriP序列。
为了生成分子A,B,C,E和F,使用聚乙烯亚胺(PEI)作为转染试剂用相应表达载体共转染悬浮生长的HEK293-EBNA细胞。为了生成分子A,B,C和F,以1:2:1:1比率(“载体重链(VH-CH1-VL-CH1-CH2-CH3)”:“载体轻链(VL-CL)”:“载体重链(VH-CH1-CH2-CH3)”:“载体轻链(VH-CL)”或“载体重链(VH-CH1-VH-CL-CH2-CH3)”:“载体轻链(VL-CL)”:载体重链(VH-CH1-CH2-CH3)”:“载体轻链(VL-CH1)”)共转染相应的表达载体。为了生成分子E,以1:1:1:1比率共转染相应的表达载体。
对于转染分子A,B,C,E和F,在含有6mM L-谷氨酰胺和250mg/l G418的无血清Excell培养基中悬浮培养HEK293EBNA细胞。对于在600ml Tubespin烧瓶(最大工作体积400mL)中的生产,在转染前24小时接种600x106个HEK293EBNA细胞。对于转染,将细胞以210xg离心5分钟,并用20ml预热的CD CHO培养基替换上清液。在20ml CD CHO培养基中混合表达载体至最终量为400μg DNA。在添加1080μl PEI溶液(2.7μg/ml)后,将混合物涡旋振荡15秒,随后于室温温育10分钟。之后,将细胞与DNA/PEI溶液混合,转移至600ml Tubespin烧瓶,并于37℃在具有增湿5%CO2气氛的温箱中温育3小时。温育后,添加360ml含有6mM L-谷氨酰胺,5g/L Pepsoy和1.0mM VPA的Excell培养基并将细胞培养24小时。在转染后一天,添加7%补料7。在7天后,收集培养上清液进行纯化,即以3600xg(Sigma8K离心机)离心20-30分钟,将溶液无菌过滤(0.22μm滤器),并以0.01%w/v的终浓度添加叠氮化钠。将溶液保持于4℃。
通过蛋白A-HPLC测定培养液中该分子的滴度(表1)。滴度的计算基于一种两步骤过程且包括pH 8.0时含Fc分子对蛋白A的结合和pH 2.5时的阶梯洗脱中的释放。用于分析的两种缓冲液均含有Tris(10mM),甘氨酸(50mM),和NaCl(100mM),而且调节至相应pH(8和2.5)。柱体是Upchurch 2x20mm前置柱,内部体积~63μl,填充POROS 20A。初始校准后,以流速0.5ml/min注射100μl每种样品。0.67分钟后,用达到pH 2.5的pH梯级洗脱样品。通过测定280nm吸光度及使用人IgG1自16至166mg/l的浓度范围的标准曲线的计算进行量化。
转染后7天,自细胞培养物上清纯化分子A,B,C,E和F,其通过蛋白A亲和层析,继之以大小排阻层析步骤进行。
对于亲和层析,将上清液加载到用25ml 20mM磷酸钠,20mM柠檬酸钠,pH 7.5平衡的HiTrap蛋白A HP柱(CV=5ml,GE Healthcare)上。通过用至少10个柱体积的20mM磷酸钠,20mM柠檬酸钠,pH 7.5清洗来去除未结合的蛋白质,并在6个柱体积的20mM柠檬酸钠,100mM氯化钠,100mM甘氨酸,pH 3.0中洗脱靶蛋白。通过添加1/10的0.5M磷酸钠pH 8.0来中和蛋白质溶液。对于蛋白A层析后的联机分析,通过还原剂缺失下的SDS-PAGE和考马斯(InstantBlueTM,Expedeon)染色来分析单一级分中分子的纯度和分子量(图3)。依照制造商的说明书使用预制凝胶系统(4-12%Bis-Tris,Invitrogen)。将靶蛋白的选定级分浓缩并过滤,之后加载到用20mM组氨酸,140mM氯化钠,pH 6.0,0.01%Tween-20平衡的HiLoad Superdex 200柱(GE Healthcare)上。
对于纯化分子D,转染后7天,自细胞培养物上清纯化分泌的蛋白质,其通过使用固定化金属离子亲和层析(IMAC)的亲和层析,继之以大小排阻层析步骤进行。将过滤后的上清液加载到用25ml 50mM磷酸钠,300mM氯化钠,pH 8平衡的Roche cOmplete His标签柱(CV=5mL,Roche)上。通过用至少10个柱体积的相同缓冲液清洗来去除未结合的蛋白质,并在5个柱体积的50mM磷酸钠,300mM氯化钠,250mM咪唑,pH 8中洗脱靶蛋白。将靶蛋白浓缩,之后加载到用20mM组氨酸,140mM氯化钠,0.01%Tween-20,pH 6.0平衡的HiLoad Superdex 200柱(GE Healthcare)上。
通过测量280nm处的光密度(OD)来测定经过纯化的蛋白质样品的蛋白质浓度,其使用基于氨基酸序列计算的摩尔消光系数进行。
使用TSKgel G3000SW XL分析性大小排阻柱(Tosoh)在25mM K2HPO4,125mM NaCl,200mM L-精氨酸单氢氯化物,0.02%(w/v)NaN3,pH 6.7运行缓冲液中于25℃分析分子的聚集体含量。所有分子的纯化参数的汇总在表1中给出。
通过在还原剂存在和缺失下的CE-SDS分析来分析分子的最终纯度和分子量。依照制造商的说明书使用Caliper LabChip GXII系统(Caliper Lifescience)(图4和表2)。
在Agilent LC-MS系统(Agilent Technologies,Santa Clara,CA,USA)上实施分子A,B,和C的质谱分析。将层析系统(Agilent 1260Infinity)与Agilent 6224 TOF LC/MSESI装置偶联。于40℃以1ml/min的流速在NUCLEOGEL RP1000-8,250mm x 4.6mm柱(MACHEREY-NAGEL GmbH&Co.KG,Düren,Germany)上注射约5μg样品。流动相如下:A:5%乙腈,0.05%甲酸,和B:95%乙腈,0.05%甲酸。为了应用洗脱梯度,将15%B在10分钟内提高至60%B,然后在2.5分钟里提高至100%B。
质谱仪以高分辨率模式测量4GHz正的,并记录500-3200m/z的范围。用来自Roche(Hoffman-La Roche,Ltd)的MassAnalyzer 2.4.1对m/z谱手工解卷积。
虽然分子A,B,和C是依照相同的方案生成并纯化的,最终质量随分子型式而不同。对分子A获得就单体含量,高和低分子量(HMW和LMW)污染,和纯度而言最好的质量。去除电荷修饰(分子B)或组合电荷修饰与CH1-CL交换(分子C)均产生具有更低质量的分子。LC-MS分析揭示分子A没有错配,而分子B含有40%左右的具有错配轻链的分子。
表1:有和无电荷修饰的抗STEAP-1/抗CD3 TCB分子的生成和纯化的汇总。
表2:有和无电荷修饰的抗STEAP-1/抗CD3 TCB分子的CE-SDS分析(非还原性)。
实施例2
STEAP-1 TCB分子F对表达STEAP-1和CD3的细胞的结合
在表达STEAP-1的LnCaP细胞和表达CD3的永生化T淋巴细胞系(Jurkat)上测试实施例1中制备的STEAP-1 TCB分子F的结合。简言之,收获细胞,计数,检查存活力并在FACS缓冲液(100μl PBS 0.1%BSA)中以2x106个细胞/ml重悬浮。将100μl细胞悬浮液(含有0.2x106个细胞)与递增浓度的STEAP-1 TCB(20pM–250nM)一起在圆底96孔板中于4℃温育30分钟,用冷PBS 0.1%BSA清洗两次,与PE缀合的AffiniPure F(ab')2片段山羊抗人IgG,Fcγ片段特异性二抗(Jackson Immuno Research Lab PE#109-116-170)一起于4℃再温育另外30分钟并用冷PBS 0.1%BSA清洗两次并立即使用FACS Canto II(Software FACS Diva)通过FACS分析。包括相应的非靶向性TCB分子(结合CD3但不结合靶细胞抗原,SEQ ID NO 26,27)作为对照。使用Graph Pad Prism6获得结合曲线(图5A,对LnCaP细胞的结合;图5B,对Jurkat细胞的结合)。
实施例3
由STEAP-1 TCB分子诱导的T细胞杀伤
在表达STEAP-1的LnCaP和MKN45细胞上评估由STEAP-1 TCB分子F介导的T细胞杀伤。使用人PBMC作为效应物并在与双特异性抗体一起温育24小时和48小时后检测杀伤。在贴壁靶细胞的情况中,用胰蛋白酶/EDTA收获细胞,清洗,并使用平底96孔板以25,000个细胞/孔的密度分配。让细胞静置贴壁过夜。在测定法那天收获悬浮靶细胞并使用圆底96孔板以30,000个细胞/孔的密度分配。通过自健康人个体获得的肝素化血液的经过富集的淋巴细胞制备物的Histopaque密度离心制备外周血单个核细胞(PBMC)。用无菌PBS稀释新鲜血液并在Histopaque梯度(Sigma,#H8889)上分层。离心(450xg,30分钟,室温)后,丢弃含有PBMC的界面上方的血浆并将PBMC转移至一个新的Falcon管,随后装填50ml PBS。将混合物离心(400xg,10分钟,室温),丢弃上清液并将PBMC团粒用无菌PBS清洗两次(离心步骤350xg,10分钟)。对所得PBMC群体自动计数(ViCell)并在含有10%FCS和1%L-丙氨酰基-L-谷氨酰胺(Biochrom,K0302)的RPMI1640培养基中在细胞温箱中保存于37℃,5%CO2直至进一步使用(不超过24小时)。对于杀伤测定法,以所示浓度(范围为0.1pM–10nM,一式三份)添加抗体。包括相应非靶向性TCB分子(结合CD3但不结合靶细胞抗原,SEQ ID NO 26,27)作为对照。以最终的效应对靶细胞(E:T)比10:1将PBMC添加至靶细胞。于37℃,5%CO2温育24小时和48小时后通过量化由凋亡/坏死细胞释放入细胞上清液的LDH(LDH检测试剂盒,RocheApplied Science,#11 644 793 001)来评估靶细胞杀伤。通过将靶细胞与1%Triton X-100一起温育来实现最大靶细胞裂解(=100%)。最小裂解(=0%)指在没有双特异性构建物的情况下与效应细胞共温育的靶细胞。结果显示STEAP-1 TCB分子诱导靶物特异性的LnCaP和MKN45细胞杀伤(图6)。使用Graph Pad Prism6计算的与杀伤测定法有关的EC50值在表3中给出。
表3:由STEAP-1 TCB分子F诱导的T细胞介导的表达STEAP-1的LnCaP和MKN45细胞杀伤的EC50值(pM)
实施例4
由STEAP-1 TCB分子诱导的T细胞介导的肿瘤裂解
在表达STEAP-1的LnCaP细胞上评估由不同STEAP-1 TCB分子介导的T细胞杀伤。使用人PBMC作为效应细胞并在与双特异性抗体一起温育24小时和48小时后检测杀伤。用胰蛋白酶/EDTA收获贴壁靶细胞,清洗,并使用平底96孔板以30,000个细胞/孔的密度分配。让细胞静置贴壁过夜。通过自健康人供体获得的肝素化血液的经过富集的淋巴细胞制备物的Histopaque密度离心制备外周血单个核细胞(PBMC)。用无菌PBS稀释新鲜血液并在Histopaque梯度(Sigma,#H8889)上分层。离心(450xg,30分钟,室温)后,丢弃含有PBMC的界面上方的血浆并将PBMC转移至一个新的Falcon管,随后装填50ml PBS。将混合物离心(400xg,10分钟,室温),丢弃上清液并将PBMC团粒用无菌PBS清洗两次(离心步骤350xg,10分钟)。对所得PBMC群体自动计数(ViCell)并在含有10%FCS和1%L-丙氨酰基-L-谷氨酰胺(Biochrom,K0302)的RPMI1640培养基中保存于37℃,5%CO2的细胞温箱中直至进一步使用(不超过24小时)。
对于杀伤测定法,以所示浓度(范围为6pM–100nM)一式三份添加抗体。将PBMC添加至靶细胞以获得最终的E:T比10:1。于37℃,5%CO2温育24小时和48小时后通过量化由凋亡/坏死细胞释放入细胞上清液的LDH(LDH检测试剂盒,Roche Applied Science,#11 644793 001)来评估靶细胞杀伤。通过将靶细胞与1%Triton X-100一起温育来实现最大靶细胞裂解(=100%)。最小裂解(=0%)指在没有双特异性构建物的情况下与效应细胞共温育的靶细胞。24小时之后(图7A)的结果显示分子A是最有力的,接着是分子B,分子C,最后是分子D。肿瘤细胞裂解48小时后(图7B),排位如下:分子C,分子B,分子A,最后是分子D。
使用Graph Pad Prism6计算肿瘤细胞裂解的相应EC50值并在表4中给出。
24小时较之48小时时分子的不同排位可能指示各种TCB分子的肿瘤细胞裂解的不同动力学。
表4:由所示STEAP-1 TCB抗体诱导的T细胞介导的表达STEAP-1的LnCaP细胞裂解的EC50值(pM)
TCB分子 | EC50[pM]24h | EC50[pM]48h |
分子A | 36.8 | 31.4 |
分子B | 95.7 | 22.9 |
分子C | 151.6 | 12.8 |
分子D | 308.6 | 78.5 |
在另一项实验中(图12),使用与上文所述相同的测定法设置和STEAP-1阳性LnCaP肿瘤细胞,比较分子A和分子E的效力。在这里,抗体浓度的范围为在LnCaP存在下用于分子A的0.08pM–6.25nM和用于分子E的12.2pM–200nM。
如图12中所示,分子A在24小时(A)和48小时(B)之后诱导与分子E相比更好的LnCaP肿瘤细胞裂解。
表5:STEAP-1 TCB介导的表达STEAP-1的LnCaP细胞裂解的EC50值(pM)
TCB分子 | EC50[pM]24h | EC50[pM]48h |
分子A | 13.7 | 6.35 |
分子E | 1855 | 1556 |
实施例5
Jurkat-NFAT活化测定法
使用肿瘤抗原阳性靶细胞(LnCaP)和Jurkat-NFAT报告细胞(具有NFAT启动子的表达CD3的人急性淋巴性白血病报告细胞系,GloResponse Jurkat NFAT-RE-luc2P,Promega#CS176501)的共培养物评估STEAP-1 TCB分子A和B在同时结合细胞上的CD3和人STEAP-1后诱导CD3介导的效应细胞活化的能力。在TCB分子同时结合STEAP-1抗原(LnCaP肿瘤细胞上表达的)和CD3抗原(Jurkat-NFAT报告细胞上表达的)后,NFAT启动子活化并导致活性萤火虫萤光素酶表达。发光信号(添加萤光素酶底物后获得的)的强度与CD3活化和发信号的强度成比例。
为了测定法,收获人肿瘤细胞并使用ViCell测定存活力。在平底白壁96孔板(#655098,Greiner bio-one)中分配20,000个细胞/孔并添加(范围为12.2pM–200nM)稀释的抗体或培养基(用于对照)。
随后,收获Jurkat-NFAT报告细胞并使用ViCell评估存活力。在细胞培养基中重悬浮细胞并添加至肿瘤细胞以获得所示5:1的最终E:T比和100μl每孔的终体积。细胞在增湿温箱中于37℃温育6小时。在温育时间结束时,将100μl/孔ONE-Glo溶液(1:1ONE-Glo和测定培养基体积每孔)添加至孔并在黑暗中于室温温育10分钟。使用WALLAC Victor3ELISA读数仪(Perkin Elmer 2030)检测发光,每个孔5秒钟作为检测时间。
如图8中所示,所评估的所有STEAP-1 TCB分子均诱导经CD3的T细胞交联和随后的T细胞活化。STEAP-1 TCB分子的排位如下:分子A,分子B,分子D,最后是分子C。
Jurkat活化的相应EC50值使用GraphPadPrism6计算并在表6中给出。
表6:6小时后STEAP-1 TCB介导的Jurkat-NFAT报告细胞活化的EC50值(nM)
TCB分子 | EC50[nM] |
分子A | 3.58 |
分子B | 5.73 |
分子C | 39.46 |
分子D | 11.77 |
在另一项实验中(图10),使用与上文所述相同的测定法设置,比较分子A和分子E的效力。在这里,抗体浓度的范围分别为在LnCaP存在下用于分子A的12.2pM–200nM和用于分子E的48.8pM–800nM,在CHO-hSTEAP-1克隆2细胞存在下用于分子A的0.76pM–12.5nM和用于分子E的3.05pM–50nM。
如图10中所示,分子A在同时结合Jurkat上的人CD3和LnCaP或CHO-hSTEAP1细胞任一上的人STEAP-1后诱导与分子E相比更强的Jurkat-NFAT活化。
表7:6小时后STEAP-1 TCB介导的Jurkat-NFAT报告细胞活化的EC50值(nM),如通过发光测量的
在另一项实验中(图11),使用表达STEAP-1的CHO转染子较之STEAP-1阴性亲本CHO-k1细胞,比较分子A和分子E,检查Jurkat NFAT报告细胞的抗原依赖性较之抗原不依赖性活化。在这里,抗体浓度的范围为用于这两种分子的10.2pM–800nM。
如图11A中所示,分子A诱导与分子E相比更强的抗原依赖性Jurkat-NFAT活化。此外,如图11B中所绘,分子E还在1nM以上的浓度在STEAP-1阴性CHO-k1细胞存在下诱导抗原不依赖性Jurkat-NFAT活化。与之对比,分子A只在大致80nM和以上的高浓度诱导抗原不依赖性Jurkat-NFAT活化。
表8:6小时后STEAP-1 TCB介导的Jurkat-NFAT报告细胞活化的EC50值(nM),如通过发光测量的
实施例6
STEAP-1 TCB对表达STEAP-1和CD3的细胞的结合
使用表达STEAP-1的CHO-hSTEAP1,克隆2细胞(一种经转染而稳定过表达人STEAP-1的自仓鼠卵巢衍生的上皮细胞系)和表达CD3的永生化T淋巴细胞(Jurkat,DSMZ#ACC 282)测试STEAP-1 TCB分子的结合。
简言之,使用细胞解离缓冲液(Gibco,#13151014)收获贴壁CHO-hSTEAP1细胞,计数,检查存活力,并以2x 106个细胞/ml在FACS缓冲液(100μl PBS 0.1%BSA)中重悬浮。还收获Jurkat悬浮液细胞,计数并检查存活力。将100μl细胞悬浮液(含有0.2x106个细胞)与递增浓度的STEAP-1 TCB(31pM–500nM)一起在圆底96孔板中于4℃温育30分钟,用冷的含有0.1%BSA的PBS(FACS缓冲液)清洗两次,与1:50预稀释的FITC或Alexa Fluor 647缀合的AffiniPure F(ab')2片段山羊抗人IgG,Fcγ片段特异性二体(Jackson Immuno ResearchLab,FITC#109-096-098,用于对Jurkats的结合,或Jackson Immuno Research Lab,AlexaFluor 647#109-606-008,用于对CHO-hSTEAP1的结合,在FACS缓冲液中的稀释)一起于4℃再温育另外30分钟并用冷PBS 0.1%BSA清洗两次。
在100μl含有2%多聚甲醛的FACS缓冲液中重悬浮染色的细胞并于室温温育30分钟以固定染色。最后,将细胞于4℃以350x g离心4分钟,丢弃上清液并在200μl FACS缓冲液中重悬浮细胞团粒。使用FACS Canto II(Software FACS Diva)通过FACS分析染色。使用Graph Pad Prism6获得结合曲线(图9A,对CHO-hSTEAP1克隆2细胞的结合;图9B,对Jurkat细胞的结合)。
如图9中显示的,分子A显示对细胞上表达的人STEAP-1以及人CD3的强浓度依赖性结合。分子E只显示对表达人STEAP-1的细胞的弱(单价)结合和对细胞上的人CD3的与分子A相比略微更好结合。这可能是由于不同构造及因此不同水平的各自结合模块的可及性。
实施例7
STEAP-1 TCB分子同时结合靶和效应细胞后T细胞上的活化标志物的上调
使用识别T细胞活化标志物CD69(早期活化标志物)和CD25(晚期活化标志物)的抗体通过FACS分析评估STEAP-1 TCB分子同时结合表达STEAP-1的靶和人表达CD3的效应细胞后CD8+和CD4+ T细胞的活化。抗体和肿瘤裂解测定法条件本质上如上所述(实施例4,图12)。温育后,将PBMC转移至圆底96孔板,以350x g离心5分钟并用含有0.1%BSA的PBS(FACS缓冲液)清洗两次。依照供应商的说明书在黑暗中于4℃实施针对CD8(FITC抗人CD8,BioLegend#344704),CD4(APC抗人CD4,BD Biosciences#555349),CD69(PE-Cy7抗人CD69,BioLegend#310912)和CD25(PE抗人CD25,BD Biosciences#555432)的表面染色达30分钟。将细胞用150μl/孔含有0.1%BSA的PBS清洗两次并使用150μl/孔含有1%多聚甲醛的FACS缓冲液于4℃固定30分钟。离心后,将样品在150μl/孔FACS缓冲液中重悬浮并使用BD FACSCantoII分析。
如图13中所绘,分子A在同时结合T细胞上的CD3和靶细胞上的STEAP-1后诱导与分子E相比更强的T细胞活化。48小时后分别以表达CD69(图13A)或CD25(图13C)的CD8 T细胞,表达CD69(图13B)和CD25(图13D)的CD4 T细胞的百分比测定T细胞活化。所描绘的是一式三份及SD。
表9:STEAP-1 TCB介导的原代CD4或CD8 T细胞活化的EC50值(pM),如通过CD69或CD25上调测定的(FACS)
在另一项实验中,使用相似的测定法设置来检查在不同STEAP-1 TCB分子和STEAP-1阴性亲本CHO-k1细胞系存在下原代T细胞的抗原不依赖性活化(图14)。在这里,以0.71pM–200nM的浓度范围使用STEAP-1 TCB分子。如图14中所示,分子E在大致1nM和以上的浓度诱导抗原不依赖性T细胞活化,而分子A在大致80nM和以上的浓度诱导抗原不依赖性T细胞活化。
***
尽管为了理解清楚的目的已经通过例示和实施例较为详细地描述了前述发明,但是该描述和实施例不应解释为限制本发明的范围。通过提述明确完整收录本文中引用的所有专利和科学文献的公开内容。
序列表
<110> 豪夫迈·罗氏有限公司(F. Hoffmann-La Roche AG)
<120> 双特异性T细胞活化性抗原结合分子
<130> P33125
<150> EP 15188037.4
<151> 2015-10-02
<160> 41
<170> PatentIn version 3.5
<210> 1
<211> 207
<212> PRT
<213> 人(Homo sapiens)
<400> 1
Met Gln Ser Gly Thr His Trp Arg Val Leu Gly Leu Cys Leu Leu Ser
1 5 10 15
Val Gly Val Trp Gly Gln Asp Gly Asn Glu Glu Met Gly Gly Ile Thr
20 25 30
Gln Thr Pro Tyr Lys Val Ser Ile Ser Gly Thr Thr Val Ile Leu Thr
35 40 45
Cys Pro Gln Tyr Pro Gly Ser Glu Ile Leu Trp Gln His Asn Asp Lys
50 55 60
Asn Ile Gly Gly Asp Glu Asp Asp Lys Asn Ile Gly Ser Asp Glu Asp
65 70 75 80
His Leu Ser Leu Lys Glu Phe Ser Glu Leu Glu Gln Ser Gly Tyr Tyr
85 90 95
Val Cys Tyr Pro Arg Gly Ser Lys Pro Glu Asp Ala Asn Phe Tyr Leu
100 105 110
Tyr Leu Arg Ala Arg Val Cys Glu Asn Cys Met Glu Met Asp Val Met
115 120 125
Ser Val Ala Thr Ile Val Ile Val Asp Ile Cys Ile Thr Gly Gly Leu
130 135 140
Leu Leu Leu Val Tyr Tyr Trp Ser Lys Asn Arg Lys Ala Lys Ala Lys
145 150 155 160
Pro Val Thr Arg Gly Ala Gly Ala Gly Gly Arg Gln Arg Gly Gln Asn
165 170 175
Lys Glu Arg Pro Pro Pro Val Pro Asn Pro Asp Tyr Glu Pro Ile Arg
180 185 190
Lys Gly Gln Arg Asp Leu Tyr Ser Gly Leu Asn Gln Arg Arg Ile
195 200 205
<210> 2
<211> 198
<212> PRT
<213> 食蟹猴(Macaca fascicularis)
<400> 2
Met Gln Ser Gly Thr Arg Trp Arg Val Leu Gly Leu Cys Leu Leu Ser
1 5 10 15
Ile Gly Val Trp Gly Gln Asp Gly Asn Glu Glu Met Gly Ser Ile Thr
20 25 30
Gln Thr Pro Tyr Gln Val Ser Ile Ser Gly Thr Thr Val Ile Leu Thr
35 40 45
Cys Ser Gln His Leu Gly Ser Glu Ala Gln Trp Gln His Asn Gly Lys
50 55 60
Asn Lys Glu Asp Ser Gly Asp Arg Leu Phe Leu Pro Glu Phe Ser Glu
65 70 75 80
Met Glu Gln Ser Gly Tyr Tyr Val Cys Tyr Pro Arg Gly Ser Asn Pro
85 90 95
Glu Asp Ala Ser His His Leu Tyr Leu Lys Ala Arg Val Cys Glu Asn
100 105 110
Cys Met Glu Met Asp Val Met Ala Val Ala Thr Ile Val Ile Val Asp
115 120 125
Ile Cys Ile Thr Leu Gly Leu Leu Leu Leu Val Tyr Tyr Trp Ser Lys
130 135 140
Asn Arg Lys Ala Lys Ala Lys Pro Val Thr Arg Gly Ala Gly Ala Gly
145 150 155 160
Gly Arg Gln Arg Gly Gln Asn Lys Glu Arg Pro Pro Pro Val Pro Asn
165 170 175
Pro Asp Tyr Glu Pro Ile Arg Lys Gly Gln Gln Asp Leu Tyr Ser Gly
180 185 190
Leu Asn Gln Arg Arg Ile
195
<210> 3
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> CD3 VH
<400> 3
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30
Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp
50 55 60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr
65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr
85 90 95
Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe
100 105 110
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125
<210> 4
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> CD3 HCDR1
<400> 4
Thr Tyr Ala Met Asn
1 5
<210> 5
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> CD3 HCDR2
<400> 5
Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser
1 5 10 15
Val Lys Gly
<210> 6
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> CD3 HCDR3
<400> 6
His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr
1 5 10
<210> 7
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> CD3 VL
<400> 7
Gln Ala Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly
1 5 10 15
Thr Val Thr Leu Thr Cys Gly Ser Ser Thr Gly Ala Val Thr Thr Ser
20 25 30
Asn Tyr Ala Asn Trp Val Gln Glu Lys Pro Gly Gln Ala Phe Arg Gly
35 40 45
Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe
50 55 60
Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala
65 70 75 80
Gln Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn
85 90 95
Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105
<210> 8
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> CD3 LCDR1
<400> 8
Gly Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn
1 5 10
<210> 9
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> CD3 LCDR2
<400> 9
Gly Thr Asn Lys Arg Ala Pro
1 5
<210> 10
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> CD3 LCDR3
<400> 10
Ala Leu Trp Tyr Ser Asn Leu Trp Val
1 5
<210> 11
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 接头
<400> 11
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
1 5 10
<210> 12
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 接头
<400> 12
Asp Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
1 5 10
<210> 13
<211> 225
<212> PRT
<213> 人(Homo sapiens)
<400> 13
Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
1 5 10 15
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
20 25 30
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
35 40 45
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
50 55 60
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
65 70 75 80
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
85 90 95
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
100 105 110
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
115 120 125
Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser
130 135 140
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
145 150 155 160
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
165 170 175
Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
180 185 190
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
195 200 205
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
210 215 220
Pro
225
<210> 14
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 HCDR1
<400> 14
Asp Tyr Ala Trp Asn
1 5
<210> 15
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 HCDR2
<400> 15
Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu Lys Ser
1 5 10 15
<210> 16
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 HCDR3
<400> 16
Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp Tyr
1 5 10 15
<210> 17
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 LCDR1
<400> 17
Lys Ser Ser Gln Ser Leu Leu Tyr Arg Ser Asn Gln Lys Asn Tyr Leu
1 5 10 15
Ala
<210> 18
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 LCDR2
<400> 18
Trp Ala Ser Thr Arg Glu Ser
1 5
<210> 19
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 LCDR3
<400> 19
Gln Gln Tyr Tyr Asn Tyr Pro Arg Thr
1 5
<210> 20
<211> 124
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH
<400> 20
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120
<210> 21
<211> 113
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VL
<400> 21
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Lys Ser Ser Gln Ser Leu Leu Tyr Arg
20 25 30
Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys
35 40 45
Ala Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
85 90 95
Tyr Tyr Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110
Lys
<210> 22
<211> 452
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH-CH1(EE)-Fc(穴, P329G LALA)
<400> 22
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
130 135 140
Gly Thr Ala Ala Leu Gly Cys Leu Val Glu Asp Tyr Phe Pro Glu Pro
145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
180 185 190
Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
195 200 205
Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Glu Lys Val Glu Pro
210 215 220
Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
225 230 235 240
Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
245 250 255
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
260 265 270
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
275 280 285
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
290 295 300
Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
305 310 315 320
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Gly
325 330 335
Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
340 345 350
Pro Gln Val Cys Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
355 360 365
Gln Val Ser Leu Ser Cys Ala Val Lys Gly Phe Tyr Pro Ser Asp Ile
370 375 380
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
385 390 395 400
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Val Ser Lys
405 410 415
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
420 425 430
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
435 440 445
Ser Leu Ser Pro
450
<210> 23
<211> 677
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH-CH1(EE)-CD3 VL-CH1-Fc(节, P329G LALA)
<400> 23
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
130 135 140
Gly Thr Ala Ala Leu Gly Cys Leu Val Glu Asp Tyr Phe Pro Glu Pro
145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
180 185 190
Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
195 200 205
Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Glu Lys Val Glu Pro
210 215 220
Lys Ser Cys Asp Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Ala
225 230 235 240
Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly Thr Val
245 250 255
Thr Leu Thr Cys Gly Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr
260 265 270
Ala Asn Trp Val Gln Glu Lys Pro Gly Gln Ala Phe Arg Gly Leu Ile
275 280 285
Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe Ser Gly
290 295 300
Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala Gln Pro
305 310 315 320
Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn Leu Trp
325 330 335
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Ser Ala Ser Thr
340 345 350
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser
355 360 365
Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu
370 375 380
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
385 390 395 400
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser
405 410 415
Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys
420 425 430
Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu
435 440 445
Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro
450 455 460
Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
465 470 475 480
Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
485 490 495
Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp
500 505 510
Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
515 520 525
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
530 535 540
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
545 550 555 560
Gly Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
565 570 575
Glu Pro Gln Val Tyr Thr Leu Pro Pro Cys Arg Asp Glu Leu Thr Lys
580 585 590
Asn Gln Val Ser Leu Trp Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
595 600 605
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
610 615 620
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
625 630 635 640
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
645 650 655
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
660 665 670
Leu Ser Leu Ser Pro
675
<210> 24
<211> 232
<212> PRT
<213> 人工序列
<220>
<223> CD3 VH-CL
<400> 24
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30
Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp
50 55 60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr
65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr
85 90 95
Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe
100 105 110
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Val
115 120 125
Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys
130 135 140
Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
145 150 155 160
Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn
165 170 175
Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser
180 185 190
Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys
195 200 205
Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr
210 215 220
Lys Ser Phe Asn Arg Gly Glu Cys
225 230
<210> 25
<211> 220
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VL-CL(RK)
<400> 25
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Lys Ser Ser Gln Ser Leu Leu Tyr Arg
20 25 30
Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys
35 40 45
Ala Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
85 90 95
Tyr Tyr Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110
Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
115 120 125
Arg Lys Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
130 135 140
Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
145 150 155 160
Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
165 170 175
Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
180 185 190
Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
195 200 205
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
210 215 220
<210> 26
<211> 115
<212> PRT
<213> 人工序列
<220>
<223> DP47 VH
<400> 26
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Gly Ser Gly Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr
100 105 110
Val Ser Ser
115
<210> 27
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> DP47 VL
<400> 27
Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro
85 90 95
Leu Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105
<210> 28
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> CD3 HCDR2
<400> 28
Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser
1 5 10 15
Val Lys Asp
<210> 29
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> CD3 LCDR1
<400> 29
Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn
1 5 10
<210> 30
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> CD3 VH
<400> 30
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30
Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp
50 55 60
Ser Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr
65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr
85 90 95
Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe
100 105 110
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125
<210> 31
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> CD3 VL
<400> 31
Gln Ala Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly
1 5 10 15
Thr Val Thr Leu Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser
20 25 30
Asn Tyr Ala Asn Trp Val Gln Glu Lys Pro Gly Gln Ala Phe Arg Gly
35 40 45
Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe
50 55 60
Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala
65 70 75 80
Gln Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn
85 90 95
Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105
<210> 32
<211> 124
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH
<400> 32
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120
<210> 33
<211> 452
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH-CH1(EE)-Fc(穴, P329G LALA)
<400> 33
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
130 135 140
Gly Thr Ala Ala Leu Gly Cys Leu Val Glu Asp Tyr Phe Pro Glu Pro
145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
180 185 190
Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
195 200 205
Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Glu Lys Val Glu Pro
210 215 220
Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
225 230 235 240
Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
245 250 255
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
260 265 270
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
275 280 285
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
290 295 300
Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
305 310 315 320
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Gly
325 330 335
Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
340 345 350
Pro Gln Val Cys Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
355 360 365
Gln Val Ser Leu Ser Cys Ala Val Lys Gly Phe Tyr Pro Ser Asp Ile
370 375 380
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
385 390 395 400
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Val Ser Lys
405 410 415
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
420 425 430
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
435 440 445
Ser Leu Ser Pro
450
<210> 34
<211> 677
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH-CH1(EE)-CD3 VL-CH1-Fc(节, P329G LALA)
<400> 34
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
130 135 140
Gly Thr Ala Ala Leu Gly Cys Leu Val Glu Asp Tyr Phe Pro Glu Pro
145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
180 185 190
Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
195 200 205
Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Glu Lys Val Glu Pro
210 215 220
Lys Ser Cys Asp Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Ala
225 230 235 240
Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly Thr Val
245 250 255
Thr Leu Thr Cys Gly Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr
260 265 270
Ala Asn Trp Val Gln Glu Lys Pro Gly Gln Ala Phe Arg Gly Leu Ile
275 280 285
Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe Ser Gly
290 295 300
Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala Gln Pro
305 310 315 320
Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn Leu Trp
325 330 335
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Ser Ala Ser Thr
340 345 350
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser
355 360 365
Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu
370 375 380
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
385 390 395 400
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser
405 410 415
Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys
420 425 430
Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu
435 440 445
Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro
450 455 460
Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
465 470 475 480
Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
485 490 495
Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp
500 505 510
Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
515 520 525
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
530 535 540
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
545 550 555 560
Gly Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
565 570 575
Glu Pro Gln Val Tyr Thr Leu Pro Pro Cys Arg Asp Glu Leu Thr Lys
580 585 590
Asn Gln Val Ser Leu Trp Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
595 600 605
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
610 615 620
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
625 630 635 640
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
645 650 655
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
660 665 670
Leu Ser Leu Ser Pro
675
<210> 35
<211> 452
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH-CH1-Fc(穴, P329G LALA)
<400> 35
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
130 135 140
Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
180 185 190
Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
195 200 205
Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro
210 215 220
Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
225 230 235 240
Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
245 250 255
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
260 265 270
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
275 280 285
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
290 295 300
Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
305 310 315 320
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Gly
325 330 335
Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
340 345 350
Pro Gln Val Cys Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
355 360 365
Gln Val Ser Leu Ser Cys Ala Val Lys Gly Phe Tyr Pro Ser Asp Ile
370 375 380
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
385 390 395 400
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Val Ser Lys
405 410 415
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
420 425 430
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
435 440 445
Ser Leu Ser Pro
450
<210> 36
<211> 677
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH-CH1-CD3 VL-CH1-Fc(节, P329G LALA)
<400> 36
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
130 135 140
Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
180 185 190
Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
195 200 205
Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro
210 215 220
Lys Ser Cys Asp Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Ala
225 230 235 240
Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly Thr Val
245 250 255
Thr Leu Thr Cys Gly Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr
260 265 270
Ala Asn Trp Val Gln Glu Lys Pro Gly Gln Ala Phe Arg Gly Leu Ile
275 280 285
Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe Ser Gly
290 295 300
Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala Gln Pro
305 310 315 320
Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn Leu Trp
325 330 335
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Ser Ala Ser Thr
340 345 350
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser
355 360 365
Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu
370 375 380
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
385 390 395 400
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser
405 410 415
Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys
420 425 430
Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu
435 440 445
Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro
450 455 460
Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
465 470 475 480
Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
485 490 495
Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp
500 505 510
Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
515 520 525
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
530 535 540
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
545 550 555 560
Gly Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
565 570 575
Glu Pro Gln Val Tyr Thr Leu Pro Pro Cys Arg Asp Glu Leu Thr Lys
580 585 590
Asn Gln Val Ser Leu Trp Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
595 600 605
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
610 615 620
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
625 630 635 640
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
645 650 655
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
660 665 670
Leu Ser Leu Ser Pro
675
<210> 37
<211> 220
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VL-CL
<400> 37
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Lys Ser Ser Gln Ser Leu Leu Tyr Arg
20 25 30
Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys
35 40 45
Ala Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
85 90 95
Tyr Tyr Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110
Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
115 120 125
Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
130 135 140
Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
145 150 155 160
Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
165 170 175
Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
180 185 190
Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
195 200 205
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
210 215 220
<210> 38
<211> 695
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1 VH-CH1(EE)-CD3 VH-CL-Fc(节, P329G LALA)
<400> 38
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser Asp
20 25 30
Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
115 120 125
Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
130 135 140
Gly Thr Ala Ala Leu Gly Cys Leu Val Glu Asp Tyr Phe Pro Glu Pro
145 150 155 160
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
165 170 175
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
180 185 190
Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
195 200 205
Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Glu Lys Val Glu Pro
210 215 220
Lys Ser Cys Asp Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val
225 230 235 240
Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu
245 250 255
Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr Ala Met
260 265 270
Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Arg
275 280 285
Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser Val
290 295 300
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr Leu Tyr
305 310 315 320
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
325 330 335
Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr
340 345 350
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Val Ala Ala
355 360 365
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
370 375 380
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
385 390 395 400
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
405 410 415
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
420 425 430
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
435 440 445
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
450 455 460
Phe Asn Arg Gly Glu Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
465 470 475 480
Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
485 490 495
Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
500 505 510
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
515 520 525
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
530 535 540
Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
545 550 555 560
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
565 570 575
Ala Leu Gly Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
580 585 590
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Cys Arg Asp Glu Leu
595 600 605
Thr Lys Asn Gln Val Ser Leu Trp Cys Leu Val Lys Gly Phe Tyr Pro
610 615 620
Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
625 630 635 640
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
645 650 655
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
660 665 670
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
675 680 685
Lys Ser Leu Ser Leu Ser Pro
690 695
<210> 39
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> CD3 VL-CH1
<400> 39
Gln Ala Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly
1 5 10 15
Thr Val Thr Leu Thr Cys Gly Ser Ser Thr Gly Ala Val Thr Thr Ser
20 25 30
Asn Tyr Ala Asn Trp Val Gln Glu Lys Pro Gly Gln Ala Phe Arg Gly
35 40 45
Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe
50 55 60
Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala
65 70 75 80
Gln Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn
85 90 95
Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Ser Ala
100 105 110
Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser
115 120 125
Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe
130 135 140
Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly
145 150 155 160
Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu
165 170 175
Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr
180 185 190
Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys
195 200 205
Val Glu Pro Lys Ser Cys
210
<210> 40
<211> 507
<212> PRT
<213> 人工序列
<220>
<223> STEAP-1/CD3 (scFv)2 (VL-VH-VH-VL-His标签)
<400> 40
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Lys Ser Ser Gln Ser Leu Leu Tyr Arg
20 25 30
Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys
35 40 45
Ala Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
85 90 95
Tyr Tyr Asn Tyr Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110
Lys Arg Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
115 120 125
Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
130 135 140
Gly Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr Ser
145 150 155 160
Asp Tyr Ala Trp Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu
165 170 175
Trp Val Gly Tyr Ile Ser Asn Ser Gly Ser Thr Ser Tyr Asn Pro Ser
180 185 190
Leu Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
195 200 205
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
210 215 220
Cys Ala Arg Glu Arg Asn Tyr Asp Tyr Asp Asp Tyr Tyr Tyr Ala Met
225 230 235 240
Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly
245 250 255
Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro
260 265 270
Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr
275 280 285
Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu
290 295 300
Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln
305 310 315 320
Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr
325 330 335
Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
340 345 350
Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly
355 360 365
Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr
385 390 395 400
Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met
405 410 415
Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln
420 425 430
Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val
435 440 445
Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser
450 455 460
Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr
465 470 475 480
Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr
485 490 495
Lys Leu Glu Leu Lys His His His His His His
500 505
<210> 41
<211> 439
<212> PRT
<213> 人工序列
<220>
<223> CD3 VH-CL-Fc(节, P329G LALA)
<400> 41
Gln Ala Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly
1 5 10 15
Thr Val Thr Leu Thr Cys Gly Ser Ser Thr Gly Ala Val Thr Thr Ser
20 25 30
Asn Tyr Ala Asn Trp Val Gln Glu Lys Pro Gly Gln Ala Phe Arg Gly
35 40 45
Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe
50 55 60
Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala
65 70 75 80
Gln Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn
85 90 95
Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Ser Ala
100 105 110
Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser
115 120 125
Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe
130 135 140
Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly
145 150 155 160
Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu
165 170 175
Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr
180 185 190
Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys
195 200 205
Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
210 215 220
Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
225 230 235 240
Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
245 250 255
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
260 265 270
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
275 280 285
Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
290 295 300
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
305 310 315 320
Ala Leu Gly Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
325 330 335
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Cys Arg Asp Glu Leu
340 345 350
Thr Lys Asn Gln Val Ser Leu Trp Cys Leu Val Lys Gly Phe Tyr Pro
355 360 365
Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
370 375 380
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
385 390 395 400
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
405 410 415
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
420 425 430
Lys Ser Leu Ser Leu Ser Pro
435
Claims (64)
1.一种T细胞活化性双特异性抗原结合分子,其包含
(a)特异性结合第一抗原的第一抗原结合模块;
(b)特异性结合第二抗原的第二抗原结合模块;
其中所述第一抗原是活化性T细胞抗原且所述第二抗原是STEAP-1,或所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原;且
其中特异性结合STEAP-1的所述抗原结合模块包含重链可变区,特别是人源化重链可变区,其包含SEQ ID NO:14的重链互补决定区(HCDR)1,SEQ ID NO:15的HCDR 2和SEQ IDNO:16的HCDR 3,和轻链可变区,特别是人源化轻链可变区,其包含SEQ ID NO:17的轻链互补决定区(LCDR)1,SEQ ID NO:18的LCDR 2和SEQ ID NO:19的LCDR 3。
2.依照权利要求1的T细胞活化性双特异性抗原结合分子,其中特异性结合STEAP-1的所述抗原结合模块包含包含与SEQ ID NO:20的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的重链可变区和包含与SEQ ID NO:21的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的轻链可变区。
3.依照权利要求1的T细胞活化性双特异性抗原结合分子,其中特异性结合STEAP-1的所述抗原结合模块包含包含SEQ ID NO:32的氨基酸序列的重链可变区和包含SEQ ID NO:21的氨基酸序列的轻链可变区。
4.依照权利要求1-3任一项的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和/或所述第二抗原结合模块是Fab分子。
5.依照权利要求1-4任一项的T细胞活化性双特异性抗原结合分子,其中所述第二抗原结合模块是特异性结合第二抗原的Fab分子,且其中Fab轻链和Fab重链的可变域VL和VH或恒定域CL和CH1是彼此替换的。
6.依照权利要求1-5任一项的T细胞活化性双特异性抗原结合分子,其中所述第一抗原是STEAP-1且所述第二抗原是活化性T细胞抗原。
7.依照权利要求1-6任一项的T细胞活化性双特异性抗原结合分子,其中所述活化性T细胞抗原是CD3,特别是CD3ε。
8.依照权利要求1-7任一项的T细胞活化性双特异性抗原结合分子,其中特异性结合所述活化性T细胞抗原的所述抗原结合模块包含SEQ ID NO:4的重链互补决定区(CDR)1,SEQID NO:5的重链CDR 2,SEQ ID NO:6的重链CDR 3,SEQ ID NO:8的轻链CDR 1,SEQ ID NO:9的轻链CDR 2和SEQ ID NO:10的轻链CDR 3。
9.依照权利要求1-8任一项的T细胞活化性双特异性抗原结合分子,其中特异性结合所述活化性T细胞抗原的所述抗原结合模块包含包含与SEQ ID NO:3的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的重链可变区和包含与SEQ ID NO:7的氨基酸序列至少约95%,96%,97%,98%,99%或100%相同的氨基酸序列的轻链可变区。
10.依照权利要求1-9任一项的T细胞活化性双特异性抗原结合分子,其中(a)下的第一抗原结合模块是特异性结合第一抗原的第一Fab分子,(b)下的第二抗原结合模块是特异性结合第二抗原的第二Fab分子,其中Fab轻链和Fab重链的可变域VL和VH是彼此替换的;
且
i)在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引);或
ii)在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
11.依照权利要求10的T细胞活化性双特异性抗原结合分子,其中在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
12.依照权利要求10或11的T细胞活化性双特异性抗原结合分子,其中在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
13.依照权利要求10-12任一项的T细胞活化性双特异性抗原结合分子,其中在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
14.依照权利要求10-13任一项的T细胞活化性双特异性抗原结合分子,其中在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用精氨酸(R)替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
15.依照权利要求10-13任一项的T细胞活化性双特异性抗原结合分子,其中在a)下的第一Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat),且其中在a)下的第一Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
16.依照权利要求10的T细胞活化性双特异性抗原结合分子,其中在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸或位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
17.依照权利要求10或16的T细胞活化性双特异性抗原结合分子,其中在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
18.依照权利要求10,16和17任一项的T细胞活化性双特异性抗原结合分子,其中在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K),精氨酸(R)或组氨酸(H)独立替代(编号方式依照Kabat),且其中在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E),或天冬氨酸(D)独立替代(编号方式依照Kabat EU索引)。
19.依照权利要求10和16-18任一项的T细胞活化性双特异性抗原结合分子,其中在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用精氨酸(R)替代(编号方式依照Kabat),且其中在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
20.依照权利要求10和16-18任一项的T细胞活化性双特异性抗原结合分子,其中在b)下的第二Fab分子的恒定域CL中位置124处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat)且位置123处的氨基酸用赖氨酸(K)替代(编号方式依照Kabat),且其中在b)下的第二Fab分子的恒定域CH1中位置147处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)且位置213处的氨基酸用谷氨酸(E)替代(编号方式依照Kabat EU索引)。
21.依照权利要求1至20任一项的T细胞活化性双特异性抗原结合分子,其进一步包含
c)特异性结合所述第一抗原的第三抗原结合模块。
22.依照权利要求21的T细胞活化性双特异性抗原结合分子,其中所述第三抗原结合模块是Fab分子。
23.依照权利要求21或22的T细胞活化性双特异性抗原结合分子,其中所述第三抗原结合模块与所述第一抗原结合模块相同。
24.依照权利要求21-23任一项的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第三抗原结合模块特异性结合靶细胞抗原,且所述第二抗原结合模块特异性结合活化性T细胞抗原,特别是CD3,更加特别是CD3ε。
25.依照权利要求1至24任一项的T细胞活化性双特异性抗原结合分子,其另外包含
d)由能够稳定联合的第一亚基和第二亚基构成的Fc域。
26.依照权利要求1至25任一项的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第二抗原结合模块彼此融合,任选经由肽接头。
27.依照权利要求1至26任一项的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第二抗原结合模块是Fab分子且所述第二抗原结合模块在Fab重链的C端融合至所述第一抗原结合模块的Fab重链的N端。
28.依照权利要求1至26任一项的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第二抗原结合模块是Fab分子且所述第一抗原结合模块在Fab重链的C端融合至所述第二抗原结合模块的Fab重链的N端。
29.依照权利要求27或28的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第二抗原结合模块是Fab分子且所述第一抗原结合模块的Fab轻链和所述第二抗原结合模块的Fab轻链彼此融合,任选经由肽接头。
30.依照权利要求25的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第二抗原结合模块是Fab分子且所述第二抗原结合模块在Fab重链的C端融合至所述Fc域的第一亚基或第二亚基的N端。
31.依照权利要求25的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第二抗原结合模块是Fab分子且所述第一抗原结合模块在Fab重链的C端融合至所述Fc域的第一亚基或第二亚基的N端。
32.依照权利要求25的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第二抗原结合模块是Fab分子且所述第一抗原结合模块和所述第二抗原结合模块各自在Fab重链的C端融合至所述Fc域的亚基之一的N端。
33.依照权利要求25,30或31任一项的T细胞活化性双特异性抗原结合分子,其中所述第三抗原结合模块是Fab分子且在Fab重链的C端融合至所述Fc域的第一亚基或第二亚基的N端。
34.依照权利要求25的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块,所述第二抗原结合模块和所述第三抗原结合模块是Fab分子且所述第二抗原结合模块和所述第三抗原结合模块各自在Fab重链的C端融合至所述Fc域的亚基之一的N端,且所述第一抗原结合模块在Fab重链的C端融合至所述第二抗原结合模块的Fab重链的N端。
35.依照权利要求25的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块,所述第二抗原结合模块和所述第三抗原结合模块是Fab分子且所述第一抗原结合模块和所述第三抗原结合模块各自在Fab重链的C端融合至所述Fc域的亚基之一的N端,且所述第二抗原结合模块在Fab重链的C端融合至所述第一抗原结合模块的Fab重链的N端。
36.依照权利要求35的T细胞活化性双特异性抗原结合分子,其中所述第一抗原结合模块和所述第三抗原结合模块和所述Fc域是免疫球蛋白分子,特别是IgG类免疫球蛋白的部分。
37.依照权利要求25-36任一项的T细胞活化性双特异性抗原结合分子,其中所述Fc域是IgG Fc域,具体是IgG1或IgG4Fc域。
38.依照权利要求25-37任一项的T细胞活化性双特异性抗原结合分子,其中所述Fc域是人Fc域。
39.依照权利要求25-38任一项的T细胞活化性双特异性抗原结合分子,其中所述Fc域包含促进所述Fc域的第一亚基和第二亚基联合的修饰。
40.依照权利要求39的T细胞活化性双特异性抗原结合分子,其中在所述Fc域的第一亚基的CH3域中一个氨基酸残基用具有更大侧链体积的氨基酸残基替换,由此在第一亚基的CH3域内生成隆起,所述隆起可安置于第二亚基的CH3域内的空腔中,且在所述Fc域的第二亚基的CH3域中一个氨基酸残基用具有更小侧链体积的氨基酸残基替换,由此在第二亚基的CH3域内生成空腔,所述空腔内可安置第一亚基的CH3域内的隆起。
41.依照权利要求40的T细胞活化性双特异性抗原结合分子,其中所述具有更大侧链体积的氨基酸残基选自下组:精氨酸(R),苯丙氨酸(F),酪氨酸(Y),和色氨酸(W),且所述具有更小侧链体积的氨基酸残基选自下组:丙氨酸(A),丝氨酸(S),苏氨酸(T),和缬氨酸(V)。
42.依照权利要求40或41的T细胞活化性双特异性抗原结合分子,其中在所述Fc域的第一亚基的CH3域中位置366处的苏氨酸残基用色氨酸残基替换(T366W),且在所述Fc域的第二亚基的CH3域中位置407处的酪氨酸残基用缬氨酸残基替换(Y407V),且任选在所述Fc域的第二亚基中另外地位置366处的苏氨酸残基用丝氨酸残基替换(T366S)且位置368处的亮氨酸残基用丙氨酸残基替换(L368A)(编号方式依照Kabat EU索引)。
43.依照权利要求40-42任一项的T细胞活化性双特异性抗原结合分子,其中在所述Fc域的第一亚基中另外地位置354处的丝氨酸残基用半胱氨酸残基替换(S354C)或位置356处的谷氨酸残基用半胱氨酸残基替换(E356C),且在所述Fc域的第二亚基中另外地位置349处的酪氨酸残基用半胱氨酸残基替换(Y349C)(编号方式依照Kabat EU索引)。
44.依照权利要求40-43任一项的T细胞活化性双特异性抗原结合分子,其中所述Fc域的第一亚基包含氨基酸替代S354C和T366W,且所述Fc域的第二亚基包含氨基酸替代Y349C,T366S,L368A和Y407V(编号方式依照Kabat EU索引)。
45.依照权利要求25-44任一项的T细胞活化性双特异性抗原结合分子,其中所述Fc域展现与天然IgG1Fc域相比降低的对Fc受体的结合亲和力和/或降低的效应器功能。
46.依照权利要求25-45任一项的T细胞活化性双特异性抗原结合分子,其中所述Fc域包含一处或多处降低对Fc受体的结合和/或效应器功能的氨基酸替代。
47.依照权利要求46的T细胞活化性双特异性抗原结合分子,其中所述一处或多处氨基酸替代在选自下组的一个或多个位置处:L234,L235和P329(Kabat EU索引编号方式)。
48.依照权利要求25-47任一项的T细胞活化性双特异性抗原结合分子,其中所述Fc域的每个亚基包含三处降低对活化性Fc受体的结合和/或效应器功能的氨基酸替代,其中所述氨基酸替代是L234A,L235A和P329G(Kabat EU索引编号方式)。
49.依照权利要求45-48任一项的T细胞活化性双特异性抗原结合分子,其中所述Fc受体是Fcγ受体。
50.依照权利要求45-49任一项的T细胞活化性双特异性抗原结合分子,其中所述效应器功能是抗体依赖性细胞介导的细胞毒性(ADCC)。
51.一种或多种分离的多核苷酸,其编码权利要求1-50任一项的T细胞活化性双特异性抗原结合分子。
52.一种或多种载体,特别是表达载体,其包含权利要求51的多核苷酸。
53.一种宿主细胞,其包含权利要求50的多核苷酸或权利要求52的载体。
54.一种生成能够特异性结合STEAP-1和活化性T细胞抗原的T细胞活化性双特异性抗原结合分子的方法,其包括下述步骤:
a)在适合于表达所述T细胞活化性双特异性抗原结合分子的条件下培养权利要求53的宿主细胞,并
b)任选回收所述T细胞活化性双特异性抗原结合分子。
55.一种T细胞活化性双特异性抗原结合分子,其通过权利要求54的方法生成。
56.一种药物组合物,其包含权利要求1-50或55任一项的T细胞活化性双特异性抗原结合分子和药学可接受载剂。
57.权利要求1-50或55任一项的T细胞活化性双特异性抗原结合分子或权利要求56的药物组合物,其用作药物。
58.权利要求1-50或55任一项的T细胞活化性双特异性抗原结合分子或权利要求56的药物组合物,其用于治疗有所需要的个体中的疾病。
59.权利要求58的T细胞活化性双特异性抗原结合分子或药物组合物,其中所述疾病是癌症。
60.权利要求1-50或55任一项的T细胞活化性双特异性抗原结合分子制造用于治疗有所需要的个体中的疾病的药物的用途。
61.一种治疗个体中的疾病的方法,其包括对所述个体施用治疗有效量的组合物,所述组合物包含药学可接受形式的权利要求1-50或55任一项的T细胞活化性双特异性抗原结合分子。
62.权利要求60的用途或权利要求61的方法,其中所述疾病是癌症。
63.一种用于诱导靶细胞裂解的方法,其包括在T细胞存在下使靶细胞与权利要求1-50或55任一项的T细胞活化性双特异性抗原结合分子接触。
64.如说明书所述的发明。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15188037 | 2015-10-02 | ||
EP15188037.4 | 2015-10-02 | ||
PCT/EP2016/073170 WO2017055388A2 (en) | 2015-10-02 | 2016-09-29 | Bispecific t cell activating antigen binding molecules |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107949574A true CN107949574A (zh) | 2018-04-20 |
Family
ID=54256607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680051890.6A Pending CN107949574A (zh) | 2015-10-02 | 2016-09-29 | 双特异性t细胞活化性抗原结合分子 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20170096495A1 (zh) |
EP (1) | EP3356409A2 (zh) |
JP (1) | JP2018533930A (zh) |
CN (1) | CN107949574A (zh) |
AR (1) | AR106199A1 (zh) |
HK (1) | HK1254068A1 (zh) |
TW (1) | TW201726735A (zh) |
WO (1) | WO2017055388A2 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112424228A (zh) * | 2018-07-04 | 2021-02-26 | 豪夫迈·罗氏有限公司 | 新型双特异性激动性4-1bb抗原结合分子 |
CN113621062A (zh) * | 2018-12-21 | 2021-11-09 | 豪夫迈·罗氏有限公司 | 与cd3结合的抗体 |
WO2022007807A1 (zh) * | 2020-07-07 | 2022-01-13 | 百奥泰生物制药股份有限公司 | 双特异性抗体及其应用 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090162359A1 (en) | 2007-12-21 | 2009-06-25 | Christian Klein | Bivalent, bispecific antibodies |
US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
KR101638224B1 (ko) | 2011-02-28 | 2016-07-08 | 에프. 호프만-라 로슈 아게 | 항원 결합 단백질 |
CN103403025B (zh) | 2011-02-28 | 2016-10-12 | 弗·哈夫曼-拉罗切有限公司 | 单价抗原结合蛋白 |
EP2747781B1 (en) | 2011-08-23 | 2017-11-15 | Roche Glycart AG | Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use |
WO2014056783A1 (en) | 2012-10-08 | 2014-04-17 | Roche Glycart Ag | Fc-free antibodies comprising two fab-fragments and methods of use |
JP6499087B2 (ja) | 2013-02-26 | 2019-04-10 | ロシュ グリクアート アーゲー | 二重特異性t細胞活性化抗原結合分子 |
ES2775207T3 (es) | 2013-02-26 | 2020-07-24 | Roche Glycart Ag | Moléculas de unión a antígeno activadoras de linfocitos T biespecíficas específicas para CD3 y CEA |
JP6422956B2 (ja) | 2013-10-11 | 2018-11-14 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 多重特異性ドメイン交換共通可変軽鎖抗体 |
PL3177643T3 (pl) | 2014-08-04 | 2019-09-30 | F.Hoffmann-La Roche Ag | Dwuswoiste cząsteczki wiążące antygen aktywujące komórki T |
RS60615B1 (sr) | 2014-11-20 | 2020-08-31 | Hoffmann La Roche | Zajednički laki lanci i postupci upotrebe |
DK3789402T3 (da) | 2014-11-20 | 2022-09-19 | Hoffmann La Roche | Kombinationsbehandling med T-celleaktiverende bispecifikke antigenbindende molekyler og PD-1-aksebindende antagonister |
AR106188A1 (es) | 2015-10-01 | 2017-12-20 | Hoffmann La Roche | Anticuerpos anti-cd19 humano humanizados y métodos de utilización |
EP3356410B1 (en) | 2015-10-02 | 2021-10-20 | F. Hoffmann-La Roche AG | Bispecific anti-ceaxcd3 t cell activating antigen binding molecules |
AU2016368469B2 (en) | 2015-12-09 | 2023-11-02 | F. Hoffmann-La Roche Ag | Type II anti-CD20 antibody for reducing formation of anti-drug antibodies |
AR107303A1 (es) | 2016-01-08 | 2018-04-18 | Hoffmann La Roche | Métodos de tratamiento de cánceres positivos para ace utilizando antagonistas de unión a eje pd-1 y anticuerpos biespecíficos anti-ace / anti-cd3, uso, composición, kit |
SI3433280T1 (sl) | 2016-03-22 | 2023-07-31 | F. Hoffmann-La Roche Ag | S proteazo aktivirane bispecifične molekule celic T |
WO2018060301A1 (en) | 2016-09-30 | 2018-04-05 | F. Hoffmann-La Roche Ag | Bispecific antibodies against cd3 |
CN111065650A (zh) * | 2017-07-21 | 2020-04-24 | 特里安尼公司 | 单链VH-L1-Cκ-L2-CH1-抗体 |
CN109422815A (zh) * | 2017-08-28 | 2019-03-05 | 复旦大学 | 双特异性嵌合抗原受体c-Met/PD-1 scFv-CAR-T及其构建方法和应用 |
AR115360A1 (es) | 2018-02-08 | 2021-01-13 | Genentech Inc | Moléculas de unión al antígeno y métodos de uso |
CN111742219A (zh) * | 2018-03-01 | 2020-10-02 | 豪夫迈·罗氏有限公司 | 用于新颖靶抗原结合模块的特异性测定法 |
MA53094A (fr) * | 2018-07-02 | 2021-05-12 | Amgen Inc | Protéine de liaison à l'antigène anti-steap1 |
WO2020018695A1 (en) * | 2018-07-18 | 2020-01-23 | Amgen Inc. | Chimeric receptors to steap1 and methods of use thereof |
JP7090780B2 (ja) * | 2018-12-21 | 2022-06-24 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Cd3に結合する抗体 |
CN113329770A (zh) * | 2019-01-24 | 2021-08-31 | 中外制药株式会社 | 新型癌抗原及所述抗原的抗体 |
AU2020343652A1 (en) * | 2019-09-05 | 2022-03-24 | Memorial Sloan Kettering Cancer Center | Anti-STEAP1 antibodies and uses thereof |
CA3153085A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 and cd19 |
WO2023161457A1 (en) | 2022-02-27 | 2023-08-31 | Evobright Gmbh | Bispecific antibodies against cd277 and a tumor-antigen |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101903404A (zh) * | 2007-12-21 | 2010-12-01 | 霍夫曼-拉罗奇有限公司 | 二价双特异性抗体 |
WO2014165818A2 (en) * | 2013-04-05 | 2014-10-09 | T Cell Therapeutics, Inc. | Compositions and methods for preventing and treating prostate cancer |
WO2015101586A1 (en) * | 2014-01-03 | 2015-07-09 | F. Hoffmann-La Roche Ag | Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles |
WO2015101588A1 (en) * | 2014-01-06 | 2015-07-09 | F. Hoffmann-La Roche Ag | Monovalent blood brain barrier shuttle modules |
CN104936986A (zh) * | 2013-02-26 | 2015-09-23 | 罗切格利卡特公司 | 双特异性t细胞活化性抗原结合分子 |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1156905B (it) | 1977-04-18 | 1987-02-04 | Hitachi Metals Ltd | Articolo di ornamento atto ad essere fissato mediante un magnete permanente |
US6548640B1 (en) | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
IL85035A0 (en) | 1987-01-08 | 1988-06-30 | Int Genetic Eng | Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same |
DE68913658T3 (de) | 1988-11-11 | 2005-07-21 | Stratagene, La Jolla | Klonierung von Immunglobulin Sequenzen aus den variablen Domänen |
DE3920358A1 (de) | 1989-06-22 | 1991-01-17 | Behringwerke Ag | Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung |
US5959177A (en) | 1989-10-27 | 1999-09-28 | The Scripps Research Institute | Transgenic plants expressing assembled secretory antibodies |
GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
US5571894A (en) | 1991-02-05 | 1996-11-05 | Ciba-Geigy Corporation | Recombinant antibodies specific for a growth factor receptor |
WO1992022653A1 (en) | 1991-06-14 | 1992-12-23 | Genentech, Inc. | Method for making humanized antibodies |
WO1994004679A1 (en) | 1991-06-14 | 1994-03-03 | Genentech, Inc. | Method for making humanized antibodies |
GB9114948D0 (en) | 1991-07-11 | 1991-08-28 | Pfizer Ltd | Process for preparing sertraline intermediates |
ES2136092T3 (es) | 1991-09-23 | 1999-11-16 | Medical Res Council | Procedimientos para la produccion de anticuerpos humanizados. |
US5587458A (en) | 1991-10-07 | 1996-12-24 | Aronex Pharmaceuticals, Inc. | Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof |
CA2372813A1 (en) | 1992-02-06 | 1993-08-19 | L.L. Houston | Biosynthetic binding protein for cancer marker |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
IL132560A0 (en) | 1997-05-02 | 2001-03-19 | Genentech Inc | A method for making multispecific antibodies having heteromultimeric and common components |
US6040498A (en) | 1998-08-11 | 2000-03-21 | North Caroline State University | Genetically engineered duckweed |
WO1999029888A1 (en) | 1997-12-05 | 1999-06-17 | The Scripps Research Institute | Humanization of murine antibody |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
PT1222292E (pt) | 1999-10-04 | 2005-11-30 | Medicago Inc | Metodo para regulacao da transcricao de genes exogenos na presenca de azoto |
US7125978B1 (en) | 1999-10-04 | 2006-10-24 | Medicago Inc. | Promoter for regulating expression of foreign genes |
JP5128935B2 (ja) | 2004-03-31 | 2013-01-23 | ジェネンテック, インコーポレイテッド | ヒト化抗TGF−β抗体 |
EP2360186B1 (en) | 2004-04-13 | 2017-08-30 | F. Hoffmann-La Roche AG | Anti-P-selectin antibodies |
TWI380996B (zh) | 2004-09-17 | 2013-01-01 | Hoffmann La Roche | 抗ox40l抗體 |
AU2006211037B2 (en) | 2005-02-07 | 2012-05-24 | Roche Glycart Ag | Antigen binding molecules that bind EGFR, vectors encoding same, and uses thereof |
EP3050963B1 (en) | 2005-03-31 | 2019-09-18 | Chugai Seiyaku Kabushiki Kaisha | Process for production of polypeptide by regulation of assembly |
JP5474531B2 (ja) | 2006-03-24 | 2014-04-16 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 操作されたヘテロ二量体タンパク質ドメイン |
EP2035456A1 (en) | 2006-06-22 | 2009-03-18 | Novo Nordisk A/S | Production of bispecific antibodies |
RU2639543C9 (ru) * | 2006-10-27 | 2018-06-14 | Дженентек, Инк. | Антитела и иммуноконъюгаты и их применения |
JP5394246B2 (ja) * | 2007-03-30 | 2014-01-22 | ジェネンテック, インコーポレイテッド | 抗体及びイムノコンジュゲートとこれらの使用方法 |
US8242247B2 (en) | 2007-12-21 | 2012-08-14 | Hoffmann-La Roche Inc. | Bivalent, bispecific antibodies |
US8227577B2 (en) | 2007-12-21 | 2012-07-24 | Hoffman-La Roche Inc. | Bivalent, bispecific antibodies |
US9266967B2 (en) | 2007-12-21 | 2016-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
HUE028536T2 (en) | 2008-01-07 | 2016-12-28 | Amgen Inc | Method for producing antibody to FC heterodimer molecules using electrostatic control effects |
MX2011004748A (es) * | 2008-11-20 | 2011-05-25 | Genentech Inc | Formulaciones de proteina terapeutica. |
EP2424567B1 (en) | 2009-04-27 | 2018-11-21 | OncoMed Pharmaceuticals, Inc. | Method for making heteromultimeric molecules |
ME02505B (me) | 2009-12-29 | 2017-02-20 | Aptevo Res & Development Llc | Heterodimerni vezujući proteini i njihove upotrebe |
JP6022444B2 (ja) | 2010-05-14 | 2016-11-09 | ライナット ニューロサイエンス コーポレイション | ヘテロ二量体タンパク質ならびにそれを生産および精製するための方法 |
RS59589B1 (sr) | 2010-11-05 | 2019-12-31 | Zymeworks Inc | Dizajniranje stabilnog heterodimernog antitela sa mutacijama u fc domenu |
HUE041335T2 (hu) | 2011-03-29 | 2019-05-28 | Roche Glycart Ag | Antitest FC-variánsok |
SI2794905T1 (sl) | 2011-12-20 | 2020-08-31 | Medimmune, Llc | Modificirani polipeptidi za ogrodja bispecifičnega protitelesa |
AU2013249985B2 (en) | 2012-04-20 | 2017-11-23 | Merus N.V. | Methods and means for the production of Ig-like molecules |
WO2014056783A1 (en) * | 2012-10-08 | 2014-04-17 | Roche Glycart Ag | Fc-free antibodies comprising two fab-fragments and methods of use |
WO2014131711A1 (en) * | 2013-02-26 | 2014-09-04 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
US20140302037A1 (en) * | 2013-03-15 | 2014-10-09 | Amgen Inc. | BISPECIFIC-Fc MOLECULES |
EP2789630A1 (en) * | 2013-04-09 | 2014-10-15 | EngMab AG | Bispecific antibodies against CD3e and ROR1 |
RU2016129959A (ru) * | 2013-12-30 | 2018-02-02 | Эпимаб Биотерепьютикс Инк. | Иммуноглобулин с тандемным расположением fab-фрагментов и его применение |
-
2016
- 2016-09-29 AR ARP160102984A patent/AR106199A1/es unknown
- 2016-09-29 WO PCT/EP2016/073170 patent/WO2017055388A2/en active Application Filing
- 2016-09-29 JP JP2018516847A patent/JP2018533930A/ja active Pending
- 2016-09-29 CN CN201680051890.6A patent/CN107949574A/zh active Pending
- 2016-09-29 US US15/279,738 patent/US20170096495A1/en not_active Abandoned
- 2016-09-29 EP EP16775648.5A patent/EP3356409A2/en not_active Withdrawn
- 2016-09-30 TW TW105131767A patent/TW201726735A/zh unknown
-
2018
- 2018-10-15 HK HK18113132.2A patent/HK1254068A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101903404A (zh) * | 2007-12-21 | 2010-12-01 | 霍夫曼-拉罗奇有限公司 | 二价双特异性抗体 |
CN104936986A (zh) * | 2013-02-26 | 2015-09-23 | 罗切格利卡特公司 | 双特异性t细胞活化性抗原结合分子 |
WO2014165818A2 (en) * | 2013-04-05 | 2014-10-09 | T Cell Therapeutics, Inc. | Compositions and methods for preventing and treating prostate cancer |
WO2015101586A1 (en) * | 2014-01-03 | 2015-07-09 | F. Hoffmann-La Roche Ag | Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles |
WO2015101588A1 (en) * | 2014-01-06 | 2015-07-09 | F. Hoffmann-La Roche Ag | Monovalent blood brain barrier shuttle modules |
Non-Patent Citations (4)
Title |
---|
AMELIA M HUEHLS, TIFFANY A COUPET AND CHARLES L SENTMAN: "Bispecific T-cell engagers for cancer immunotherapy", 《IMMUNOLOGY AND CELL BIOLOGY》 * |
WOLFGANG SCHAEFER等: "Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies", 《PNAS》 * |
来茂德: "《医学分子生物学》", 30 September 1999 * |
赵喜雁,刘展: "STEAP蛋白在大肠癌中表达及临床意义", 《实用医学杂志》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112424228A (zh) * | 2018-07-04 | 2021-02-26 | 豪夫迈·罗氏有限公司 | 新型双特异性激动性4-1bb抗原结合分子 |
CN112424228B (zh) * | 2018-07-04 | 2024-08-09 | 豪夫迈·罗氏有限公司 | 新型双特异性激动性4-1bb抗原结合分子 |
CN113621062A (zh) * | 2018-12-21 | 2021-11-09 | 豪夫迈·罗氏有限公司 | 与cd3结合的抗体 |
WO2022007807A1 (zh) * | 2020-07-07 | 2022-01-13 | 百奥泰生物制药股份有限公司 | 双特异性抗体及其应用 |
Also Published As
Publication number | Publication date |
---|---|
TW201726735A (zh) | 2017-08-01 |
US20170096495A1 (en) | 2017-04-06 |
EP3356409A2 (en) | 2018-08-08 |
AR106199A1 (es) | 2017-12-20 |
WO2017055388A2 (en) | 2017-04-06 |
HK1254068A1 (zh) | 2019-07-12 |
JP2018533930A (ja) | 2018-11-22 |
WO2017055388A3 (en) | 2017-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107949574A (zh) | 双特异性t细胞活化性抗原结合分子 | |
CN108026179A (zh) | 结合间皮素和cd3的双特异性t细胞活化性抗原结合分子 | |
CN107849137A (zh) | 双特异性抗ceaxcd3 t细胞活化性抗原结合分子 | |
CN108026177A (zh) | 双特异性抗cd19xcd3 t细胞活化性抗原结合分子 | |
CN104936986B (zh) | 双特异性t细胞活化性抗原结合分子 | |
CN109843926A (zh) | 针对cd3的双特异性抗体 | |
TWI756164B (zh) | 活化t細胞之雙特異性抗原結合分子 | |
CN106661120A (zh) | 双特异性t细胞活化性抗原结合分子 | |
CN103748114B (zh) | T细胞活化性双特异性抗原结合分子 | |
JP6918789B2 (ja) | 高親和性を有する抗ヒトcdc19抗体 | |
US11242390B2 (en) | Protease-activated T cell bispecific molecules | |
CN107207609A (zh) | 共同轻链和使用方法 | |
CN104540848A (zh) | 白介素-10融合蛋白及其用途 | |
CN109415435A (zh) | 新型抗体形式 | |
KR20230025667A (ko) | 프로테아제 활성화된 t 세포 이중특이성 항체 | |
CN110494452A (zh) | 结合steap-1的抗体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1254068 Country of ref document: HK |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180420 |