CN107910390A - 一种银单质掺杂的CZTSSe薄膜的制备方法和应用 - Google Patents

一种银单质掺杂的CZTSSe薄膜的制备方法和应用 Download PDF

Info

Publication number
CN107910390A
CN107910390A CN201711143332.5A CN201711143332A CN107910390A CN 107910390 A CN107910390 A CN 107910390A CN 201711143332 A CN201711143332 A CN 201711143332A CN 107910390 A CN107910390 A CN 107910390A
Authority
CN
China
Prior art keywords
caztsse
preparation
films
cztsse
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711143332.5A
Other languages
English (en)
Other versions
CN107910390B (zh
Inventor
程树英
余雪
严琼
武四新
田庆文
贾宏杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711143332.5A priority Critical patent/CN107910390B/zh
Publication of CN107910390A publication Critical patent/CN107910390A/zh
Application granted granted Critical
Publication of CN107910390B publication Critical patent/CN107910390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • H01L31/0327Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种银单质掺杂的CZTSSe薄膜制备方法及其在柔性太阳电池中的应用。通过Ag掺杂可以改善薄膜的质量,有效提高器件的开路电压、填充因子、光电转换效率以及有效改善带尾态现象,实验的可重复性和稳定性较好,在太阳电池方面有较好的应用价值。

Description

一种银单质掺杂的CZTSSe薄膜的制备方法和应用
技术领域
本发明涉及一种银单质掺杂的CZTSSe薄膜制备方法及其在柔性太阳电池中的应用,属于薄膜太阳电池技术领域。
背景技术
得益于成本及技术优势,以CdTe、Cu(In,Ga)Se2(CIGS)为代表的化合物薄膜电池近年来保持了强劲的发展势头。然而,CIGS及CdTe等主流薄膜太阳能电池在面向未来TW量级规模化生产时受到了原材料稀缺(In,Ga)以及组成元素有毒(Cd)等因素的限制。与上述材料体系相比,Cu2ZnSn(SSe)4(CZTSSe),带隙在1.0-1.5eV范围内连续可调,其理论转换效率可达31%以上。同时,CZTSSe在可见光范围内高达104cm-1的吸收系数,为理想的光吸收层材料。
到目前为止,最高效率Cu2ZnSnSe4(CZTSe)太阳能电池的短路电流密度(Jsc)最高为40.6mA/cm2,已达Shockley-Queisser理论值的80%以上,接近高效CIGS器件的电流密度水平,而开路电压(Voc)和填充因子(FF)最高仅为423mV和67.3%;而最高转化效率的CZTS及CZTSSe太阳电池的开路电压损失(Voc-deficit)分别为789mV和603mV,FF最高值分别为60.9%和70%。显然,该类电池的开路电压损耗以及填充因子损失与理论值相差较大,与高效率得到CIGS太阳电池相比仍有很大的提升空间,因此,减少开路电压损耗(Voc-deficit)和填充因子损失(FF-deficit)是提高CZTS体系太阳电池的关键。
CZTS四元体系相图中的纯相稳定区域非常狭窄,偏离该区域则很容易形成二元三元杂相,因此实验上普遍认同贫铜富锌的元素组成(Cu/Zn+Sn>0.8;Zn/Sn>1.2)在改善薄膜P型导电性的同时可以有效控制铜基杂相产生,但是在非化学计量比的条件下杂相的形成是很难避免的。因此,可以预期,在成膜过程中若将金属源、硫源、硒源以单质形式作为吸收层的原料,更容易调节贫铜富锌的化学计量比,减少引入杂质,减少二次、三次相的形成,得到纯相的CAZTSSe。
另一方面,Cu和Zn在元素周期表中的位置相邻,原子尺寸相差不大,因此Cu和Zn之间很容易发生异位交换导致局部无序的kesterite结构,这也被认为是CZTS材料体系中CuZn和ZnCn反位缺陷形成的主要原因。Ag原子半径远大于Zn原子半径,若以Ag原子部分替代Cu原子,则能够一定程度上减少具有受主特性CuZn反位缺陷的形成,从而有效调节吸收层的带隙和本征掺杂水平,提高成膜质量。因此,可以预期,在成膜过程中引入Ag原子将大幅改善CZTSSe太阳电池的开路电压及填充因子。
发明内容
本发明的目的在于提供一种银单质掺杂的CZTSSe薄膜制备方法及其在柔性太阳电池中的应用。
本发明通过将金属单质(Cu、Zn、Sn、Ag)及硫源、硒源溶解在特定的溶剂中加热搅拌,再加入稳定剂,加热搅拌得到均匀的金属分子前驱体溶液,将前驱体溶液利用旋涂方法制备在特定的衬底上,经退火处理后在衬底上形成掺银的CZTSSe前驱体薄膜,经后硒化处理得到高质量的银掺杂CZTSSe(CAZTSSe)吸收层薄膜,制备过程简单,对反应条件要求较低,不需要昂贵的大型仪器设备,适于规模化生产。
一种银单质掺杂的CZTSSe薄膜材料,通过以下方法制备得到:
1)配置不同Ag含量的CZTSSe前驱体溶液,Cu+Ag的总浓度保持在0.2mol/L,将单质铜、锌、锡、硫、硒、银按照一定的比例加入有机溶剂中,加热搅拌至完全溶解后,加入稳定剂继续搅拌至完全溶解形成稳定的CAZTSSe前驱体溶液;
2)将柔性衬底依次进行清洗、烘干;
3)将前驱体溶液反复旋涂到柔性衬底上,经退火处理后在柔性衬底上制备CAZTSSe预制层,退火温度为200~500℃;
4)将经步骤3)处理后的样品置于RTP硒化炉中进行后硒化处理,硒化温度范围为400~600℃,保持硒化温度处理8~30min,升温速率为6℃/s~10℃/s,在整个硒化处理过程中持续通保护气体,制得CAZTSSe薄膜;
步骤2)中对柔性衬底进行清洗烘干具体指:将钼衬底依次在浓硫酸和甲醇混合溶液中利用电化学技术进行清洗,在无水乙醇中超声清洗,在去离子水中超声清洗,之后将钼衬底在干燥箱中烘干;或将溅射Mo的柔性聚酰亚胺薄膜依次在在无水乙醇中超声清洗,在去离子水中超声清洗,之后将衬底在干燥箱中烘干。
所述CAZTSSe薄膜中Ag/(Cu+Ag)的摩尔百分比为3%、4%、5%或6%。
步骤1)中的有机溶剂是指乙二胺和乙二硫醇的混合液。
步骤1)中的稳定剂是指乙醇胺、巯基乙酸和乙二醇甲醚的混合液。
CAZTSSe薄膜的厚度为1.5~3微米。
所述特定的衬底是指柔性衬底,具体指柔性钼箔、溅射Mo的聚酰亚胺。
一种银单质掺杂的CZTSSe薄膜在柔性太阳电池中的应用,具体包括以下步骤:
1)取大烧杯一支,依次加入去离子水和镉盐,搅拌至完全溶解,加入氨水,搅拌均匀,放入CAZTSSe薄膜,加入硫脲,形成溶液a,薄膜在溶液a中水浴
法沉积硫化镉缓冲层,水浴温度为60~75℃,沉积8~12min,经清洁干燥处理得到硫化镉缓冲层;
2)采用射频磁控溅射方法在1)所得的硫化镉缓冲层上沉积本征氧化锌薄膜,工艺参数为:溅射气体是Ar气,本底真空度<1.5×10-5Pa,工作真空度为1Pa,射频溅射功率为80W,溅射时间为25min,衬底温度为室温,所得i-ZnO薄膜厚度为50nm;
3)采用直流磁控溅射方法在2)所得的i-ZnO薄膜上沉积ITO导电层,工艺参数为:溅射气体是Ar气,本底真空度<1.5×10-5Pa,工作真空度为1Pa,射频溅射功率为75W,溅射时间为15min,衬底温度为室温,所得i-ZnO薄膜厚度为200nm;
4)采用热蒸发的方式制备银电极,工艺参数为:本底真空度<6.0×10-4Pa,衬底温度为室温,所得Ag电极厚度为500nm;
所述经清洁干燥处理得到的硫化镉缓冲层,其清洁步骤为:依次用自来水、去离子水、无水乙醇洗片,干燥处理为:烘箱烘干,温度为60~80℃,时间为20~30min。
所述镉盐为硫酸盐,氯化盐或醋酸盐。
所述溶液a中镉的浓度为0.0014~0.002mol/L,硫的浓度为0.005~0.01mol/L,氨水的质量百分比浓度为25%~28%。
所述硫化镉缓冲层的厚度为20~100nm。
本发明与现有技术相比具有的优点:
所有的金属源和硫源硒源都是单质,不引入其他杂质,容易控制化学计量比。
通过Ag掺杂可以改善薄膜的质量,有效提高器件的开路电压、填充因子、光电转换效率以及有效改善带尾态现象,实验的可重复性和稳定性较好,在太阳电池方面有较好的应用价值。
所用的稳定剂能够使溶液长时间保持较为稳定状态,减少后硒化处理的落硒现象。
所用的有机溶剂绿色环保,对制作环境要求低。
附图说明
图1是CZTSSe(a)及CAZTSSe(b)吸收层薄膜的典型SEM图;
图2是实施例1-5中CAZTSSe薄膜太阳电池随掺Ag比例变化的J-V特性曲线;
图3是实施例1-5的CAZTSSe吸收层薄膜随掺Ag比例变化的XRD图(a)及XRD局部放大图(b);
图4是实施例1-5的CAZTSSe吸收层薄膜随掺Ag比例变化的Raman图。
具体实施方式
该银单质掺杂的CZTSSe薄膜太阳电池包括柔性衬底、银掺杂CZTSSe(CAZTSSe)吸收层、硫化镉缓冲层、本征氧化锌窗口层、ITO透明导电层及银电极。本发明核心为:在前驱体溶液引入金属单质、硫单质和硒单质,尤其是在吸收层中掺杂适量的单质银提高了电池效率;同时,在前驱体溶液中加入稳定剂,提高溶液的稳定性和改善落硒现象。
实施例1
(1)将单质铜0.0699g、锌0.0494g、锡0.0859g、硫0.0857g、硒0.0234g加入至5.5mL的乙二胺和乙二硫醇混合溶液中,加热搅拌1.5h至完全溶解,加入稳定剂1mL(乙醇胺、巯基乙酸、乙二醇甲醚的混合溶液)加热搅拌0.5h,形成可乐色的CZTSSe前驱体溶液;
(2)利用匀胶机将CZTSSe前驱体旋涂到清洁干净的柔性衬底上,然后在热台上350℃退火处理1min,反复旋涂9次;
(3)待旋涂完毕后将样品置于RTP硒化炉中480℃硒化20min,升温速率为8℃/s,自然降温,在退火过程中,持续通保护气体N2,流量为80sccm,即可得到厚度约为2μm的未掺杂的CZTSSe薄膜(如附图1(a)所示);
(4)在65℃条件下化学浴沉积CdS缓冲层(~30nm);
(5)射频磁控溅射制备本征氧化锌窗口层(~50nm);
(6)直流磁控溅射ITO透明导电层(~200nm);
(7)热蒸发制备金属银电极(~500nm)。
按照上述步骤制备的CZTSSe薄膜太阳电池结构为:Mo/CZTSSe/CdS/i-ZnO/ITO/Ag。通过此方法制备的太阳电池效率为4.9%,开路电压为337mV,短路电流密度为30.64 mA/cm2,填充因子为47.3%(如附图2所示)。
实施例2
(1)将单质铜0.0678g、银0.0036g、锌0.0494g、锡0.0859g、硫0.0857g、硒0.0234g加入至5.5mL的乙二胺和乙二硫醇混合溶液中,加热搅拌1.5h至完全溶解,加入稳定剂1mL(乙醇胺、巯基乙酸、乙二醇甲醚的混合溶液)加热搅拌0.5h,形成金黄色的CAZTSSe前驱体溶液;
(2)利用匀胶机将CAZTSSe前驱体旋涂到清洁干净的柔性Mo衬底上,然后在热台上350℃退火处理1min,反复旋涂9次;
(3)待旋涂完毕后将样品置于RTP硒化炉中480℃硒化20min,升温速率为8℃/s,自然降温,在退火过程中,持续通保护气体N2,流量为80sccm,即可得到厚度约为2μm的掺杂3%Ag的CAZTSSe薄膜;
(4)在65℃条件下化学浴沉积CdS缓冲层(~30nm);
(5)射频磁控溅射制备本征氧化锌窗口层(~50nm);
(6)直流磁控溅射ITO透明导电层(~200nm);
(7)热蒸发制备金属银电极(~500nm)。
按照上述步骤制备的CAZTSSe薄膜太阳电池结构为:Mo/CAZTSSe/CdS/i-ZnO/ITO/Ag。通过此方法制备的太阳电池效率为5.08%,开路电压为340mV,短路电流密度为26.84mA/cm2,填充因子为55.68%(如附图2所示)。
实施例3
(1)将单质铜0.0671g、银0.0047g、锌0.0494g、锡0.0859g、硫0.0857g、硒0.0234g加入至5.5mL的乙二胺和乙二硫醇混合溶液中,加热搅拌1.5h至完全溶解,加入稳定剂1mL(乙醇胺、巯基乙酸、乙二醇甲醚的混合溶液)加热搅拌0.5h,形成金黄色的CAZTSSe前驱体溶液;
(2)利用匀胶机将CAZTSSe前驱体旋涂到清洁干净的柔性Mo衬底上,然后在热台上350℃退火处理1min,反复旋涂9次;
(3)待旋涂完毕后将样品置于RTP硒化炉中480℃硒化20min,升温速率为8℃/s,自然降温,在退火过程中,持续通保护气体N2,流量为80sccm,即可得到厚度约为2μm的掺杂4%Ag的CAZTSSe薄膜(如附图1(b)所示);
(4)在65℃条件下化学浴沉积CdS缓冲层(~30nm);
(5)射频磁控溅射制备本征氧化锌窗口层(~50nm);
(6)直流磁控溅射ITO透明导电层(~200nm);
(7)热蒸发制备金属银电极(~500nm)。
按照上述步骤制备的CAZTSSe薄膜太阳电池结构为:Mo/CAZTSSe/CdS/i-ZnO/ITO/Ag。通过此方法制备的太阳电池效率为6.24%,开路电压为358mV,短路电流密度为31.50mA/cm2,填充因子为55.27%(如附图2所示)。
实施例4
(1)将单质铜0.0664g、银0.0059g、锌0.0494g、锡0.0859g、硫0.0857g、硒0.0234g加入至5.5mL的乙二胺和乙二硫醇混合溶液中,加热搅拌1.5h至完全溶解,加入稳定剂1mL(乙醇胺、巯基乙酸、乙二醇甲醚的混合溶液)加热搅拌0.5h,形成金黄色的CAZTSSe前驱体溶液;
(2)利用匀胶机将CAZTSSe前驱体旋涂到清洁干净的柔性Mo衬底上,然后在热台上350℃退火处理1min,反复旋涂9次;
(3)待旋涂完毕后将样品置于RTP硒化炉中480℃硒化20min,升温速率为8℃/s,自然降温,在退火过程中,持续通保护气体N2,流量为80sccm,即可得到厚度约为2μm的掺杂5%Ag的CAZTSSe薄膜;
(4)在65℃条件下化学浴沉积CdS缓冲层(~30nm);
(5)射频磁控溅射制备本征氧化锌窗口层(~50nm);
(6)直流磁控溅射ITO透明导电层(~200nm);
(7) 热蒸发制备金属银电极(~500nm)。
按照上述步骤制备的CAZTSSe薄膜太阳电池结构为:Mo/CAZTSSe/CdS/i-ZnO/ITO/Ag。通过此方法制备的太阳电池效率为6.0%,开路电压为353mV,短路电流密度为32.65mA/cm2,填充因子为52.06%(如附图2所示)。
实施例5
(1)将单质铜0.0657g、银0.0071g、锌0.0494g、锡0.0859g、硫0.0857g、硒0.0234g加入至5.5mL的乙二胺和乙二硫醇混合溶液中,加热搅拌1.5h至完全溶解,加入稳定剂1mL(乙醇胺、巯基乙酸、乙二醇甲醚的混合溶液)加热搅拌0.5h,形成金黄色的CAZTSSe前驱体溶液;
(2)利用匀胶机将CAZTSSe前驱体旋涂到清洁干净的柔性Mo衬底上,然后在热台上350℃退火处理1min,反复旋涂9次;
(3)待旋涂完毕后将样品置于RTP硒化炉中480℃硒化20min,升温速率为8℃/s,自然降温,在退火过程中,持续通保护气体N2,流量为80sccm,即可得到厚度约为2μm的掺杂6%的CAZTSSe薄膜;
(4)在65℃条件下化学浴沉积CdS缓冲层(~30nm);
(5)射频磁控溅射制备本征氧化锌窗口层(~50nm);
(6)直流磁控溅射ITO透明导电层(~200nm);
(7)热蒸发制备金属银电极(~500nm)。
按照上述步骤制备的CAZTSSe薄膜太阳电池结构为:Mo/CAZTSSe/CdS/i-ZnO/ITO/Ag。通过此方法制备的太阳电池效率为4.6%,开路电压为332mV,短路电流密度为36.00mA/cm2,填充因子为38.58%(如附图2所示)。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

1.一种银单质掺杂的CZTSSe薄膜的制备方法,其特征在于,包括以下步骤:
1)配置不同Ag含量的CZTSSe前驱体溶液,Cu+Ag的总浓度保持在0.2mol/L,将单质铜、锌、锡、硫、硒、银按照一定的比例加入有机溶剂中,加热搅拌至完全溶解后,加入稳定剂继续搅拌至完全溶解形成稳定的CAZTSSe前驱体溶液;
2)将柔性衬底依次进行清洗、烘干;
3)将前驱体溶液反复旋涂到柔性衬底上,经退火处理后在柔性衬底上制备CAZTSSe预制层,退火温度为200~500℃;
4)将经步骤3)处理后的样品置于RTP硒化炉中进行后硒化处理,硒化温度范围为400~600℃,保持硒化温度处理8~30min,升温速率为6℃/s~10℃/s,在整个硒化处理过程中持续通保护气体,制得CAZTSSe薄膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤2)中对柔性衬底进行清洗烘干具体指将钼衬底依次在浓硫酸和甲醇混合溶液中利用电化学技术进行清洗,在无水乙醇中超声清洗,在去离子水中超声清洗,之后将钼衬底在干燥箱中烘干;或将溅射Mo的柔性聚酰亚胺薄膜依次在在无水乙醇中超声清洗,在去离子水中超声清洗,之后将衬底在干燥箱中烘干。
3.根据权利要求1所述的制备方法,其特征在于,所述CAZTSSe薄膜中Ag/(Cu+Ag)的摩尔百分比为3%、4%、5%或6%。
4.根据权利要求1所述的制备方法,其特征在于,步骤1)中的有机溶剂是指乙二胺和乙二硫醇的混合液。
5.根据权利要求1所述的制备方法,其特征在于,步骤1)中的稳定剂是指乙醇胺、巯基乙酸和乙二醇甲醚的混合液。
6.根据权利要求1所述的制备方法,其特征在于,CAZTSSe薄膜的厚度为1.5~3微米。
7.一种银单质掺杂的CZTSSe薄膜的应用,其特征在于,CAZTSSe薄膜材料在制备柔性太阳电池中的应用。
CN201711143332.5A 2017-11-17 2017-11-17 一种银单质掺杂的CZTSSe薄膜的制备方法和应用 Active CN107910390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711143332.5A CN107910390B (zh) 2017-11-17 2017-11-17 一种银单质掺杂的CZTSSe薄膜的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711143332.5A CN107910390B (zh) 2017-11-17 2017-11-17 一种银单质掺杂的CZTSSe薄膜的制备方法和应用

Publications (2)

Publication Number Publication Date
CN107910390A true CN107910390A (zh) 2018-04-13
CN107910390B CN107910390B (zh) 2019-07-09

Family

ID=61845889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711143332.5A Active CN107910390B (zh) 2017-11-17 2017-11-17 一种银单质掺杂的CZTSSe薄膜的制备方法和应用

Country Status (1)

Country Link
CN (1) CN107910390B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904259A (zh) * 2019-04-10 2019-06-18 广东工业大学 一种双掺杂铜锌锡硫薄膜及其制备方法
CN112397598A (zh) * 2020-11-17 2021-02-23 南京邮电大学 前驱体溶液及其制备银铜锌锡硫薄膜太阳能电池的方法
CN112531036A (zh) * 2020-12-15 2021-03-19 福州大学 一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用
CN113754310A (zh) * 2021-08-31 2021-12-07 河南大学 一种新型银铅硅硫硒薄膜光伏吸收层材料及其制备方法
CN114388660A (zh) * 2022-01-13 2022-04-22 黑龙江工业学院 一种降低CZTSSe薄膜中小晶粒层的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593252A (zh) * 2012-02-23 2012-07-18 中国科学院合肥物质科学研究院 一种制备铜锌锡硫薄膜太阳能电池光吸收层的方法
CN102627315A (zh) * 2012-04-25 2012-08-08 桂林理工大学 一种纤锌矿结构CZTS(Se)系粉体的制备方法
US20120231276A1 (en) * 2009-09-10 2012-09-13 Ecole Superieure Des Beaux-Arts De La Reunion Solid material in the divided state, process for the production of such a material, and use of such a material in a photovoltaic cell
CN104979429A (zh) * 2015-06-11 2015-10-14 岭南师范学院 一种微米级球形铜锌锡硫硒单晶颗粒的制备方法
CN106298995A (zh) * 2016-11-03 2017-01-04 中国科学院兰州化学物理研究所 一种银掺杂铜锌锡硫硒光吸收层薄膜材料及其在太阳能电池中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120231276A1 (en) * 2009-09-10 2012-09-13 Ecole Superieure Des Beaux-Arts De La Reunion Solid material in the divided state, process for the production of such a material, and use of such a material in a photovoltaic cell
CN102593252A (zh) * 2012-02-23 2012-07-18 中国科学院合肥物质科学研究院 一种制备铜锌锡硫薄膜太阳能电池光吸收层的方法
CN102627315A (zh) * 2012-04-25 2012-08-08 桂林理工大学 一种纤锌矿结构CZTS(Se)系粉体的制备方法
CN104979429A (zh) * 2015-06-11 2015-10-14 岭南师范学院 一种微米级球形铜锌锡硫硒单晶颗粒的制备方法
CN106298995A (zh) * 2016-11-03 2017-01-04 中国科学院兰州化学物理研究所 一种银掺杂铜锌锡硫硒光吸收层薄膜材料及其在太阳能电池中的应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904259A (zh) * 2019-04-10 2019-06-18 广东工业大学 一种双掺杂铜锌锡硫薄膜及其制备方法
CN109904259B (zh) * 2019-04-10 2021-05-11 广东工业大学 一种双掺杂铜锌锡硫薄膜及其制备方法
CN112397598A (zh) * 2020-11-17 2021-02-23 南京邮电大学 前驱体溶液及其制备银铜锌锡硫薄膜太阳能电池的方法
CN112531036A (zh) * 2020-12-15 2021-03-19 福州大学 一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用
CN113754310A (zh) * 2021-08-31 2021-12-07 河南大学 一种新型银铅硅硫硒薄膜光伏吸收层材料及其制备方法
CN114388660A (zh) * 2022-01-13 2022-04-22 黑龙江工业学院 一种降低CZTSSe薄膜中小晶粒层的方法

Also Published As

Publication number Publication date
CN107910390B (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN106298995B (zh) 一种银掺杂铜锌锡硫硒光吸收层薄膜材料及其在太阳能电池中的应用
CN107910390B (zh) 一种银单质掺杂的CZTSSe薄膜的制备方法和应用
Tao et al. 7.1% efficient co-electroplated Cu 2 ZnSnS 4 thin film solar cells with sputtered CdS buffer layers
Wang Progress in thin film solar cells based on
Jiang et al. Cu2ZnSnS4 thin film solar cells: present status and future prospects
WO2011029197A1 (en) Electrochemical method of producing copper indium gallium diselenide (cigs) solar cells
CN102034898A (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
CN107195697B (zh) 一种铜钡(锶/钙)锡硫(硒)薄膜的制备方法
Pawar et al. Effect of annealing atmosphere on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films
Baid et al. A comprehensive review on Cu 2 ZnSnS 4 (CZTS) thin film for solar cell: forecast issues and future anticipation
US20140144510A1 (en) Photoelectric conversion element and solar cell
US20130284270A1 (en) Compound semiconductor thin film solar cell and manufacturing method thereof
Li et al. Defects Passivation via Potassium Iodide Post‐Treatment for Antimony Selenosulfide Solar Cells with Improved Performance
KR20160070821A (ko) 높은 무크랙 한계를 갖는 cigs 나노 입자 잉크 제제
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
CN108400184A (zh) 一种铟单质掺杂的CZTSSe薄膜的制备方法和应用
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
WO2015120512A1 (en) A photovoltaic cell and a method of forming a photovoltaic cell
CN109904255B (zh) 一种Cr-Se共掺杂硫化锌太阳能电池缓冲层薄膜材料的制备方法
CN105118883B (zh) 一种低镉cigs基薄膜太阳能电池及其制备方法
CN104037267A (zh) 一种对铜锌锡硒薄膜太阳能电池吸收层改性的方法
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
US20150087107A1 (en) Method for manufacturing photoelectric conversion device
US20120309125A1 (en) Buffer layer deposition methods for group ibiiiavia thin film solar cells
KR20140132987A (ko) 틴이 도핑된 인듐 설파이드 박막의 제조방법 및 이를 버퍼층으로 이용한 cigs 박막태양전지의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant