CN112531036A - 一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用 - Google Patents

一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN112531036A
CN112531036A CN202011469652.1A CN202011469652A CN112531036A CN 112531036 A CN112531036 A CN 112531036A CN 202011469652 A CN202011469652 A CN 202011469652A CN 112531036 A CN112531036 A CN 112531036A
Authority
CN
China
Prior art keywords
film
cztsse
indium
silver
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011469652.1A
Other languages
English (en)
Other versions
CN112531036B (zh
Inventor
程树英
严琼
邓辉
孙全震
杨志远
谢暐昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202011469652.1A priority Critical patent/CN112531036B/zh
Publication of CN112531036A publication Critical patent/CN112531036A/zh
Application granted granted Critical
Publication of CN112531036B publication Critical patent/CN112531036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种柔性银铟双重梯度掺杂的CZTSSe薄膜的制备方法,采用溶液法溶解单质及后硒化处理的方式制备薄膜,由不同银或铟掺杂浓度的CZTSSe薄膜叠层构成,银含量从上往下梯度降低,铟含量从下往上梯度降低,可用于柔性太阳电池。本发明制得的银铟双重梯度掺杂的CZTSSe薄膜中,从下往上为P+型—P型—P/N+型的分布,薄膜内形成一个弱电场,这一电场促进空穴流向背接触界面、电子流向硫化镉和吸收层界面,增强对吸收层内部载流子的抽取能力,促进载流子的收集,提高了CZTSSe薄膜太阳电池的光电转换效率。

Description

一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和 应用
技术领域
本发明属于太阳能电池技术领域,具体涉及一种基于柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用。
背景技术
光伏的发展缓解了化石燃料的能源危机和环境污染问题,其中薄膜太阳电池因具有绿色环保、生产过程能耗小、易于实现卷对卷生产、可柔性等特点而备受关注,其在空间应用、军事领域、建筑一体化、便携式可穿戴等领域具有广阔的应用前景。目前发展迅速的钙钛矿薄膜太阳电池、超薄硅基薄膜太阳电池、铜基薄膜太阳电池(CIGS、CZTS、CZTSSe)、二元薄膜太阳电池(CdTe、SbS、SbSe)中,以CZTS(Se)薄膜太阳电池最具发展潜力,其优势包括原料丰富、化学成分无毒、带隙范围合适、理论转化效率高等。
目前实验室制备的最高效率的CZTS(Se)薄膜太阳电池其短路电流密度(J SC )和填充因子(FF)可达到理论值(SQ极限)的80%,但开路电压(V OC )仅可达到理论值的59%。因此开路电压损失限制了CZTS(Se)薄膜太阳电池的进一步发展。第一性原理计算和大量实验研究表明,造成开路电压损失的主要原因是:CZTS(Se)中存在大量的的点缺陷和缺陷族以及严重的能带拖尾、吸收层/缓冲层异质结的界面态等。
双阳离子掺杂策略已成功地应用于刚性CZTS(Se)太阳电池。目前取得的研究进展有:Na、Sb共掺杂的CZTS太阳电池是通过Na与Cu、Sb与Sn位点相互作用,改善了薄膜的结晶和位点无序,改善CZTS的结晶性和晶界性质,减少晶界处和界面处的复合,从而增加少子扩散长度,降低开路电压损耗。Ag、Cd共掺杂可以减少CZTS价带附近受主态缺陷(Cd掺杂主导)并减少非辐射复合(Ag掺杂主导),从而增加少子寿命和少子扩散长度,增强了载流子收集和开路电压。可以看出,关于双阳离子掺杂的研究比较少,这主要是受限于多元材料合成的复杂性(可能引入缺陷和杂相、结晶不良)。目前还没有关于双阳离子掺杂形成吸收层内部电场的相关研究。
发明内容
本发明的目的是提供一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用。
为实现上述目的,本发明采用如下技术方案:
本发明的柔性银铟双重梯度掺杂的CZTSSe薄膜由不同银或铟掺杂浓度的CZTSSe薄膜叠层构成,其中薄膜上部分为不同银掺杂浓度的CZTSSe薄膜,银含量从上往下梯度降低;下部分为不同铟掺杂浓度的CZTSSe薄膜,铟含量从下往上梯度降低。
上述柔性银铟双重梯度掺杂的CZTSSe薄膜的制备方法包括以下步骤:
(1)清洗柔性衬底并烘干;
所述的柔性衬底为钼箔或溅射了Mo薄膜的金属箔/聚酰亚胺薄膜;
(2)将单质铜、锌、锡、银或铟、硫、硒按一定比例加入到乙二胺和乙二硫醇中,加热搅拌至溶解,调整银或铟的加入量,制备不同掺杂浓度的CZTSSe前驱体溶液;其中Ag/(Ag+Cu)的摩尔百分比为0~6%,In/(In+Sn)的摩尔百分比为0~12%;
(3)再在步骤(2)制备的溶液中加入一定比例的稳定剂后,加热搅拌至溶解;稳定剂是乙醇胺、巯基乙酸、乙二醇甲醚按照物质的量比为1∶1∶2混合配成;
(4)利用旋涂法将步骤(3)制备的前驱体溶液涂覆在清洁后的钼箔上,退火温度为250~350℃,制得预制层薄膜;分批旋涂并退火的具体操作如下:在洁净的柔性衬底上,先分批旋涂并退火不同铟掺杂浓度的前驱体溶液,铟含量梯度降低;再分批旋涂并退火不同银掺杂浓度的前驱体溶液,银含量梯度增加。所述梯度掺杂的CZTSSe薄膜的厚度通过旋涂层数来进行控制;
(5)把预制层薄膜放置于盛有硒粉0.5g的圆柱形石墨盒中;
(6)将石墨盒放入充满氩气的快速热退火(RTP)硒化炉中;让硒化炉升温到500~600℃,其升温速率为9℃/S;保持8~20min后自然冷却到室温;制得双阳离子掺杂的CZTSSe薄膜;
其中,制得的柔性银铟双重梯度掺杂的CZTSSe薄膜中,在薄膜上下两端分别进行掺杂(薄膜中银含量从上往下梯度降低,铟含量从下往上梯度降低),薄膜中从下往上为P+型—P型—P-/N+型的分布,在薄膜内形成一个弱电场。
上述乙二胺和乙二硫醇的混合溶液可以溶解金属单质、金属氧化物、金属硫化物、金属硒化物等物质,并且相对于肼溶液而言,不具有危险性,而稳定剂可以让溶液保持澄清,避免溶质析出,从而保证前驱体溶液在洁净的柔性衬底上成膜,且溶质均匀分散。
本发明提供的一种柔性银铟双重梯度掺杂的CZTSSe薄膜的制备方法具有以下特点和优点:
(1)本发明制得的银铟双重梯度掺杂的CZTSSe薄膜中,从下往上为P+型—P型—P-/N+型的分布,薄膜内形成一个弱电场,这一电场促进空穴流向背接触界面、电子流向硫化镉和吸收层界面,增强对吸收层内部载流子的抽取能力,促进载流子的收集,提高了CZTSSe薄膜太阳电池的光电转换效率;
(2)本发明发挥双阳离子掺杂的协同作用。通过微量Ag+取代Cu+,可减少CuZn反位缺陷,降低开压损耗;微量In3+取代Sn4+,可形成InSn浅能级缺陷,降低与Sn相关的深能级缺陷,改善载流子传输,提升电池的短路电流密度;
(3)本发明的前驱体溶液采用乙二胺和乙二硫醇溶解金属单质来制备,避免引入其他元素,容易控制化学计量比,且成本低、工艺简单、易于大面积生产。
附图说明
图1为本发明实施例1-2的不同掺杂浓度的柔性银铟双重梯度掺杂的CZTSSe薄膜的XRD图(a)和XRD局部放大图(b);
图2为本发明实施例2的柔性银铟双重梯度掺杂的CZTSSe薄膜的SEM图;
图3为本发明实施例3-4的不同掺杂浓度的柔性银铟双重梯度掺杂的CZTSSe太阳电池J-V曲线;
图4为本发明实施例5的柔性银铟双重梯度掺杂的CZTSSe太阳电池结构示意图;其中1~7分别代表:1-银电极,2-掺铟氧化锌(ITO)薄膜,3-本征氧化锌(i-ZnO)薄膜,4-硫化镉(CdS)薄膜,5-银梯度掺杂的CZTSSe薄膜,6-铟梯度掺杂的CZTSSe薄膜,7-钼箔。
具体实施方式
下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
(1)对钼箔进行清洁处理,即将钼箔在浓硫酸和甲醇体积比为1:7的混合溶液中采用电沉积法进行清洗,然后用去离子水冲干净并用氮气吹干;
(2)利用溶液法溶解单质及后硒化处理的方式在柔性钼衬底上制备出不同掺杂浓度的柔性银铟双重梯度掺杂的CZTSSe薄膜,
其步骤(2)中所述的溶液法的具体步骤如下:
A、将单质铜、银、锌、锡、硫、硒按比例混合后,加入到乙二胺和乙二硫醇中,加热搅拌1.5小时;其中Ag/(Ag+Cu)的摩尔百分比为6%;
B、将单质铜、锌、锡、铟、硫、硒按比例混合后,加入到乙二胺和乙二硫醇中,加热搅拌1.5小时;其中In/(In+Sn)的摩尔百分比为6%;
分别在2种溶液中加入一定比例的稳定剂,即乙醇胺、巯基乙酸、乙二醇甲醚按照物质的量比为1∶1∶2配成稳定剂,加入稳定剂后加热搅拌1小时;
C、在洁净的柔性衬底上,将步骤(2)制备的前驱体溶液分批旋涂并退火,退火温度为250~350℃,制得预制层薄膜;先分批旋涂并退火三层铟掺杂的前驱体溶液(In/(In+Sn)的摩尔百分比为6%),再分批旋涂并退火三层未掺杂的前驱体溶液,最后分批旋涂并退火三层银掺杂的前驱体溶液(Ag/(Ag+Cu)的摩尔百分比为6%)。所述梯度掺杂的CZTSSe薄膜的旋涂层数为九层,薄膜的厚度大约为2μm。
其步骤(2)中所述的硒化的具体步骤如下:
A、把预制层薄膜放置于盛有硒颗粒的圆柱形石墨盒中;
B、将石墨盒放入充满氩气的快速热退火(RTP)硒化炉中;让硒化炉升温到550℃,其升温速率为9℃/S;保持12min后自然冷却到室温;制得银铟双重梯度掺杂的CZTSSe薄膜(Ag 6% / In 6%)。
表征:
图1为本发明实施例1的柔性银铟双重梯度掺杂的CZTSSe薄膜的XRD图(a)和XRD局部放大图(b)。从图中可以观察到(112)、(204)、(312)晶面的衍射峰,均为CZTSSe相,未发现与杂质相关的第二相,说明获得CZTSSe薄膜为单一相结构,薄膜的晶型依然为锌黄锡矿结构。图1(b)可以看到掺杂后衍射峰逐渐向小角度偏移,这是由于晶格点阵常数的变化,导致晶格膨胀使得XRD衍射峰向小角度偏移,这也说明银和铟被掺杂到CZTSSe的晶格中。
实施例2
(1)清洗钼箔:同例1;
(2)利用溶液法溶解单质及后硒化处理的方式在柔性钼衬底上制备出不同掺杂浓度的柔性银铟双重梯度掺杂的CZTSSe薄膜,
其步骤(2)中所述的溶液法的具体步骤如下:
A、将单质铜、银、锌、锡、硫、硒按比例混合后,加入到乙二胺和乙二硫醇中,加热搅拌1.5小时;其中Ag/(Ag+Cu)的摩尔百分比为4%;
B、将单质铜、锌、锡、铟、硫、硒按比例混合后,加入到乙二胺和乙二硫醇中,加热搅拌1.5小时;其中In/(In+Sn)的摩尔百分比为9%;
分别在2种溶液中加入一定比例的稳定剂,即乙醇胺、巯基乙酸、乙二醇甲醚按照物质的量比为1∶1∶2配成稳定剂,加入稳定剂后加热搅拌1小时;
C、在洁净的柔性衬底上,将步骤(2)制备的前驱体溶液分批旋涂并退火,退火温度为250~350℃,制得预制层薄膜;先分批旋涂并退火三层铟掺杂的前驱体溶液(In/(In+Sn)的摩尔百分比为9%),再分批旋涂并退火三层未掺杂的前驱体溶液,最后分批旋涂并退火三层银掺杂的前驱体溶液(Ag/(Ag+Cu)的摩尔百分比为4%)。所述梯度掺杂的CZTSSe薄膜的为九层,薄膜的厚度大约为2μm。
其步骤(2)中所述的硒化的具体步骤如下:
A、把预制层薄膜放置于盛有硒颗粒的圆柱形石墨盒中;
B、将石墨盒放入充满氩气的快速热退火(RTP)硒化炉中;让硒化炉升温到550℃,其升温速率为9℃/S;保持12min后自然冷却到室温;制得银铟双重梯度掺杂的CZTSSe薄膜(Ag 4% / In 9%)。
表征:
图1为本发明实施例2的柔性银铟双重梯度掺杂的CZTSSe薄膜的XRD图(a)和XRD局部放大图(b)。从图中可以观察到(112)、(204)、(312)晶面的衍射峰,均为CZTSSe相,未发现与杂质相关的第二相,说明获得CZTSSe薄膜为单一相结构,薄膜的晶型依然为锌黄锡矿结构。图1(b)可以看到掺杂后衍射峰逐渐向小角度偏移,这是由于晶格点阵常数的变化,导致晶格膨胀使得XRD衍射峰向小角度偏移,这也说明银和铟被掺杂到CZTSSe的晶格中。
图2为本发明实施例2的柔性银铟双重梯度掺杂的CZTSSe薄膜的SEM图。
实施例3
(1)清洗钼箔:同例1;
(2)利用溶液法溶解单质及后硒化处理的方式在柔性钼衬底上制备出银铟双重梯度掺杂的CZTSSe薄膜(Ag 6% / In 6%):同例1;
(3)采用化学水浴法在(2)所得的CZTSSe薄膜表面沉积硫化镉薄膜,作为缓冲层,其中硫化镉薄膜厚度为50nm;
(4)采用溅射法在(3)所得的缓冲层上沉积本征氧化锌(i-ZnO)薄膜;其中溅射气体为Ar,气压为5mTorr,功率为80W,时间为25min,所得的i-ZnO薄膜厚度为50nm;
(5)采用溅射法在(4)所得的i-ZnO薄膜上沉积掺铟氧化锌(ITO)薄膜;其中溅射气体为Ar气,气压为1mTorr,功率为75W,时间为15min,所得的ITO薄膜厚度为200nm;
(6)在(5)所得的ITO上覆盖掩膜版,采用真空热蒸发法沉积金属银电极,所用银丝的直径为1mm,长度为10cm,用螺旋状钨舟加热银丝,金属银电极厚度为300nm。
表征:
图3为本发明实施例3的不同掺杂浓度的柔性银铟双重梯度掺杂的CZTSSe太阳电池J-V曲线。从图3可以看出,未掺杂的CZTSSe太阳电池(Ag 0% / In 0%)效率为5.44 %,开路电压为365 mV,短路电流密度为28.62 mA/cm2,填充因子为52.05 %。柔性银铟双重梯度掺杂的CZTSSe太阳电池(Ag 6% / In 6%)效率为6.96 %,开路电压为390 mV,短路电流密度为30.83 mA/cm2,填充因子为57.95 %。掺杂后,CZTSSe太阳电池的开路电压提高了25 mV,短路电流密度提高了2.21 mA/cm2,填充因子提高了5.9 %,电池效率提高了1.52 %,说明本发明的应用具有很好的效果。
实施例4
(1)清洗钼箔:同例1;
(2)利用溶液法溶解单质及后硒化处理的方式在柔性钼衬底上制备出银铟双重梯度掺杂的CZTSSe薄膜(Ag 4% / In 9%):同例2;
(3)沉积硫化镉薄膜:同例3;
(4)沉积本征氧化锌薄膜:同例3;
(5)沉积掺铟氧化锌(ITO)薄膜:同例3;
(6)沉积金属银电极:同例3。
表征:
图3为本发明实施例4的不同掺杂浓度的柔性银铟双重梯度掺杂的CZTSSe太阳电池J-V曲线。从图3可以看出,未掺杂的CZTSSe太阳电池(Ag 0% / In 0%)效率为5.44 %,开路电压为365 mV,短路电流密度为28.62 mA/cm2,填充因子为52.05 %。柔性银铟双重梯度掺杂的CZTSSe太阳电池(Ag 4% / In 9%)效率为8.16 %,开路电压为414 mV,短路电流密度为31.23 mA/cm2,填充因子为63.18 %。掺杂后,CZTSSe太阳电池的开路电压提高了49 mV,短路电流密度提高了2.61 mA/cm2,填充因子提高了11.13 %,电池效率提高了2.72 %,说明本发明的应用具有很好的效果。
实施例5
(1)清洗钼箔:同例1;
(2)利用溶液法溶解单质及后硒化处理的方式在柔性钼衬底上制备出不同掺杂浓度的柔性银铟双重梯度掺杂的CZTSSe薄膜,
其步骤(2)中所述的溶液法的具体步骤如下:
A、将单质铜、银、锌、锡、硫、硒按比例混合后,加入到乙二胺和乙二硫醇中,加热搅拌1.5小时;其中Ag/(Ag+Cu)的摩尔百分比分别为0、2%、3%、4%、5%、6%,配置6种溶液;
B、将单质铜、锌、锡、铟、硫、硒按比例混合后,加入到乙二胺和乙二硫醇中,加热搅拌1.5小时;其中In/(In+Sn)的摩尔百分比分别为3%、6%、9%、12%,配置4种溶液;
分别在上述10种溶液中加入一定比例的稳定剂,即乙醇胺、巯基乙酸、乙二醇甲醚按照物质的量比为1∶1∶2配成稳定剂,加入稳定剂后加热搅拌1小时;
C、在洁净的柔性衬底上,将步骤(2)制备的前驱体溶液分批旋涂并退火,退火温度为250~350℃,制得预制层薄膜;先分批旋涂并退火不同铟掺杂浓度的前驱体溶液,铟含量梯度降低(In/(In+Sn)的摩尔百分比依次为12%、9%、6%、3%),再分批旋涂并退火未掺杂的前驱体溶液,最后分批旋涂并退火不同银掺杂浓度的前驱体溶液,银含量梯度增加(Ag/(Ag+Cu)的摩尔百分比依次为2%、3%、4%、5%、6%)。所述梯度掺杂的CZTSSe薄膜的厚度通过旋涂层数来进行控制。
其步骤(2)中所述的硒化的具体步骤如下:
A、把预制层薄膜放置于盛有硒颗粒的圆柱形石墨盒中;
B、将石墨盒放入充满氩气的快速热退火(RTP)硒化炉中;让硒化炉升温到550℃,其升温速率为9℃/S;保持12min后自然冷却到室温;制得银铟双重梯度掺杂的CZTSSe薄膜。
(3)沉积硫化镉薄膜:同例3;
(4)沉积本征氧化锌薄膜:同例3;
(5)沉积掺铟氧化锌(ITO)薄膜:同例3;
(6)沉积金属银电极:同例3。
表征:
图4为本发明实施例5的柔性银铟双重梯度掺杂的CZTSSe太阳电池结构示意图;其中1~7分别代表:1-银电极,2-掺铟氧化锌(ITO)薄膜,3-本征氧化锌(i-ZnO)薄膜,4-硫化镉(CdS)薄膜,5-银梯度掺杂的CZTSSe薄膜(薄膜中银含量从上往下梯度降低),6-铟梯度掺杂的CZTSSe薄膜(薄膜中铟含量从下往上梯度降低),7-钼箔。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.一种柔性银铟双重梯度掺杂的CZTSSe薄膜,其特征在于:薄膜由不同银或铟掺杂浓度的CZTSSe薄膜叠层构成,其中薄膜上部分为不同银掺杂浓度的CZTSSe薄膜,银含量从上往下梯度降低;下部分为不同铟掺杂浓度的CZTSSe薄膜,铟含量从下往上梯度降低。
2.根据权利要求1所述的柔性银铟双重梯度掺杂的CZTSSe薄膜,其特征在于:所述薄膜中从下往上为P+型—P型—P-/N+型的分布,在薄膜内形成一个弱电场。
3.根据权利要求1或2所述的柔性银铟双重梯度掺杂CZTSSe薄膜,其特征在于:所述柔性银铟双重梯度掺杂的CZTSSe薄膜为锌黄锡矿结构,薄膜厚度为1~3μm。
4.一种如权利要求1-3任一项所述的柔性银铟双重梯度掺杂的CZTSSe薄膜的制备方法,其特征在于:具体包括以下步骤:
(1)清洗柔性衬底并烘干:
(2)将单质铜、锌、锡、银或铟、硫、硒加入到乙二胺和乙二硫醇中,加热搅拌至溶解,调整银或铟的加入量,制备不同银掺杂浓度的CZTSSe前驱体溶液和不同铟掺杂浓度的CZTSSe前驱体溶液;
(3)再在步骤(2)制备的CZTSSe前驱体溶液中加入稳定剂后,加热搅拌至溶解;
(4)在步骤(1)处理后的柔性衬底上,将步骤(3)制备的CZTSSe前驱体溶液分批旋涂并退火,退火温度为250~350℃,制得预制层薄膜;
(5)把预制层薄膜置于充满氮气的快速热退火炉中进行硒化处理,制得银铟双重梯度掺杂的CZTSSe薄膜。
5.根据权利要求3所述的制备方法,其特征在于:所述不同银掺杂浓度的CZTSSe前驱体溶液中Ag/(Ag+Cu)的摩尔百分比为0~6%,所述不同铟掺杂浓度的CZTSSe前驱体溶液中In/(In+Sn)的摩尔百分比为0~12%。
6.根据权利要求3所述的制备方法,其特征在于:步骤(3)所述稳定剂是乙醇胺、巯基乙酸、乙二醇甲醚按照物质的量比为1∶1∶2混合配成。
7.根据权利要求3所述的制备方法,其特征在于:步骤(4)中分批旋涂并退火的具体操作如下:在步骤(1)处理后的柔性衬底上,先分批旋涂并退火不同铟掺杂浓度的CZTSSe前驱体溶液,铟含量梯度降低;再分批旋涂并退火不同银掺杂浓度的前驱体溶液,银含量梯度增加。
8.根据权利要求3所述的制备方法,其特征在于:步骤(5)中的硒化处理条件为:硒化温度为500~600℃,其升温速率为9℃/s;硒化时间为8~20min。
9.根据权利要求3所述的制备方法,其特征在于:所述柔性衬底为钼箔或溅射了Mo薄膜的金属箔/聚酰亚胺薄膜。
10.一种如权利要求1-3任一项所述柔性银铟双重梯度掺杂的CZTSSe薄膜在制备柔性太阳电池中的应用。
CN202011469652.1A 2020-12-15 2020-12-15 一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用 Active CN112531036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011469652.1A CN112531036B (zh) 2020-12-15 2020-12-15 一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011469652.1A CN112531036B (zh) 2020-12-15 2020-12-15 一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112531036A true CN112531036A (zh) 2021-03-19
CN112531036B CN112531036B (zh) 2022-06-10

Family

ID=74999634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011469652.1A Active CN112531036B (zh) 2020-12-15 2020-12-15 一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112531036B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150000741A1 (en) * 2013-06-28 2015-01-01 International Business Machines Corporation HYBRID CZTSSe PHOTOVOLTAIC DEVICE
US20170077337A1 (en) * 2015-09-14 2017-03-16 International Business Machines Corporation Bandgap grading of czts solar cell
CN107871795A (zh) * 2017-11-17 2018-04-03 福州大学 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
CN107910390A (zh) * 2017-11-17 2018-04-13 福州大学 一种银单质掺杂的CZTSSe薄膜的制备方法和应用
CN108400184A (zh) * 2018-03-07 2018-08-14 福州大学 一种铟单质掺杂的CZTSSe薄膜的制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150000741A1 (en) * 2013-06-28 2015-01-01 International Business Machines Corporation HYBRID CZTSSe PHOTOVOLTAIC DEVICE
US20170077337A1 (en) * 2015-09-14 2017-03-16 International Business Machines Corporation Bandgap grading of czts solar cell
CN107871795A (zh) * 2017-11-17 2018-04-03 福州大学 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
CN107910390A (zh) * 2017-11-17 2018-04-13 福州大学 一种银单质掺杂的CZTSSe薄膜的制备方法和应用
CN108400184A (zh) * 2018-03-07 2018-08-14 福州大学 一种铟单质掺杂的CZTSSe薄膜的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XUE YU ET AL.: ""Efficient flexible Mo foil-based Cu2ZnSn(S,Se)4 solar cells from In-doping technique"", 《SOLAR ENEGY MATERIALS AND SOLAR CELLS》 *
符俊杰等: ""双阳离子协同CZTSSe太阳能电池界面能带梯度研究"", 《第七届新型太阳能电池材料科学与技术学术研讨会》 *

Also Published As

Publication number Publication date
CN112531036B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
Shah et al. Wide bandgap Sb2S3 solar cells
Bosio et al. Past, present and future of the thin film CdTe/CdS solar cells
Ravindiran et al. Status review and the future prospects of CZTS based solar cell–A novel approach on the device structure and material modeling for CZTS based photovoltaic device
Kondrotas et al. Sb2S3 solar cells
Lei et al. Review of recent progress in antimony chalcogenide‐based solar cells: materials and devices
Myagmarsereejid et al. Doping strategies in Sb2S3 thin films for solar cells
Wang Progress in thin film solar cells based on
CN106298995B (zh) 一种银掺杂铜锌锡硫硒光吸收层薄膜材料及其在太阳能电池中的应用
CN107871795B (zh) 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
EP2485265B1 (en) Photoelectric conversion device
WO2011029197A1 (en) Electrochemical method of producing copper indium gallium diselenide (cigs) solar cells
Wang et al. Sb 2 S 3 solar cells: functional layer preparation and device performance
TW200939492A (en) Laminated structuer of cis-type solar battery and integrated structure
Liu et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells
CN101527332B (zh) 一种高效薄膜太阳能电池光吸收层的制备方法
CN107910390B (zh) 一种银单质掺杂的CZTSSe薄膜的制备方法和应用
CN108400184B (zh) 一种铟单质掺杂的CZTSSe薄膜的制备方法和应用
CN104465807A (zh) 一种czts纳米阵列薄膜太阳能光伏电池及其制备方法
CN112531036B (zh) 一种柔性银铟双重梯度掺杂的CZTSSe薄膜及其制备方法和应用
CN113644146B (zh) 一种用于太阳能电池的薄膜、太阳能电池及其制备方法
CN112490332B (zh) 柔性双阳离子掺杂的CZTSSe太阳电池界面钝化方法
Li et al. Novel Ag-based thin film solar cells: concept, materials, and challenges
Suntola CdTe thin-film solar cells
Kangsabanik et al. A comprehensive review on the recent strategy of cation substitution in CZTS (Se) thin films to achieve highly efficient kesterite solar cells
CN112563118A (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant