CN107880526A - 一种石墨烯改性聚氨酯材料的制备方法 - Google Patents

一种石墨烯改性聚氨酯材料的制备方法 Download PDF

Info

Publication number
CN107880526A
CN107880526A CN201711122525.2A CN201711122525A CN107880526A CN 107880526 A CN107880526 A CN 107880526A CN 201711122525 A CN201711122525 A CN 201711122525A CN 107880526 A CN107880526 A CN 107880526A
Authority
CN
China
Prior art keywords
reaction
modified polyurethane
temperature
pressure
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711122525.2A
Other languages
English (en)
Inventor
张堪连
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Xinyi Electronic Technology Co Ltd
Original Assignee
Dongguan Xinyi Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Xinyi Electronic Technology Co Ltd filed Critical Dongguan Xinyi Electronic Technology Co Ltd
Priority to CN201711122525.2A priority Critical patent/CN107880526A/zh
Publication of CN107880526A publication Critical patent/CN107880526A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于聚氨酯材料技术领域,具体涉及一种石墨烯改性聚氨酯材料的制备方法,将石墨烯通过分散剂分散在无水乙醇中,超声羟基化后加入硅酸乙酯密封加压反应得到包裹液;将引发剂、发泡剂和固化剂加入包裹液中溶解,密封反应和减压蒸馏反应得到混恶化石墨烯悬浊液,最后加入聚氨酯进行间隔微波反应和恒温静置反应得到改性聚氨酯溶液,减压蒸馏反应和密封加压反应后快速泄压得到石墨烯改性聚氨酯材料。本发明提供的制备方法简单易行,解决了目前制备方法中相容性差的问题,具有交联密度高,硬度高,机械性能好的特点。

Description

一种石墨烯改性聚氨酯材料的制备方法
技术领域
本发明属于聚氨酯材料技术领域,具体涉及一种石墨烯改性聚氨酯材料的制备方法。
背景技术
随着人们环保意识的增强,材料安全问题越加重视,对包装复合用粘合剂、皮革涂层、木器涂料等提出越来越高的标准与要求。传统溶剂型聚氨酯涂料中含有较多的可挥发性有机物,无论是在生产还是在其成膜过程中其稀释剂大量挥发,这给生产工人以及生态环境带来严重的影响,水性聚氨酯是采用水作为分散介质的聚氨酯乳液,除具有溶剂型聚氨酯优异性能外,还具有使用简单、无毒、无环境污染等优点,其产品成功应用于轻纺、建筑物、各类五金件、工业制品、皮革、木材、金属防护等行业。但是由于水性聚氨酯采用水作为溶剂,介质水的表面张力较大,使得其成膜过程中表面铺展较差、干燥时间长,力学性能低等缺点,而促使水性聚氨酯稳定分散在介质水中的亲水性基团,会引起水性聚氨酯成膜耐水性差且易吸水,造成涂膜易起泡。
有机硅聚合物耐高低温性优异,耐紫外线、耐氧化降解,具有低表面能和很好的疏水性。由于普通的聚氨酯树脂结构中不含Si-O键,而且耐老化性、自洁功能也比较差,而有机硅分子中的Si-O具有高键能,而本发明在聚氨酯树脂中引入有机硅,其Si-O键的牢固程度要远高于C-C、C-O键。经过有机硅改性的聚氨酯弹性体,不会因户外高、低温气候等环境改变而褪色、发硬、发软等现象,即使在强紫外线、臭氧、雨水及高温差等气候环境下依然能长期保持其鲜艳的色彩,外观结构特征恒久稳定不变,耐磨性能满足长期高使用频率的需要。
石墨烯被誉为“黑金”,科学家甚至预言石墨烯将“彻底改变21世纪”。而石墨稀是一种由单层sp2杂化碳原子组成的二维片状材料,其特殊的结构决定了它具有奇特的电学性能、良好的力学性能、优异的物理机械性能以及气体阻隔性能,石墨经由强氧化剂氧化后可以制备成氧化石墨,氧化石墨片层含有大量的羟基等,具有较高的比表面积。石墨烯经过氧化,其π-π共轭结构遭到了破坏,片层容易剥离,因此氧化石墨烯很容易的在水溶液中能均一稳定的氧化石墨烯水溶液,这为石墨烯改性水性聚氨酯树脂提供了天然条件。
发明内容
针对现有技术中的问题,本发明提供一种石墨烯改性聚氨酯材料的制备方法,提供的制备方法简单易行,解决了目前制备方法中相容性差的问题,具有交联密度高,硬度高,机械性能好的特点。
为实现以上技术目的,本发明的技术方案是:一种石墨烯改性聚氨酯材料的制备方法,其特征在于:其步骤如下:
步骤1,将石墨烯加入至无水乙醇中,加入分散剂,搅拌均匀直至形成悬浊液;
步骤2,将悬浊液放入反应釜中超声反应2-4h,得到羟基化分散液;
步骤3,将硅酸乙酯加入至羟基化分散液,密封加压反应2-4h,得到硅酸乙酯包裹液;
步骤4,将引发剂、发泡剂和固化剂分别加入硅酸乙酯包裹液,搅拌溶解后,密封反应20-40min,减压蒸馏1-3h,得到混合石墨烯悬浊液;
步骤5,将聚氨酯加入至混合石墨烯悬浊液中,间隔微波反应2-4h,恒温静置反应2-4h,得到改性聚氨酯溶液;
步骤6,将改性聚氨酯溶液放入反应釜中减压蒸馏反应2-3h,密封加压反应20-40min,快速泄压得到石墨烯改性聚氨酯材料。
所述步骤1中的石墨烯在无水乙醇中的浓度为10-20g/L,所述分散剂的加入量为0.5-0.9g/L,所述分散剂采用聚乙烯吡咯烷酮或者聚乙二醇,所述搅拌速度为2000-3000r/min。
所述步骤2中的超声反应的频率为50-150kHz,所述超声采用恒温超声反应,温度为70-80℃。
所述超声反应采用间隔超声反应,间隔时间为5-8min,超声时间为4-8min。
所述步骤3中的硅酸乙酯的加入量为25-35g/L,密封加压反应的压力为10-15MPa,温度为90-110℃。
所述步骤4中的引发剂的加入量为2-5g/L,发泡剂加入量为1.0-1.5g/L,固化剂的加入量为2-4g/L,所述搅拌速度为1000-2000r/min,所述引发剂采用过氧化苯甲酰/N,N-二甲基苯胺。
所述步骤4中的密封反应温度为80-90℃,压力为3-5MPa,所述减压蒸馏反应的压力为大气压的40-60%,温度为70-80℃。
所述步骤5中的间隔微波反应的功率为100-250W,间隔时间5-10min,微波反应时间为10-20min,微波反应的温度为150-200℃,所述恒温静置的温度为100-120℃。
作为改进,所述步骤5中的间隔微波反应的反应程序如下:
微波功率 温度 时间
50-100W 80-100℃ 20-40min
150-200W 150-160℃ 15-20min
250W 200 剩余时间
所述步骤6中的减压蒸馏的压力为大气压的40-70%,温度为100-110℃,所述密封加压的压力为5-8MPa,温度为100-110℃,所述快速泄压的泄压速度为20-30MPa/min。
步骤1将石墨烯在分散剂条件下完全分散至无水乙醇中,形成分散效果良好的悬浊液。
步骤2将石墨烯醇液进行超声反应处理,在表面形成羟基,达到羟基化的分案液。
步骤3将硅酸乙酯加入羟基化分散液中,在密封加压条件下,硅酸乙酯包裹在石墨烯羟基表面,形成包裹状态,得到硅酸乙酯包裹液。
步骤4将引发剂、发泡剂剂和固化剂加入至硅酸乙酯包裹液中,通过搅拌的方式将其分散溶解,密封反应的方式将引发剂、发泡剂和固化剂完全反应,形成固化体系,再经减压蒸馏的方式将无水乙醇去除,形成粘稠状石墨烯悬浊液。
步骤5将聚氨酯加入至悬浊液中,通过间隔微波反应促进发泡剂与引发剂反应,引发剂在微波作用下活性更强,有助于石墨烯表面的羟基与聚氨酯的键连反应,发泡剂在微波作用下能够快速分解形成气泡,在气泡的产生破灭过程中,产生能力促进引发剂的反应。
步骤6将改性聚氨酯溶液减压蒸馏反应将溶剂去除,然后通过密封加压与快速泄压的方式将聚氨酯材料破碎化,形成分散体系较好的聚氨酯材料。
本发明将石墨烯通过分散剂分散在无水乙醇中,超声羟基化后加入硅酸乙酯密封加压反应得到包裹液;将引发剂、发泡剂和固化剂加入包裹液中溶解,密封反应和减压蒸馏反应得到混恶化石墨烯悬浊液,最后加入聚氨酯进行间隔微波反应和恒温静置反应得到改性聚氨酯溶液,减压蒸馏反应和密封加压反应后快速泄压得到石墨烯改性聚氨酯材料。
从以上描述可以看出,本发明具备以下优点:
1.本发明提供的制备方法简单易行,解决了目前制备方法中相容性差的问题,具有交联密度高,硬度高,机械性能好的特点。
2.本发明制备的聚氨酯具有优异的耐腐蚀性能、抗静电性能、耐高温性能、耐老化性能以及耐化学品性能。
3.本发明采用微波反应的方式能够促进引发剂与发泡剂反应,有效的提高了石墨烯表面羟基与聚氨酯之间的反应,提高了键连连接效果。
具体实施方式
结合实施例详细说明本发明,但不对本发明的权利要求做任何限定。
实施例1
一种石墨烯改性聚氨酯材料的制备方法,其特征在于:其步骤如下:
步骤1,将石墨烯加入至无水乙醇中,加入分散剂,搅拌均匀直至形成悬浊液;
步骤2,将悬浊液放入反应釜中超声反应2h,得到羟基化分散液;
步骤3,将硅酸乙酯加入至羟基化分散液,密封加压反应2h,得到硅酸乙酯包裹液;
步骤4,将引发剂、发泡剂和固化剂分别加入硅酸乙酯包裹液,搅拌溶解后,密封反应20min,减压蒸馏1h,得到混合石墨烯悬浊液;
步骤5,将聚氨酯加入至混合石墨烯悬浊液中,间隔微波反应2h,恒温静置反应2h,得到改性聚氨酯溶液;
步骤6,将改性聚氨酯溶液放入反应釜中减压蒸馏反应2h,密封加压反应20min,快速泄压得到石墨烯改性聚氨酯材料。
所述步骤1中的石墨烯在无水乙醇中的浓度为10g/L,所述分散剂的加入量为0.5g/L,所述分散剂采用聚乙烯吡咯烷酮,所述搅拌速度为2000r/min。
所述步骤2中的超声反应的频率为50kHz,所述超声采用恒温超声反应,温度为70℃。
所述步骤3中的硅酸乙酯的加入量为25g/L,密封加压反应的压力为10MPa,温度为90℃。
所述步骤4中的引发剂的加入量为2g/L,发泡剂加入量为1.0g/L,固化剂的加入量为2g/L,所述搅拌速度为1000r/min,所述引发剂采用过氧化苯甲酰/N,N-二甲基苯胺。
所述步骤4中的密封反应温度为80℃,压力为3MPa,所述减压蒸馏反应的压力为大气压的40%,温度为70℃。
所述步骤5中的间隔微波反应的功率为100W,间隔时间5min,微波反应时间为10min,微波反应的温度为150℃,所述恒温静置的温度为100℃。
所述步骤6中的减压蒸馏的压力为大气压的40%,温度为100℃,所述密封加压的压力为5MPa,温度为100℃,所述快速泄压的泄压速度为20MPa/min。
实施例2
一种石墨烯改性聚氨酯材料的制备方法,其特征在于:其步骤如下:
步骤1,将石墨烯加入至无水乙醇中,加入分散剂,搅拌均匀直至形成悬浊液;
步骤2,将悬浊液放入反应釜中超声反应4h,得到羟基化分散液;
步骤3,将硅酸乙酯加入至羟基化分散液,密封加压反应4h,得到硅酸乙酯包裹液;
步骤4,将引发剂、发泡剂和固化剂分别加入硅酸乙酯包裹液,搅拌溶解后,密封反应40min,减压蒸馏3h,得到混合石墨烯悬浊液;
步骤5,将聚氨酯加入至混合石墨烯悬浊液中,间隔微波反应4h,恒温静置反应4h,得到改性聚氨酯溶液;
步骤6,将改性聚氨酯溶液放入反应釜中减压蒸馏反应3h,密封加压反应40min,快速泄压得到石墨烯改性聚氨酯材料。
所述步骤1中的石墨烯在无水乙醇中的浓度为20g/L,所述分散剂的加入量为0.9g/L,所述分散剂采用聚乙二醇,所述搅拌速度为3000r/min。
所述步骤2中的超声反应的频率为150kHz,所述超声采用恒温超声反应,温度为80℃。
所述步骤3中的硅酸乙酯的加入量为35g/L,密封加压反应的压力为15MPa,温度为110℃。
所述步骤4中的引发剂的加入量为5g/L,发泡剂加入量为1.5g/L,固化剂的加入量为4g/L,所述搅拌速度为2000r/min,所述引发剂采用过氧化苯甲酰/N,N-二甲基苯胺。
所述步骤4中的密封反应温度为90℃,压力为5MPa,所述减压蒸馏反应的压力为大气压的60%,温度为80℃。
所述步骤5中的间隔微波反应的功率为250W,间隔时间10min,微波反应时间为20min,微波反应的温度为200℃,所述恒温静置的温度为120℃。
所述步骤6中的减压蒸馏的压力为大气压的70%,温度为110℃,所述密封加压的压力为8MPa,温度为110℃,所述快速泄压的泄压速度为30MPa/min。
实施例3
一种石墨烯改性聚氨酯材料的制备方法,其特征在于:其步骤如下:
步骤1,将石墨烯加入至无水乙醇中,加入分散剂,搅拌均匀直至形成悬浊液;
步骤2,将悬浊液放入反应釜中超声反应3h,得到羟基化分散液;
步骤3,将硅酸乙酯加入至羟基化分散液,密封加压反应3h,得到硅酸乙酯包裹液;
步骤4,将引发剂、发泡剂和固化剂分别加入硅酸乙酯包裹液,搅拌溶解后,密封反应30min,减压蒸馏2h,得到混合石墨烯悬浊液;
步骤5,将聚氨酯加入至混合石墨烯悬浊液中,间隔微波反应3h,恒温静置反应3h,得到改性聚氨酯溶液;
步骤6,将改性聚氨酯溶液放入反应釜中减压蒸馏反应3h,密封加压反应30min,快速泄压得到石墨烯改性聚氨酯材料。
所述步骤1中的石墨烯在无水乙醇中的浓度为15g/L,所述分散剂的加入量为0.7g/L,所述分散剂采用聚乙烯吡咯烷酮,所述搅拌速度为2500r/min。
所述步骤2中的超声反应的频率为100kHz,所述超声采用恒温超声反应,温度为75℃。
所述步骤3中的硅酸乙酯的加入量为30g/L,密封加压反应的压力为13MPa,温度为100℃。
所述步骤4中的引发剂的加入量为3g/L,发泡剂加入量为1.3g/L,固化剂的加入量为3g/L,所述搅拌速度为1500r/min,所述引发剂采用过氧化苯甲酰/N,N-二甲基苯胺。
所述步骤4中的密封反应温度为85℃,压力为4MPa,所述减压蒸馏反应的压力为大气压的50%,温度为75℃。
所述步骤5中的间隔微波反应的功率为200W,间隔时间8min,微波反应时间为15min,微波反应的温度为180℃,所述恒温静置的温度为110℃。
所述步骤6中的减压蒸馏的压力为大气压的55%,温度为105℃,所述密封加压的压力为6MPa,温度为105℃,所述快速泄压的泄压速度为25MPa/min。
实施例4
一种石墨烯改性聚氨酯材料的制备方法,其特征在于:其步骤如下:
步骤1,将石墨烯加入至无水乙醇中,加入分散剂,搅拌均匀直至形成悬浊液;
步骤2,将悬浊液放入反应釜中超声反应3h,得到羟基化分散液;
步骤3,将硅酸乙酯加入至羟基化分散液,密封加压反应3h,得到硅酸乙酯包裹液;
步骤4,将引发剂、发泡剂和固化剂分别加入硅酸乙酯包裹液,搅拌溶解后,密封反应30min,减压蒸馏1-3h,得到混合石墨烯悬浊液;
步骤5,将聚氨酯加入至混合石墨烯悬浊液中,间隔微波反应3h,恒温静置反应3h,得到改性聚氨酯溶液;
步骤6,将改性聚氨酯溶液放入反应釜中减压蒸馏反应3h,密封加压反应30min,快速泄压得到石墨烯改性聚氨酯材料。
所述步骤1中的石墨烯在无水乙醇中的浓度为15g/L,所述分散剂的加入量为0.7g/L,所述分散剂采用聚乙二醇,所述搅拌速度为2500r/min。
所述步骤2中的超声反应的频率为100kHz,所述超声采用恒温超声反应,温度为75℃;所述超声反应采用间隔超声反应,间隔时间为5min,超声时间为4min。
所述步骤3中的硅酸乙酯的加入量为30g/L,密封加压反应的压力为13MPa,温度为100℃。
所述步骤4中的引发剂的加入量为4g/L,发泡剂加入量为1.2g/L,固化剂的加入量为3g/L,所述搅拌速度为1500r/min,所述引发剂采用过氧化苯甲酰/N,N-二甲基苯胺。
所述步骤4中的密封反应温度为85℃,压力为4MPa,所述减压蒸馏反应的压力为大气压的50%,温度为75℃。
所述步骤5中的间隔微波反应的功率为250W,间隔时间10min,微波反应时间为10min,微波反应的温度为200℃,所述恒温静置的温度为120℃;所述步骤5中的间隔微波反应的反应程序如下:
微波功率 温度 时间
50W 80℃ 20min
150W 150℃ 15min
250W 200℃ 剩余时间
所述步骤6中的减压蒸馏的压力为大气压的50%,温度为100℃,所述密封加压的压力为5MPa,温度为100℃,所述快速泄压的泄压速度为25MPa/min。
实施例5
一种石墨烯改性聚氨酯材料的制备方法,其特征在于:其步骤如下:
步骤1,将石墨烯加入至无水乙醇中,加入分散剂,搅拌均匀直至形成悬浊液;
步骤2,将悬浊液放入反应釜中超声反应3h,得到羟基化分散液;
步骤3,将硅酸乙酯加入至羟基化分散液,密封加压反应3h,得到硅酸乙酯包裹液;
步骤4,将引发剂、发泡剂和固化剂分别加入硅酸乙酯包裹液,搅拌溶解后,密封反应30min,减压蒸馏1-3h,得到混合石墨烯悬浊液;
步骤5,将聚氨酯加入至混合石墨烯悬浊液中,间隔微波反应3h,恒温静置反应3h,得到改性聚氨酯溶液;
步骤6,将改性聚氨酯溶液放入反应釜中减压蒸馏反应3h,密封加压反应30min,快速泄压得到石墨烯改性聚氨酯材料。
所述步骤1中的石墨烯在无水乙醇中的浓度为15g/L,所述分散剂的加入量为0.7g/L,所述分散剂采用聚乙二醇,所述搅拌速度为2500r/min。
所述步骤2中的超声反应的频率为100kHz,所述超声采用恒温超声反应,温度为75℃;所述超声反应采用间隔超声反应,间隔时间为8min,超声时间为8min。
所述步骤3中的硅酸乙酯的加入量为30g/L,密封加压反应的压力为13MPa,温度为100℃。
所述步骤4中的引发剂的加入量为4g/L,发泡剂加入量为1.2g/L,固化剂的加入量为3g/L,所述搅拌速度为1500r/min,所述引发剂采用过氧化苯甲酰/N,N-二甲基苯胺。
所述步骤4中的密封反应温度为85℃,压力为4MPa,所述减压蒸馏反应的压力为大气压的50%,温度为75℃。
所述步骤5中的间隔微波反应的功率为250W,间隔时间10min,微波反应时间为10min,微波反应的温度为200℃,所述恒温静置的温度为120℃;所述步骤5中的间隔微波反应的反应程序如下:
微波功率 温度 时间
100W 100℃ 40min
200W 160℃ 20min
250W 200 剩余时间
所述步骤6中的减压蒸馏的压力为大气压的50%,温度为100℃,所述密封加压的压力为5MPa,温度为100℃,所述快速泄压的泄压速度为25MPa/min。
实施例6
一种石墨烯改性聚氨酯材料的制备方法,其特征在于:其步骤如下:
步骤1,将石墨烯加入至无水乙醇中,加入分散剂,搅拌均匀直至形成悬浊液;
步骤2,将悬浊液放入反应釜中超声反应3h,得到羟基化分散液;
步骤3,将硅酸乙酯加入至羟基化分散液,密封加压反应3h,得到硅酸乙酯包裹液;
步骤4,将引发剂、发泡剂和固化剂分别加入硅酸乙酯包裹液,搅拌溶解后,密封反应30min,减压蒸馏1-3h,得到混合石墨烯悬浊液;
步骤5,将聚氨酯加入至混合石墨烯悬浊液中,间隔微波反应3h,恒温静置反应3h,得到改性聚氨酯溶液;
步骤6,将改性聚氨酯溶液放入反应釜中减压蒸馏反应3h,密封加压反应30min,快速泄压得到石墨烯改性聚氨酯材料。
所述步骤1中的石墨烯在无水乙醇中的浓度为15g/L,所述分散剂的加入量为0.7g/L,所述分散剂采用聚乙二醇,所述搅拌速度为2500r/min。
所述步骤2中的超声反应的频率为100kHz,所述超声采用恒温超声反应,温度为75℃;所述超声反应采用间隔超声反应,间隔时间为7min,超声时间为6min。
所述步骤3中的硅酸乙酯的加入量为30g/L,密封加压反应的压力为13MPa,温度为100℃。
所述步骤4中的引发剂的加入量为4g/L,发泡剂加入量为1.2g/L,固化剂的加入量为3g/L,所述搅拌速度为1500r/min,所述引发剂采用过氧化苯甲酰/N,N-二甲基苯胺。
所述步骤4中的密封反应温度为85℃,压力为4MPa,所述减压蒸馏反应的压力为大气压的50%,温度为75℃。
所述步骤5中的间隔微波反应的功率为250W,间隔时间10min,微波反应时间为10min,微波反应的温度为200℃,所述恒温静置的温度为120℃;所述步骤5中的间隔微波反应的反应程序如下:
微波功率 温度 时间
80W 90℃ 30min
180W 155℃ 20min
250W 200 剩余时间
所述步骤6中的减压蒸馏的压力为大气压的50%,温度为100℃,所述密封加压的压力为5MPa,温度为100℃,所述快速泄压的泄压速度为25MPa/min。
按照相关标准,对本发明的实施例与聚氨酯材料进行对比,检测的性能指标如表
所示。
其中,附着力:按照GB/T1720-1988的规定,使用划格法进行测试;
硬度:按照GB/T6739-2006色漆和清铅笔法测定漆膜硬度;
表面张力:采用吊环表面张力法测定;
附着力 硬度 表面张力
实施例1 0级 2H
实施例2 0级 2H
实施例3 0级 2H
实施例4 0级 2H
实施例5 0级 2H
实施例6 0级 2H
对比例 1级 H
综上所述,本发明具有以下优点:
1.本发明提供的制备方法简单易行,解决了目前制备方法中相容性差的问题,具有交联密度高,硬度高,机械性能好的特点。
2.本发明制备的聚氨酯具有优异的耐腐蚀性能、抗静电性能、耐高温性能、耐老化性能以及耐化学品性能。
3.本发明采用微波反应的方式能够促进引发剂与发泡剂反应,有效的提高了石墨烯表面羟基与聚氨酯之间的反应,提高了键连连接效果。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (10)

1.一种石墨烯改性聚氨酯材料的制备方法,其特征在于:其步骤如下:
步骤1,将石墨烯加入至无水乙醇中,加入分散剂,搅拌均匀直至形成悬浊液;
步骤2,将悬浊液放入反应釜中超声反应2-4h,得到羟基化分散液;
步骤3,将硅酸乙酯加入至羟基化分散液,密封加压反应2-4h,得到硅酸乙酯包裹液;
步骤4,将引发剂、发泡剂和固化剂分别加入硅酸乙酯包裹液,搅拌溶解后,密封反应20-40min,减压蒸馏1-3h,得到混合石墨烯悬浊液;
步骤5,将聚氨酯加入至混合石墨烯悬浊液中,间隔微波反应2-4h,恒温静置反应2-4h,得到改性聚氨酯溶液;
步骤6,将改性聚氨酯溶液放入反应釜中减压蒸馏反应2-3h,密封加压反应20-40min,快速泄压得到石墨烯改性聚氨酯材料。
2.根据权利要求1所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述步骤1中的石墨烯在无水乙醇中的浓度为10-20g/L,所述分散剂的加入量为0.5-0.9g/L,所述分散剂采用聚乙烯吡咯烷酮或者聚乙二醇,所述搅拌速度为2000-3000r/min。
3.根据权利要求1所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述步骤2中的超声反应的频率为50-150kHz,所述超声采用恒温超声反应,温度为70-80℃。
4.根据权利要求3所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述超声反应采用间隔超声反应,间隔时间为5-8min,超声时间为4-8min。
5.根据权利要求1所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述步骤3中的硅酸乙酯的加入量为25-35g/L,密封加压反应的压力为10-15MPa,温度为90-110℃。
6.根据权利要求1所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述步骤4中的引发剂的加入量为2-5g/L,发泡剂加入量为1.0-1.5g/L,固化剂的加入量为2-4g/L,所述搅拌速度为1000-2000r/min,所述引发剂采用过氧化苯甲酰/N,N-二甲基苯胺。
7.根据权利要求1所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述步骤4中的密封反应温度为80-90℃,压力为3-5MPa,所述减压蒸馏反应的压力为大气压的40-60%,温度为70-80℃。
8.根据权利要求1所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述步骤5中的间隔微波反应的功率为100-250W,间隔时间5-10min,微波反应时间为10-20min,微波反应的温度为150-200℃,所述恒温静置的温度为100-120℃。
9.根据权利要求8所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述步骤5中的间隔微波反应的反应程序如下:
微波功率 温度 时间 50-100W 80-100℃ 20-40min 150-200W 150-160℃ 15-20min 250W 200 剩余时间
10.根据权利要求1所述的一种石墨烯改性聚氨酯材料的制备方法,其特征在于:所述步骤6中的减压蒸馏的压力为大气压的40-70%,温度为100-110℃,所述密封加压的压力为5-8MPa,温度为100-110℃,所述快速泄压的泄压速度为20-30MPa/min。
CN201711122525.2A 2017-11-14 2017-11-14 一种石墨烯改性聚氨酯材料的制备方法 Pending CN107880526A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711122525.2A CN107880526A (zh) 2017-11-14 2017-11-14 一种石墨烯改性聚氨酯材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711122525.2A CN107880526A (zh) 2017-11-14 2017-11-14 一种石墨烯改性聚氨酯材料的制备方法

Publications (1)

Publication Number Publication Date
CN107880526A true CN107880526A (zh) 2018-04-06

Family

ID=61776642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711122525.2A Pending CN107880526A (zh) 2017-11-14 2017-11-14 一种石墨烯改性聚氨酯材料的制备方法

Country Status (1)

Country Link
CN (1) CN107880526A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108795020A (zh) * 2018-06-30 2018-11-13 杭州高烯科技有限公司 一种石墨烯-发泡聚氨酯复合材料及其制备方法
CN110204675A (zh) * 2019-05-05 2019-09-06 北京航天试验技术研究所 一种用于制作定位垫的组合物及制作定位垫的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106221181A (zh) * 2016-07-29 2016-12-14 佛山市高明区诚睿基科技有限公司 一种3d打印用的热塑性聚氨酯复合材料
CN106582298A (zh) * 2016-12-09 2017-04-26 西安建筑科技大学 一种三维go片球颗粒改性有机复合超/微滤膜制备方法
CN106582316A (zh) * 2016-12-09 2017-04-26 西安建筑科技大学 一种醇化GO‑SiO2颗粒改性平板复合正渗透膜制备方法
CN106702750A (zh) * 2016-12-30 2017-05-24 康伦国 一种石墨烯‑有机硅改性聚氨酯树脂合成革

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106221181A (zh) * 2016-07-29 2016-12-14 佛山市高明区诚睿基科技有限公司 一种3d打印用的热塑性聚氨酯复合材料
CN106582298A (zh) * 2016-12-09 2017-04-26 西安建筑科技大学 一种三维go片球颗粒改性有机复合超/微滤膜制备方法
CN106582316A (zh) * 2016-12-09 2017-04-26 西安建筑科技大学 一种醇化GO‑SiO2颗粒改性平板复合正渗透膜制备方法
CN106702750A (zh) * 2016-12-30 2017-05-24 康伦国 一种石墨烯‑有机硅改性聚氨酯树脂合成革

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108795020A (zh) * 2018-06-30 2018-11-13 杭州高烯科技有限公司 一种石墨烯-发泡聚氨酯复合材料及其制备方法
CN110204675A (zh) * 2019-05-05 2019-09-06 北京航天试验技术研究所 一种用于制作定位垫的组合物及制作定位垫的方法

Similar Documents

Publication Publication Date Title
CN104277699A (zh) 一种高强改性水性聚氨酯涂料
CN106566227A (zh) 石墨烯改性的水性聚氨酯复合材料的制备方法
CN103467676A (zh) 一种水性氧化石墨烯改性聚(氨酯-丙烯酸酯)复合材料的制备方法
CN104497385A (zh) 一种氨基化氧化石墨烯/高密度聚乙烯纳米复合膜及其制备方法
CN109337568B (zh) 一种金属基材长效防腐面漆及其制备方法
CN107880526A (zh) 一种石墨烯改性聚氨酯材料的制备方法
CN111100541A (zh) 一种水性聚氨酯涂料及其制备方法
CN102363705B (zh) 水性单组份全亮光清面漆及其制备方法
CN101613451A (zh) 高含量水性聚氨酯乳液及制备方法
CN103666178A (zh) 一种无voc高固含量水基环氧聚氨酯底漆及其制备方法
CN103725091A (zh) 一种水性凹印油墨及其制备方法
CN108727947A (zh) 一种氧化石墨烯杂化防腐涂料及制备方法
CN106833247A (zh) 一种环保型氟碳防腐涂料及其制备方法
CN111635699A (zh) 一种超疏水易清洁涂料及其制备方法
CN112142969A (zh) 一种苯酚聚氧乙烯醚的制备方法、高分子量苯酚聚氧乙烯聚氧丙烯醚的制备方法
CN102367359B (zh) 一种水性封闭底漆及其制备方法
CN111205756A (zh) 一种功能化氧化石墨烯水性聚氨酯防腐涂料及其制备方法
CN114045082A (zh) 一种具有自修复、透气及耐磨性能的复合涂层及其制备方法和应用
CN104745028A (zh) 一种水性丙烯酸漆及其制备方法
CN110423531A (zh) 一种环保水性漆及其制备方法
CN104140737B (zh) 应用于铁路支座上水性环氧富锌底漆的制备方法
CN107758657B (zh) 一种改性氧化石墨烯的方法
CN115558343A (zh) 一种低透水的透气型水性涂料及其制备方法
CN109321086A (zh) 一种水性环氧涂料及其制备方法
CN108659677A (zh) 一种装饰用防水漆及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180406