CN107863883B - 采用改进的下垂控制的dc转换器和使用方法 - Google Patents
采用改进的下垂控制的dc转换器和使用方法 Download PDFInfo
- Publication number
- CN107863883B CN107863883B CN201710858999.7A CN201710858999A CN107863883B CN 107863883 B CN107863883 B CN 107863883B CN 201710858999 A CN201710858999 A CN 201710858999A CN 107863883 B CN107863883 B CN 107863883B
- Authority
- CN
- China
- Prior art keywords
- converter
- resonant
- voltage
- frequency
- variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0016—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
- H02M1/0019—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0016—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
- H02M1/0022—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/285—Single converters with a plurality of output stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33538—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
- H02M3/33546—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33571—Half-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4826—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种可变频率谐振转换器(310、320;400)包含逆变器级(402)、谐振电路(404)、变压器(406)、整流器级(408)和控制器(250)。逆变器和整流器级包含第一和第二FET装置(410、412、420、422)。逆变器将DC输入信号转换成第一AC信号。谐振电路耦合到逆变器级,并且过滤第一AC信号。变压器耦合到谐振电路,并且将第一AC信号转换成第二AC信号。整流器级耦合到变压器,并且将第二AC信号转换成DC输出信号。控制器配置成基本上在至少部分由谐振电路定义的谐振频率操作第一和第二FET装置两者以来根据电压设定点生成DC输出信号。
Description
背景技术
本公开的领域一般涉及直流(DC)转换器,并且更具体地说,涉及DC转换器的改进的下垂控制和使用方法。
许多已知电功率应用利用并联功率源或冗余功率源来共享电气负载。并联功率源通过在负载和功率源被连接和断开连接时动态控制功率输出来改进对于整个电功率系统的可靠性。此类应用通常需求来自电源的特定范围的输出电压,并且正确地共享电气负载,并联功率源的输出电压应是平衡的。例如,在其中相等地共享电气负载的应用中,每个并联功率源应具有基本上相等的输出电压。相反,不等的输出电压导致电气负载的不等共享。
许多已知电功率应用还利用DC转换器将交流(AC)功率转换成DC,以将DC电压逐步增加或者将DC电压逐步减低到用于DC母线或DC负载的适当范围。此类DC转换器包含DC-DC和AC-DC转换器。在一些电功率应用中,DC转换器接收需求由DC转换器执行的某个电压调节的可变输入电压。一个这样已知的DC转换器是可变频率谐振转换器,有时称为LLC转换器(因其的电感器-电感器-电容器功率电路的使用而如此命名)。在可变频率谐振转换器中,通过调整在转换器内半导体装置的切换频率,控制转换器的输出电压。
通常,并联可变频率谐振转换器的特征在于下垂(droop),其包含频率下垂分量和电压下垂分量。给定转换器的下垂特性在切换频率变化时管控其有功和无功功率输出。谐振频率转换器的特征在于转换器实现峰值效率所处的谐振频率。用于并联可变频率谐振转换器的常见控制方案是下垂控制。在电气负载更改时,需求的功率也更改。在下垂控制方案中,基于功率输出来调整切换频率以保持输出电压设定点。因此,可变频率谐振转换器的效率相应地变化。
发明内容
在一个方面中,提供了一种可变频率谐振转换器。直流(DC)到DC转换器包含逆变器级、谐振电路、变压器、整流器级和控制器。逆变器和整流器级包含第一和第二FET装置。逆变器将DC输入信号转换成第一AC信号。谐振电路耦合到逆变器级,并且过滤第一AC信号。变压器耦合到谐振电路,并且将第一AC信号转换成第二AC信号。整流器级耦合到变压器,并且将第二AC信号转换成DC输出信号。控制器配置成基本上在至少部分由谐振电路定义的谐振频率操作第一和第二FET装置两者以根据电压设定点生成DC输出信号。
在另一方面中,提供了一种电功率系统。DC到DC转换器系统包含DC母线、第一DC转换器和第二DC转换器。DC母线配置成耦合到电气负载。第一DC转换器定义第一下垂特性和第一谐振频率。第一DC转换器耦合到DC母线,并且配置成根据第一可变电压设定点基本上在第一谐振频率操作以在DC母线上生成DC输出电压。第二DC转换器定义第二下垂特性和第二谐振频率。第二DC转换器耦合到DC母线,并且配置成根据第二可变电压设定点基本上在第二谐振频率操作以在DC母线上生成DC输出电压。第二DC转换器还配置成与第一DC转换器一起共享电气负载。
在又一个方面中,提供了一种控制DC到DC转换器的方法。方法包含测量DC到DC转换器的输出电流。方法还包含生成作为DC到DC转换器的输入电压、输出电流和对于DC到DC转换器的电压设定点的函数的参考电压。方法还包含计算电压设定点,使得参考电压基本上是恒定的。方法还包含计算参考电压以便与DC到DC转换器的谐振频率相对应。方法还包含根据参考电压基本上在谐振频率操作DC到DC转换器以生成DC输出电压。
本发明提供一组技术方案,如下所述。
1. 一种可变频率谐振转换器,包括:
逆变器级,配置成将直流(DC)输入信号转换成第一交流(AC)信号,所述逆变器级包括第一场效应晶体管(FET)装置;
耦合到所述逆变器级的谐振电路,所述谐振电路配置成过滤所述第一AC信号,并且至少部分定义谐振频率;
耦合到所述谐振电路的变压器,所述变压器配置成将所述第一AC信号转换成第二AC信号;
耦合到所述变压器的整流器级,所述整流器级配置成将所述第二AC信号转换成DC输出信号,所述整流器级包括第二FET装置;以及
控制器,配置成基本上在所述谐振频率操作所述第一FET装置和所述第二FET装置两者以根据参考电压生成所述DC输出信号。
2. 如技术方案1所述的可变频率谐振转换器,其中所述逆变器级还配置成接收可变电压DC输入信号。
3. 如技术方案1所述的可变频率谐振转换器,其中所述整流器级还配置成根据定义在22伏DC到29伏DC并且包含22伏DC以及29伏DC的范围内的所述参考电压,生成所述DC输出信号。
4. 如技术方案1所述的可变频率谐振转换器,其中所述谐振电路包括与所述变压器串联耦合的第一电容器和第一电感器。
5. 如技术方案4所述的可变频率谐振转换器,其中所述谐振电路还包括与所述变压器并联耦合的第二电感器。
6. 如技术方案1所述的可变频率谐振转换器,其中所述变压器包括高频变压器。
7. 如技术方案1所述的可变频率谐振转换器,其中所述控制器包括下垂控制系统,其配置成基于可变电压DC输入信号和测量的输出电流来生成所述参考电压,所述控制器还配置成调谐所述参考电压以产生所述谐振频率。
8. 一种电功率系统,包括:
DC母线,配置成耦合到电气负载;
定义第一下垂特性和第一谐振频率的第一DC转换器,所述第一DC转换器耦合到所述DC母线,所述第一DC转换器配置成根据第一可变参考电压基本上在所述第一谐振频率操作以在所述DC母线上生成DC输出电压;以及
定义第二下垂特性和第二谐振频率的第二DC转换器,所述第二DC转换器耦合到所述DC母线,所述第二DC转换器配置成根据第二可变参考电压基本上在所述第二谐振频率操作以在所述DC母线上生成所述DC输出电压,所述第二DC转换器还配置成与所述第一DC转换器一起共享所述电气负载。
9. 如技术方案8所述的电功率系统,其中所述第一DC转换器还包括下垂控制系统,其配置成:
测量所述第一DC转换器的第一输出电流;
根据输入电压、所述第一输出电流和第一电压设定点,生成所述第一可变参考电压;
调谐所述第一可变参考电压,使得输出频率基本上是恒定的,并且基本上等于所述第一谐振频率;以及
基本上在所述第一谐振频率操作所述第一DC转换器,所述第一谐振频率对应于所述第一可变参考电压。
10. 如技术方案9所述的电功率系统,其中所述第一转换器配置成接收可变输入电压。
11. 如技术方案10所述的电功率系统,其中所述下垂控制系统还配置成根据所述可变输入电压,生成所述第一参考电压。
12. 如技术方案8所述的电功率系统,其中所述DC母线在22伏DC到29伏DC并且包含22伏DC以及29伏DC的范围中可操作。
13. 如技术方案8所述的电功率系统,其中所述第一DC转换器包括可变频率谐振转换器。
14. 如技术方案8所述的电功率系统,还包括定义第三下垂特性和第三谐振频率的第三DC转换器,所述第三DC转换器耦合到所述DC母线,并且配置成根据第三可变参考电压基本上在所述第三谐振频率操作以在所述DC母线上生成所述DC输出电压,所述第三DC转换器还配置成与所述第一DC转换器和所述第二DC转换器一起共享所述电气负载。
15. 一种控制直流(DC)到DC转换器的方法,所述方法包括:
测量所述DC到DC转换器的输出电流;
生成作为所述DC到DC转换器的输入电压、所述输出电流和对于所述DC到DC转换器的电压设定点的函数的参考电压;
计算所述参考电压,使得所述参考电压产生基本上等于所述DC到DC转换器的谐振频率的基本上恒定的切换频率;以及
根据所述参考电压,基本上在所述谐振频率操作所述DC到DC转换器,以生成DC输出电压。
16. 如技术方案15所述的方法,还包括计算对于所述DC到DC转换器的谐振频率。
17. 如技术方案15所述的方法,还包括:
在开环中在所述谐振频率操作所述DC到DC转换器;
确定对于所述DC到DC转换器的下垂特性;以及
根据所述下垂特性,计算所述参考电压。
18. 如技术方案15所述的方法,还包括:
接收可变输入电压;以及
生成作为所述输出电流、所述可变输入电压和所述电压设定点的函数的所述参考电压。
19. 如技术方案15所述的方法,其中操作所述DC到DC转换器包括生成在22伏DC到29伏DC并且包含22伏DC以及29伏DC的范围内的所述DC输出电压。
20. 如技术方案15所述的方法,其中在所述谐振频率操作所述DC到DC转换器包括在基本上等于所述谐振频率的切换频率操作所述DC到DC转换器的至少一个场效应晶体管(FET)装置。
本发明提供另一组技术方案,如下所述。
1. 一种可变频率谐振转换器(310、320;400),包括:
逆变器级(402),配置成将直流(DC)输入信号转换成第一交流(AC)信号,所述逆变器级包括第一场效应晶体管(FET)装置(410);
耦合到所述逆变器级的谐振电路(404),所述谐振电路配置成过滤所述第一AC信号,并且至少部分定义谐振频率;
耦合到所述谐振电路的变压器(406),所述变压器配置成将所述第一AC信号转换成第二AC信号;
耦合到所述变压器的整流器级(408),所述整流器级配置成将所述第二AC信号转换成DC输出信号,所述整流器级包括第二FET装置(420);以及
控制器(250),配置成基本上在所述谐振频率操作所述第一FET装置和所述第二FET装置两者以根据参考电压生成所述DC输出信号。
2. 如技术方案1所述的可变频率谐振转换器(310、320;400),其中所述逆变器级(402)还配置成接收可变电压DC输入信号。
3. 如技术方案1所述的可变频率谐振转换器(310、320;400),其中所述整流器级(408)还配置成根据定义在22伏DC到29伏DC并且包含22伏DC以及29伏DC的范围内的所述参考电压,生成所述DC输出信号。
4. 如技术方案1所述的可变频率谐振转换器(310、320;400),其中所述谐振电路(404)包括与所述变压器(406)串联耦合的第一电容器(414)和第一电感器(416)。
5. 如技术方案4所述的可变频率谐振转换器(310、320;400),其中所述谐振电路(404)还包括与所述变压器(406)并联耦合的第二电感器(418)。
6. 如技术方案1所述的可变频率谐振转换器(310、320;400),其中所述变压器(406)包括高频变压器。
7. 如技术方案1所述的可变频率谐振转换器(310、320;400),其中所述控制器(250)包括下垂控制系统(200),其配置成基于可变电压DC输入信号和测量的输出电流来生成所述参考电压,所述控制器还配置成调谐所述参考电压以产生所述谐振频率。
8. 一种电功率系统(300),包括:
DC母线(330),配置成耦合到电气负载(340);
定义第一下垂特性和第一谐振频率的第一DC转换器(310),所述第一DC转换器耦合到所述DC母线,所述第一DC转换器配置成根据第一可变参考电压基本上在所述第一谐振频率操作以在所述DC母线上生成DC输出电压;以及
定义第二下垂特性和第二谐振频率的第二DC转换器(320),所述第二DC转换器耦合到所述DC母线,所述第二DC转换器配置成根据第二可变参考电压基本上在所述第二谐振频率操作以在所述DC母线上生成所述DC输出电压,所述第二DC转换器还配置成与所述第一DC转换器一起共享所述电气负载。
9. 如技术方案8所述的电功率系统(300),其中所述第一DC转换器(310)还包括下垂控制系统(200),其配置成:
测量所述第一DC转换器的第一输出电流;
根据输入电压、所述第一输出电流和第一电压设定点,生成所述第一可变参考电压;
调谐所述第一可变参考电压,使得输出频率基本上是恒定的,并且基本上等于所述第一谐振频率;以及
基本上在所述第一谐振频率操作所述第一DC转换器,所述第一谐振频率对应于所述第一可变参考电压。
10. 如技术方案9所述的电功率系统(300),其中所述第一转换器(310)配置成接收可变输入电压。
11. 如技术方案10所述的电功率系统(300),其中所述下垂控制系统(200)还配置成根据所述可变输入电压,生成所述第一参考电压。
12. 如技术方案8所述的电功率系统(300),其中所述DC母线(330)在22伏DC到29伏DC并且包含22伏DC以及29伏DC的范围中可操作。
13. 如技术方案8所述的电功率系统(300),其中所述第一DC转换器(310)包括可变频率谐振转换器(400)。
14. 如技术方案8所述的电功率系统(300),还包括定义第三下垂特性和第三谐振频率的第三DC转换器(400),所述第三DC转换器耦合到所述DC母线(330),并且配置成根据第三可变参考电压基本上在所述第三谐振频率操作以在所述DC母线上生成所述DC输出电压,所述第三DC转换器还配置成与所述第一DC转换器(310)和所述第二DC转换器(320)一起共享所述电气负载(340)。
附图说明
在参照附图阅读下面详细描述时,将变得更好地理解本公开的这些和其它特征、方面和优点,附图中相似的字符表示在附图通篇中相似的部件,其中:
图1是示范已知下垂控制系统的示意图;
图2是示范改进的下垂控制系统的示意图;
图3是示范电功率系统的框图,其利用与图2中示出的下垂控制系统一起使用的可变频率谐振转换器;
图4是供在图3中示出的电功率系统中使用的示范可变频率谐振转换器的示意图;以及
图5是使用图2中示出的下垂控制系统的示范方法的流程图。
除非另有指示,否则,本文中提供的附图意味着图示本公开的实施例的特征。这些特征被认为在包括本公开的一个或多个实施例的广泛的多种系统中均适用。同样地,附图不意味着包含本文中公开的实施例的实践所要求的由本领域中的技术人员所熟知的所有常规特征。
具体实施方式
在下面的说明书和权利要求中,参考了具有下面含意的多个术语。
除非上下文另有明确指示,否则,单数形式“一”、“一个”和“所述”包函复数参考。
“可选择的”或“可选择地”意味着随后描述的事件或情况可能发生或可能不发生,并且意味着描述包含其中发生事件的实例或其中未发生事件的实例。
如本文所使用的近似语言在说明书和权利要求书通篇中可应用于修改任何数量表示,该任何数量表示能够准许变化而没有导致与它相关的基本功能的改变。因此,通过诸如“大约”、“近似”和“基本上”的一个术语或多个术语所修改的值不是要局限于所指定的精确值。在至少一些实例中,近似语言可对应于用于测量该值的仪器的精确度。在这里并且在说明书和权利要求书通篇中,范围限制可被组合和/或互换,这类范围被识别,并且包含在其中所包含的所有子范围,除非上下文或语言另有指示。
一些实施例涉及一个或多个电子或计算装置的使用。此类装置通常包含处理器、处理装置或控制器,例如通用中央处理单元(CPU)、图形处理单元(GPU)、微控制器、精简指令集计算机(RISC)处理器、专用集成电路(ASIC)、可编程逻辑电路(PLC)、现场可编程门阵列(FPGA)、数字信号处理(DSP)装置和/或能够运行本文中描述的功能的任何其它电路或处理装置。本文中描述的方法可被编码为在包含但不限于存储装置和/或存储器装置的计算机可读媒介中体现的可运行指令。此类指令在由处理装置运行时,促使处理装置执行本文中描述的方法的至少一部分。上述示例只是示范的,并且因此不意图以任何方式限制术语处理器、处理装置和控制器的定义和/或含意。
在本文中描述的实施例中,存储器可包含但不限于诸如随机存取存储器(RAM)的计算机可读媒介和诸如闪速存储器的计算机可读非易失性媒介。备选地,还可使用软盘、紧致盘只读存储器(CD-ROM)、磁光盘(MOD)和/或数字多功能盘(DVD)。而且,在本文中描述的实施例中,附加的输入信道可以但不限于是与诸如鼠标和键盘的操作方接口相关联的计算机外设。备选地,还可使用例如可包括但不限扫描仪的其它计算机外设。此外,在示范实施例中,附加的输出信道可包含但不限于操作方接口监测器。
本公开的实施例提供采用改进的下垂控制的DC转换器。更具体地说,本公开描述使用改进的下垂控制来基本上在其谐振频率操作并联可变频率谐振转换器以用于最大效率,并且确保在转换器之中的相等负载共享。本文中认识到,在某些应用中,可放宽输入电压要求和输出电压要求,使得改进的下垂控制能够始终在谐振或接近谐振操作可变频率谐振转换器。改进的下垂控制通过基于输入电压和测量的功率来调整参考电压以保持基本上在谐振频率的操作来实现在谐振的操作。
图1是供在可变频率谐振转换器中使用的示范已知下垂控制系统100的示意图。下垂控制系统100产生作为电压设定点和输出电流的函数的切换频率输出。切换频率可用于调节可变频率谐振转换器的电压输出。下垂控制系统100包含负反馈电压120和电压设定点的合计110。基于对于可变频率谐振转换器的下垂特性和输出电流,计算反馈电压120。下垂特性被实现为经由放大器130应用到输出电流的增益。增益表示下垂阻抗,并且因此反馈电压120被计算为。
下垂控制系统100包含接收合计110的结果(即,参考电压)的控制器140。控制器140根据参考电压生成切换频率。更具体地说,控制器140基于对于可变频率谐振转换器的下垂特性,将参考电压转化成切换频率。此种转化可在例如且不限于数学等式或查找表中体现。
下垂控制系统包含电压设定点和负反馈电压230的合计220。基于对于基本上在谐振操作的可变频率谐振转换器的下垂特性和输出电流,计算反馈电压230。在谐振的下垂特性被实现为经由放大器240应用到输出电流的增益。增益表示最佳下垂阻抗,并且因此反馈电压230被计算为。
下垂控制系统200包含接收合计220的结果(即,参考电压)的控制器250。控制器250根据参考电压生成切换频率。更具体地说,控制器250基于对于可变频率谐振转换器的下垂特性,将参考电压转化成切换频率。此种转化可在例如且不限于数学等式或查找表中体现。
选择由放大器210应用到输入电压的增益,使得电压设定点是在输出电压的期望范围内的标称电压设定点。在某些实施例中,输入电压变化相当大。例如且不限于输入电压可从500伏DC到550伏DC变化。例如在某些实施例中,输出电压的期望范围包含22伏DC到29伏DC并且包含22伏DC以及29伏DC。电压设定点被设置,使得通过合计220产生的参考电压产生基本上恒定的切换频率。如果切换频率变化不超过2%,则它被定义为基本上恒定。此外,切换频率优选地等于或接近对于可变频率谐振转换器的谐振频率。对于可变频率谐振转换器的谐振频率通常是转换器最有效地操作所处的频率。如果在切换频率操作时,则切换频率等于或接近对于可变频率谐振转换器的谐振频率,可变频率谐振转换器基本上在谐振或者基本上在谐振频率操作。可变频率谐振转换器当在谐振频率的2%内操作时,基本上在谐振操作。
图3是示范电功率系统300的框图。电功率系统300包含并联耦合到DC母线330的可变频率谐振转换器310和320。DC母线330服务(serve)电气负载340。放置在DC母线330上的DC输出电压对于电气负载340被调节到预定义的范围内。例如且不限于在某些实施例中,DC母线330被调节到在22伏DC和29伏DC并且包含22伏DC以及29伏DC的范围内。可变频率谐振转换器310和320配置成共享电气负载340。在某些实施例中,在诸如可变频率谐振转换器310和320的并联转换器之中相等地共享电气负载340。在此类实施例中,由每个可变频率谐振转换器310和320生成的输出电压应基本上相等。基本上相等的输出电压通常在1%内。基本上相等的输出电压促进在并联转换器之中的相等的功率共享。在某些实施例中,取决于应用中容忍的失衡量,并且还取决于互连阻抗,输出电压可以变化大于1%。
电功率系统300包含提供供应到可变频率谐振转换器310和320的输入电压360的DC电压源350。可变频率谐振转换器310和320也由耦合到DC电压源350的参考侧的参考信号370供应。DC电压源350定位(reference)到接地380。在备选实施例中,DC电压源350不定位到接地380。电气负载340也定位到接地380。在备选实施例中,电气负载340可以定位到节点而不是接地380。
可变频率谐振转换器310和320体现下垂控制系统200(图2中示出)。更具体地说,每个可变频率谐振转换器310和320配置成基本上在其相应谐振频率操作。每个可变频率谐振转换器310和320被独立控制以根据放置在DC母线330上的测量的输出功率和输入电压360调整参考电压,以保持基本上在其相应谐振频率的操作。
图4是供在电功率系统300(图3中示出)中使用的示范可变频率谐振转换器400的示意图。可变频率谐振转换器400耦合到DC电压源350和电气负载340(图3中示出)。可变频率谐振转换器400和电气负载340均定位到接地380(图3中示出)。
可变频率谐振转换器400包含逆变器级402、谐振电路404、变压器406和整流器级408。逆变器402耦合到DC电压源350的输出,并且包含场效应晶体管(FET)装置410和412。在切换频率操作FET装置410和412,以将输入电压信号转换成第一AC信号。
谐振电路404耦合到逆变器级402,并且配置成过滤第一AC信号。谐振电路404包含电容器414、电感器416和电感器418。谐振电路404至少部分定义可变频率谐振转换器400的谐振频率。在备选实施例中,电感器418被省略,并且变压器406代替其提供电感。
变压器406耦合到谐振电路404,并且配置成将第一AC信号转换成第二AC信号。变压器406是用于在可变频率谐振转换器400内逐步增加或逐步减低中间AC电压的高频变压器。
整流器级408耦合到变压器406,并且包含FET装置420和422。在切换频率操作FET装置420和422,类似于FET装置410和412。FET装置420和422被切换,以将第二AC信号转换成跨电容器424的DC输出电压。DC输出电压则被供应到电气负载340。
在至少部分由谐振电路404定义的谐振频率最有效地操作可变频率谐振转换器400。在等于谐振频率的切换频率切换FET装置410、412、420和422时,在谐振频率操作可变频率谐振转换器400。
图5是使用下垂控制系统200(图2中示出)用于控制诸如可变频率谐振转换器400(图3和4中示出)的DC到DC转换器的示范方法500的流程图。参照图2-5,方法500在开始步骤510处开始。在反馈步骤520处,在下垂控制系统200中测量和反馈可变频率谐振转换器400的输出电流。
在生成步骤530处,生成作为输出电流、输出电压和电压设定点的函数的参考电压。在计算步骤540处,计算电压设定点,使得参考电压产生基本上恒定的切换频率。参考电压被计算以与可变频率谐振转换器400的谐振频率相对应。
在某些实施例中,方法500包含以开环配置和在谐振频率操作可变频率谐振转换器400,以确定可变频率谐振转换器400的自然下垂或下垂特性。此外,在某些实施例中,为可变频率谐振转换器400计算谐振频率。给定下垂特性和输入电压,计算电压设定点,使得电压参考产生基本上恒定的切换频率。在某些实施例中,输入电压可变化相当大。同样地,电压设定点可在对于DC母线330和电气负载340的可接受范围内变化。
DC转换器的上述实施例提供了改进的下垂控制。更具体地说,本公开描述使用改进的下垂控制来基本上在其谐振频率操作并联连接的可变频率谐振转换器以用于最大效率,并且同时确保在转换器之中的相等的负载共享。本文中认识到,在某些应用中,可放宽输入电压要求和输出电压要求,使得改进的下垂控制能够始终在谐振或接近谐振操作可变频率谐振转换器。改进的下垂控制通过基于输入电压和测量的功率来调整电压设定点以保持基本上在谐振频率的操作来实现在谐振的操作。
本文中描述的方法、系统和设备的示范技术效果包含下列中的至少一个:(a)拓宽对于DC转换器可接受的输入电压的范围;(b)在某些DC转换器应用中利用(leveraging)大范围的可接受输出电压;(c)基本上在谐振频率操作可变频率谐振转换器;(d)通过在谐振的操作,改进DC转换器的效率;(e)通过效率改进,降低DC转换器的冷却负载;(f)通过在谐振的相应操作,促进多个并联DC转换器的高效操作;以及(g)改进在并联DC转换器之中的负载共享,并且同时确保更高效的操作。
对于并联DC转换器的方法、系统和设备的示范实施例不限于本文中描述的具体实施例,但相反,可与本文中描述的其它组件和/或步骤独立地且分开地利用系统的组件和/或方法的步骤。例如,方法也可与其它非常规并联DC转换器组合使用,并且不限于仅通过如本文中所述的系统和方法来实践。相反,结合可从增大的效率、降低的操作成本和降低的资本支出中受益的许多其它应用、设备和系统,能够实现和利用示范实施例。
虽然本公开的各种实施例的具体特征可在一些附图中示出而未在其它附图中示出,但这仅是出于方便。根据本公开的原理,附图的任何特征可以与任何其它附图的任何特征组合来参考和/或主张。
本书面描述使用包含最佳模式的示例来公开实施例,并且还使本领域的任何技术人员能够实践实施例,包含制作和使用任何装置或系统,以及执行任何结合方法。本公开的可取得专利范围由权利要求书来限定,并且可包含本领域的技术人员想到的其它示例。如果这类其它示例具有与权利要求的文字语言完全相同的结构单元,或者如果它们包含具有与权利要求的文字语言的非实质差异的等效结构单元,则预计它们处于权利要求的范围之内。
部件列表
Claims (18)
1.一种可变频率谐振转换器,包括:
逆变器级,配置成将直流DC输入信号转换成第一交流AC信号,所述逆变器级包括第一场效应晶体管FET装置;
耦合到所述逆变器级的谐振电路,所述谐振电路配置成过滤所述第一交流 AC信号,并且至少部分定义谐振频率;
耦合到所述谐振电路的变压器,所述变压器配置成将所述第一交流 AC信号转换成第二AC信号;
耦合到所述变压器的整流器级,所述整流器级配置成将所述第二AC信号转换成DC输出信号,所述整流器级包括第二FET装置;以及
控制器,配置成根据参考电压基本上在所述谐振频率操作所述第一场效应晶体管 FET装置和所述第二FET装置两者以生成所述DC输出信号,
其中所述控制器包括下垂控制系统,所述下垂控制系统配置成生成作为所述转换器的输出电流、所述转换器的输入电压以及所述转换器的电压设定点的函数的所述参考电压,
其中所述控制器还配置成调整所述参考电压以产生基本上等于所述谐振频率的基本上恒定的切换频率。
2.如权利要求1所述的可变频率谐振转换器,其中所述逆变器级还配置成接收可变电压DC输入信号。
3.如权利要求1所述的可变频率谐振转换器,其中所述整流器级还配置成在22伏DC到29伏DC并且包含22伏DC以及29伏DC的范围内,生成所述DC输出信号。
4.如权利要求1所述的可变频率谐振转换器,其中所述谐振电路包括与所述变压器串联耦合的第一电容器和第一电感器。
5.如权利要求4所述的可变频率谐振转换器,其中所述谐振电路还包括与所述变压器并联耦合的第二电感器。
6.如权利要求1所述的可变频率谐振转换器,其中所述变压器包括高频变压器。
7.一种电功率系统,包括:
DC母线,配置成耦合到电气负载;
定义第一下垂特性和第一谐振频率的第一DC转换器,所述第一DC转换器耦合到所述DC母线,所述第一DC转换器配置成根据第一可变参考电压基本上在所述第一谐振频率操作以在所述DC母线上生成DC输出电压;以及
定义第二下垂特性和第二谐振频率的第二DC转换器,所述第二DC转换器耦合到所述DC母线,所述第二DC转换器配置成根据第二可变参考电压基本上在所述第二谐振频率操作以在所述DC母线上生成所述DC输出电压,所述第二DC转换器还配置成与所述第一DC转换器一起共享所述电气负载,
其中所述第一DC转换器还包括下垂控制系统,其配置成:
测量所述第一DC转换器的第一输出电流;
根据输入电压、所述第一输出电流和第一电压设定点,生成所述第一可变参考电压;
调谐所述第一可变参考电压,使得切换频率基本上是恒定的,并且基本上等于所述第一谐振频率;以及
基本上在所述第一谐振频率操作所述第一DC转换器,所述第一谐振频率对应于所述第一可变参考电压。
8.如权利要求7所述的电功率系统,其中所述第一DC 转换器配置成接收可变输入电压。
9.如权利要求8所述的电功率系统,其中所述下垂控制系统还配置成根据所述可变输入电压,生成所述第一可变 参考电压。
10.如权利要求7所述的电功率系统,其中所述DC母线在22伏DC到29伏DC并且包含22伏DC以及29伏DC的范围中可操作。
11.如权利要求7所述的电功率系统,其中所述第一DC转换器包括可变频率谐振转换器。
12.如权利要求7所述的电功率系统,还包括定义第三下垂特性和第三谐振频率的第三DC转换器,所述第三DC转换器耦合到所述DC母线,并且配置成根据第三可变参考电压基本上在所述第三谐振频率操作以在所述DC母线上生成所述DC输出电压,所述第三DC转换器还配置成与所述第一DC转换器和所述第二DC转换器一起共享所述电气负载。
13.一种控制直流DC到DC转换器的方法,所述方法包括:
测量所述DC到DC转换器的输出电流;
生成作为所述DC到DC转换器的输入电压、所述输出电流和对于所述DC到DC转换器的电压设定点的函数的参考电压;
调整所述参考电压以产生基本上等于所述DC到DC转换器的谐振频率的基本上恒定的切换频率;以及
根据所述参考电压,基本上在所述谐振频率操作所述DC到DC转换器,以生成DC输出电压。
14.如权利要求13所述的方法,还包括计算对于所述DC到DC转换器的谐振频率。
15.如权利要求13所述的方法,还包括:
在开环中在所述谐振频率操作所述DC到DC转换器;
确定对于所述DC到DC转换器的下垂特性;以及
根据所述下垂特性,计算所述参考电压。
16.如权利要求13所述的方法,还包括:
接收可变输入电压;以及
生成作为所述输出电流、所述可变输入电压和所述电压设定点的函数的所述参考电压。
17.如权利要求13所述的方法,其中操作所述DC到DC转换器包括生成在22伏DC到29伏DC并且包含22伏DC以及29伏DC的范围内的所述DC输出电压。
18.如权利要求13所述的方法,其中在所述谐振频率操作所述DC到DC转换器包括在基本上等于所述谐振频率的切换频率操作所述DC到DC转换器的至少一个场效应晶体管FET装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/272,179 US10097095B2 (en) | 2016-09-21 | 2016-09-21 | DC converters with modified droop control and method of use |
US15/272179 | 2016-09-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107863883A CN107863883A (zh) | 2018-03-30 |
CN107863883B true CN107863883B (zh) | 2021-08-17 |
Family
ID=59887118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710858999.7A Active CN107863883B (zh) | 2016-09-21 | 2017-09-21 | 采用改进的下垂控制的dc转换器和使用方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10097095B2 (zh) |
EP (1) | EP3300238A3 (zh) |
CN (1) | CN107863883B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10673323B2 (en) * | 2016-10-27 | 2020-06-02 | University Of Florida Research Foundation, Incorporated | Loop noise balance technique for CM EMI noise reduction of the full bridge LLC resonant converter |
US11532989B2 (en) * | 2019-11-27 | 2022-12-20 | Hamilton Sundstrand Corporation | Using parasitic capacitance of a transformer as a tank element in a DC-DC converter |
US12046920B2 (en) * | 2020-05-04 | 2024-07-23 | Apple Inc. | Wireless power relay with constant power controlled converter |
CN112031739B (zh) * | 2020-08-27 | 2021-08-24 | 江苏辰午节能科技股份有限公司 | 一种用于石油钻井的双电机驱动系统及其控制方法 |
US11518538B2 (en) | 2021-02-17 | 2022-12-06 | Rolls-Royce Singapore Pte. Ltd. | Control for a target common bus voltage |
US11520361B2 (en) | 2021-02-17 | 2022-12-06 | Rolls-Royce Singapore Pte. Ltd. | Control for a target common bus voltage |
US11520362B2 (en) | 2021-02-17 | 2022-12-06 | Rolls-Royce Singapore Pte. Ltd. | Control for a target common bus voltage |
US20220413536A1 (en) * | 2021-06-25 | 2022-12-29 | Intel Corporation | Device, method and system to determine a mode of voltage regulation based on parasitics of a power delivery network |
SE544970C2 (en) * | 2021-07-08 | 2023-02-14 | Zs Electric Ab | A current booster, a printed circuit board comprising said current booster and a test equipment |
CN117833686B (zh) * | 2024-03-05 | 2024-05-28 | 广东省洛仑兹技术股份有限公司 | 一种具有宽增益调节范围的llc谐振变换器控制系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104040861A (zh) * | 2012-02-03 | 2014-09-10 | 富士电机株式会社 | 谐振型dc-dc变换器的控制装置 |
CN104124872A (zh) * | 2013-04-29 | 2014-10-29 | Nxp股份有限公司 | 电压发生器 |
CN104578791A (zh) * | 2013-10-15 | 2015-04-29 | 南京博兰得电子科技有限公司 | 并联的谐振变换器及其控制方法 |
CN105191100A (zh) * | 2013-07-11 | 2015-12-23 | 富士电机株式会社 | 双向dc/dc转换器 |
CN105191097A (zh) * | 2013-04-16 | 2015-12-23 | 华为技术有限公司 | 用于谐振转换器的设备和方法 |
CN105917565A (zh) * | 2013-10-17 | 2016-08-31 | 华为技术有限公司 | 用于实现谐振转换器高效率的装置和方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1770850A1 (en) | 2005-10-03 | 2007-04-04 | ABB Schweiz AG | Systems of parallel operating power electronic converters |
US8279628B2 (en) * | 2008-07-25 | 2012-10-02 | Cirrus Logic, Inc. | Audible noise suppression in a resonant switching power converter |
ATE545193T1 (de) | 2009-07-02 | 2012-02-15 | Converteam Technology Ltd | Steuerungsverfahren für parallel geschaltete stromwandler |
CA2789381C (en) * | 2010-02-19 | 2015-10-20 | Queen's University At Kingston | A controller and a method of controlling a resonant power converter |
CN103219885B (zh) | 2012-01-20 | 2015-08-12 | 百富(澳门离岸商业服务)有限公司 | Dc至dc转换器 |
CN103151785B (zh) | 2013-04-02 | 2013-12-11 | 湖南大学 | 一种兼具快速无功支撑的多变流器并联环流抑制方法 |
US9178433B2 (en) | 2013-05-15 | 2015-11-03 | Bel Fuse (Macao Commercial Offshore) Limited | Droop current sharing power converter with controlled transitions between regulation set points |
WO2015187747A2 (en) | 2014-06-02 | 2015-12-10 | Utah State University | Multi-mode control for a dc-to-dc converter |
US9729085B2 (en) * | 2014-09-26 | 2017-08-08 | Majid Pahlevaninezhad | Observer-based control system for grid-connected DC/AC converters with LCL-filter |
CN104753059B (zh) | 2015-04-22 | 2017-01-18 | 哈尔滨工业大学 | 带有自适应阻抗二次调节的直流变换器下垂控制方法 |
-
2016
- 2016-09-21 US US15/272,179 patent/US10097095B2/en active Active
-
2017
- 2017-09-15 EP EP17191318.9A patent/EP3300238A3/en not_active Ceased
- 2017-09-21 CN CN201710858999.7A patent/CN107863883B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104040861A (zh) * | 2012-02-03 | 2014-09-10 | 富士电机株式会社 | 谐振型dc-dc变换器的控制装置 |
CN105191097A (zh) * | 2013-04-16 | 2015-12-23 | 华为技术有限公司 | 用于谐振转换器的设备和方法 |
CN104124872A (zh) * | 2013-04-29 | 2014-10-29 | Nxp股份有限公司 | 电压发生器 |
CN105191100A (zh) * | 2013-07-11 | 2015-12-23 | 富士电机株式会社 | 双向dc/dc转换器 |
CN104578791A (zh) * | 2013-10-15 | 2015-04-29 | 南京博兰得电子科技有限公司 | 并联的谐振变换器及其控制方法 |
CN105917565A (zh) * | 2013-10-17 | 2016-08-31 | 华为技术有限公司 | 用于实现谐振转换器高效率的装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180083545A1 (en) | 2018-03-22 |
CN107863883A (zh) | 2018-03-30 |
EP3300238A3 (en) | 2019-06-19 |
US10097095B2 (en) | 2018-10-09 |
EP3300238A2 (en) | 2018-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107863883B (zh) | 采用改进的下垂控制的dc转换器和使用方法 | |
US10498214B2 (en) | Multi-stage amplifier | |
TWI700879B (zh) | 高頻寬共振功率轉換器及用於功率轉換之方法 | |
US7639520B1 (en) | Efficient power supply | |
US10192721B2 (en) | High-frequency power source | |
US8582336B2 (en) | Power supply circuit capable of handling direct current and alternating current and power supply control method | |
US20170098961A1 (en) | Inductive power receiver with resonant coupling regulator | |
CN102047523B (zh) | 阻抗校正 | |
WO2013068817A1 (en) | Dynamic power factor correction and dynamic control for converter in power supply | |
EP3809573A1 (en) | Inductive coupled power supply and slope control | |
US9088174B2 (en) | Adjusting voltage regulator operating parameters | |
US6977830B2 (en) | Power supply apparatus | |
JP6608866B2 (ja) | Dc−dcコンバータ | |
JP2005287249A (ja) | スイッチング電源装置 | |
CN111313843A (zh) | 放大器中的飞跨电容器电压控制 | |
JP2019154104A (ja) | 高周波電源装置における高調波抑制装置および高調波抑制方法 | |
JP5317196B2 (ja) | 安定化回路および安定化方法 | |
KR101177635B1 (ko) | 용량성 부하를 위한 전원 공급 장치 및 그 제어 방법 | |
JP2016135089A (ja) | マルチ出力電源装置 | |
KR102112331B1 (ko) | Thd 저감을 위한 전력변환장치의 제어 | |
JP6154158B2 (ja) | スイッチングレギュレータ | |
US11171558B2 (en) | DC power supply with adaptive controlled preregulator and postregulator | |
US10622882B2 (en) | Control of power conversion device for decreasing total harmonic distortion | |
Ganacim et al. | Output power feedforward technique applied to a high power factor rectifier with high frequency transformer | |
US20190393771A1 (en) | Voltage controlled current input and transimpedance regulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |