CN107857978A - 抗静电可生物降解泡沫材料及其制备方法 - Google Patents

抗静电可生物降解泡沫材料及其制备方法 Download PDF

Info

Publication number
CN107857978A
CN107857978A CN201711196151.9A CN201711196151A CN107857978A CN 107857978 A CN107857978 A CN 107857978A CN 201711196151 A CN201711196151 A CN 201711196151A CN 107857978 A CN107857978 A CN 107857978A
Authority
CN
China
Prior art keywords
weight
parts
antistatic
foam material
biodegradable foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711196151.9A
Other languages
English (en)
Inventor
王威
王海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Zhongke Eco Material Co Ltd
Original Assignee
Changchun Zhongke Eco Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Zhongke Eco Material Co Ltd filed Critical Changchun Zhongke Eco Material Co Ltd
Priority to CN201711196151.9A priority Critical patent/CN107857978A/zh
Publication of CN107857978A publication Critical patent/CN107857978A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/104Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
    • C08J9/105Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及一种抗静电可生物降解泡沫材料及其制备方法,属于泡沫材料技术领域。解决了现有技术中改善聚对苯二甲酸‑己二酸丁二醇酯发泡材料抗静电性能的方法需要添加很大比例的抗静电剂,引起材料力学性能下降的问题。本发明的抗静电可生物降解泡沫材料,由60‑100重量份聚己二酸‑对苯二甲酸丁二醇酯、0‑40重量份可生物降解聚合物、1‑15重量份抗静电剂、1‑5重量份无机填料、0.5‑15重量份发泡剂、0.01‑5重量份助发泡剂和0.1‑5重量份交联剂组成。该泡沫材料具备抗静电性能优异、物理性能优异、耐水性好、耐久性好、发泡倍率较高的优点,且可以在很宽的范围内调控力学性能。

Description

抗静电可生物降解泡沫材料及其制备方法
技术领域
本发明涉及一种抗静电可生物降解泡沫材料及其制备方法,属于泡沫材料技术领域。
背景技术
不论是以聚乙烯、聚苯乙烯,还是以聚氨酯为原料制得的泡沫塑料都具有质轻、省料、热导率低、隔热性能好、吸收冲击载荷、隔音性能好、比强度高等性能,在包装行业发挥着巨大的作用。然而,这些泡沫塑料被使用后,很难回收处理再次循环使用,丢弃到环境中,不能与环境同化,对环境造成巨大危害。如漂浮在海洋中被海洋生物吞服,致使海洋生物死亡。因此,大力开发和推广可降解泡沫材料受到世界范围的学术界和工业界的关注。
聚对苯二甲酸-己二酸丁二醇酯是对苯二甲酸、己二酸和1,4-丁二醇的三元共聚酯,属完全生物降解塑料。由于聚对苯二甲酸-己二酸丁二醇酯中含柔性的脂肪链和刚性的芳香键,因而具有高韧性和耐高温性,将其制备成发泡材料后,可以有效解决传统发泡材料带来的污染问题。
但是将聚对苯二甲酸-己二酸丁二醇酯制成发泡材料后,由于材料本身具有良好的电绝缘性,使得发泡材料也具有良好的电绝缘性,在成型加工或使用时,因摩擦而带静电。静电往往能吸附尘埃,从而影响产品的表观质量,在一些特殊环境中使用时,甚至会因放电而招致爆炸或燃烧事故。近年来,随着我国电子行业的迅速发展,对于一些敏感的电子元件、芯片、仪器仪表等电子产品对包装材料的要求非常严格,如果采用了非抗静电包装材料,材料会因电磁感应和摩擦产生静电积累而进行高压放电,进而破坏包装内容物的电子产品,造成极大地经济损失。要获得较好的抗静电效果,往往要在聚合物中添加导电填料,或是添加抗静电剂,利用在高聚物中形成导电通道起到抗静电的作用。但是对于单一聚合物而言,要获得较好的抗静电效果,往往要添加很大比例的抗静电剂,引起材料力学性能下降。引入另一聚合物组分,由于两相界面的存在,抗静电剂可以优先分散在一相或是界面处,可以大大减少抗静电剂的用量,提高材料的力学性能。
发明内容
本发明的目的是解决现有技术中改善聚对苯二甲酸-己二酸丁二醇酯发泡材料性能的方法需要添加很大比例的抗静电剂,引起材料力学性能下降的问题。
本发明的抗静电可生物降解泡沫材料,组成及重量份为:
所述可降解聚合物为聚乳酸、二氧化碳-环氧丙烷共聚物、聚丁二酸丁二醇酯中的一种或多种按任意比例的混合。
优选的是,所述抗静电剂为导电炭黑、碳纳米管、石墨烯、非离子型抗静电剂和阳离子型抗静电剂中的一种或多种按任意比例的混合。
优选的是,所述发泡剂为偶氮二甲酰胺、偶氮二甲酸钡、偶氮二甲酸二异丙酯、N,N-二亚硝基五次甲基四胺、4,4’-氧代双苯磺酰肼中的一种或多种按任意比例的混合。
优选的是,所述无机填料为二氧化硅、滑石粉、碳酸钙、蒙脱土中的一种或多种按任意比例的混合。
优选的是,所述助发泡剂为氧化锌、硬脂酸锌、硬脂酸钙中的一种或多种按任意比例的混合。
优选的是,所述交联剂为三烯丙基异氰脲酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯中的一种或多种按任意比例的混合,或者为乙烯基三甲基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷中的一种或多种按任意比例的混合。
上述抗静电可生物降解泡沫材料的制备方法,步骤如下:
步骤一、按组成及重量份称取各原料,加入挤出机中进行混炼造粒,混炼造粒温度为80-170℃,得到的混炼造粒料在片材挤出机上挤出片材,片材厚度为0.5-3.0mm,挤出温度为100-170℃;
步骤二、室温下空气中,对共混物片材进行电离辐照,辐照剂量为2-100KGy,得到交联物料;
或者,室温下空气中,对步骤一得到的片材进行电离辐照,辐照剂量为0.5-9KGy,得到预交联物料;将预交联物料,在50-80℃的热水浴中进一步交联2-48h,得到交联物料;
步骤三、将交联物料进行发泡,温度为190-250℃,时间为1-20min,得到可生物降解聚己二酸-对苯二甲酸丁二醇酯泡沫材料。
优选的是,混炼造粒在双螺杆挤出机中完成,挤出片材的设备为单螺杆片材挤出机。
优选的是,电离辐射源为60Co源或电子加速器。
优选的是,交联物料在立式发泡炉或水平发泡炉中进行发泡。
与现有技术相比,本发明的有益效果:
本发明的抗静电可生物降解泡沫材料具有抗静电性能优异、物理性能优异、耐水性好、耐久性好、发泡倍率较高等优点,且通过与其他生物可降解高分子,如聚乳酸、二氧化碳-环氧丙烷共聚物、聚丁二酸丁二醇酯等进行共混发泡,可以有效减少添加的抗静电剂含量,使其可以应用于电子领域等的包装,还可以提高发泡材料的力学性能,并可以在很宽的范围内调控发泡材料的力学性能,如压缩强度,压缩模量,使其可以满足更多的应用领域,经试验检测,本发明的泡沫材料的表观密度为50-500Kg/m3,表面电阻率为2.6×1055.10×106Ω,断裂伸长率为100-450%,压缩强度为0.50-1.57MPa。
本发明的抗静电可生物降解泡沫材料的制备方法可采用含有乙烯基的硅烷作为交联剂,实现在低辐射剂量下对聚己二酸-对苯二甲酸丁二醇酯及其共混物进行辐照交联,降低辐射加工成本,同时,在分子链间引入硅氧化学键后可以加快这些生物降解发泡材料的生物降解速率;
本发明的抗静电可生物降解泡沫材料的制备方法可采用辐照交联和水热交联结合,保证材料满足发泡的需要,制得物理性能优异、耐水性好、耐久性好、发泡倍率较高的泡沫塑料,且进一步降低辐射剂量;
本发明的抗静电可生物降解泡沫材料的制备方法采用常温下辐照交联,操作简单。
具体实施方式
为了进一步了解本发明,下面结合具体实施方式对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特正和优点而不是对本发明权利要求的限制。
本发明的抗静电可生物降解泡沫材料,由60-100重量份聚己二酸-对苯二甲酸丁二醇酯、0-40重量份可生物降解聚合物、1-15重量份的抗静电剂,0.5-15重量份发泡剂、1-5重量份无机填料、0.01-5重量份助发泡剂和0.1-5重量份交联剂组成。
其中,聚己二酸-对苯二甲酸丁二醇酯重量份优选为65-80,更优选为70-75。可生物降解聚合物为聚乳酸、二氧化碳-环氧丙烷共聚物、聚丁二酸丁二醇酯中的一种或多种按任意比例的混合,重量份优选为10-35,更优选为15-30,尤其优选为18-25。抗静电剂为导电炭黑、碳纳米管、石墨烯、非离子型抗静电剂、阳离子型抗静电剂中一种或多种按任意比例的混合,重量份优选为3-12,更优选为5-10,尤其优选为6-8。无机填料为二氧化硅、滑石粉、碳酸钙、蒙脱土中的一种或多种按任意比例的混合,重量份优选为2-4,更优选为3-3.5。发泡剂为偶氮二甲酰胺、偶氮二甲酸钡、偶氮二甲酸二异丙酯、N,N-二亚硝基五次甲基四胺、4,4’-氧代双苯磺酰肼中的一种或多种按任意比例的混合,重量份优选为5-13,更优选为8-12,尤其优选为9-10。助发泡剂为氧化锌、硬脂酸锌、硬脂酸钙中的一种或多种按任意比例的混合,重量份优选为1-4,更优选为2-3.5,尤其优选为2.5-3。交联剂为乙烯基三甲基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷中的一种或多种按任意比例的混合,重量份优选为2-4,更优选为3-3.5。
本发明的抗静电可生物降解泡沫材料的制备方法,步骤如下:
步骤一、按组成及重量份称取各原料,加入双螺杆挤出机中进行混炼造粒,混炼造粒温度为80-170℃,得到的混炼造粒料在单螺杆片材挤出机上挤出片材,片材厚度为0.5-3.0mm,优选1mm,挤出温度为100-170℃;
步骤二、室温下空气中,使用电子加速器或钴(60Co)源电离辐射对共混物片材进行电离辐照,辐照剂量为2-100KGy,优选为80-90KGy,得到交联物料;
或者,室温下空气中,对步骤一得到的片材进行电离辐照,辐照剂量为0.5-9KGy,得到预交联物料;将预交联物料,在50-80℃的热水浴中进一步交联2-48h,得到交联物料;
步骤三、将交联物料在立式或水平发泡炉进行发泡,温度为190-250℃,时间为1-20min,优选温度为210-240℃,时间为4-8min,得到抗静电可生物降解泡沫材料。
以下将通过实施例进一步详细的说明本发明。但是,本发明并不局限于这些例子。
实施例1
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯100重量份、导电炭黑15重量份、偶氮二甲酰胺5重量份、碳酸钙5重量份、氧化锌1重量份、三烯丙基异氰脲酸酯0.5重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行辐照,辐照剂量为100KGy。在立式发泡炉中发泡,发泡温度为220℃,发泡时间为4min。
对实施例1得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例2
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯70重量份、聚乳酸30重量份、导电炭黑7重量份、偶氮二甲酰胺5重量份、碳酸钙5重量份、氧化锌1重量份和三烯丙基异氰脲酸酯0.5重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用60Co源,在室温下空气中对片材进行辐照,辐照剂量为100KGy。在立式发泡炉中发泡,发泡温度为220℃,发泡时间为4min。
对实施例2得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例3
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯60重量份、聚乳酸40重量份、偶氮二甲酰胺5重量份、导电炭黑8重量份、碳酸钙5重量份、氧化锌1重量份和三烯丙基异氰脲酸酯0.5重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行辐照,辐照剂量为100KGy。在立式发泡炉中发泡,发泡温度为220℃,发泡时间为4min。
对实施例3得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例4
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯80重量份、二氧化碳-环氧丙烷共聚物20重量份、导电炭黑7重量份、偶氮二甲酰胺5重量份、碳酸钙5重量份、氧化锌1重量份和三烯丙基异氰脲酸酯0.5重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行辐照,辐照剂量为100KGy。在立式发泡炉中发泡,发泡温度为220℃,发泡时间为4min。
对实施例4得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例5
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯70重量份、聚丁二酸丁二醇酯30重量份、导电炭黑7重量份、偶氮二甲酰胺5重量份、碳酸钙5重量份、氧化锌1重量份和三烯丙基异氰脲酸酯0.5重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行辐照,辐照剂量为100KGy。在立式发泡炉中发泡,发泡温度为220℃,发泡时间为4min。
对实施例5得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例6
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯60重量份、聚丁二酸丁二醇酯40重量份、碳纳米管5重量份、偶氮二甲酸钡0.1重量份、二氧化硅1重量份、硬脂酸锌0.01重量份和三羟甲基丙烷三丙烯酸酯0.1重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为3.0mm。采用电子加速器,在室温下空气中对片材进行辐照,辐照剂量为2KGy。在水平发泡炉中发泡,发泡温度为250℃,发泡时间为1min。
对实施例6得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例7
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯60重量份、聚丁二酸丁二醇酯40重量份、石墨烯1重量份、偶氮二甲酸二异丙酯15重量份、蒙脱土1重量份、硬脂酸钙5重量份和三羟甲基丙烷三甲基丙烯酸酯5重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为0.5mm。采用电子加速器,在室温下空气中对片材进行辐照,辐照剂量为100KGy。在水平发泡炉中发泡,发泡温度为220℃,发泡时间为1min。
对实施例7得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例8
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯80重量份、聚丁二酸丁二醇酯20重量份、阳离子型抗静电剂6重量份、N,N-二亚硝基五次甲基四胺15重量份、蒙脱土5重量份、硬脂酸钙5重量份和三羟甲基丙烷三甲基丙烯酸酯2重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.5mm。采用电子加速器,在室温下空气中对片材进行辐照,辐照剂量为100KGy。在水平发泡炉中发泡,发泡温度为220℃,发泡时间为1min。
对实施例8得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例9
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯70重量份、聚乳酸30重量份、非离子型抗静电剂7重量份、4,4’-氧代双苯磺酰肼15重量份、滑石粉5重量份、硬脂酸5重量份、三羟甲基丙烷三甲基丙烯酸酯1重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行辐照,辐照剂量为150KGy。在水平发泡炉中发泡,发泡温度为190℃,发泡时间为20min。
对实施例9得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例10
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯70重量份、聚乳酸30重量份、非离子型抗静电剂7重量份、4,4’-氧代双苯磺酰肼15重量份、滑石粉5重量份、硬脂酸5重量份、乙烯基三甲基硅烷0.5重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行预辐照,辐照剂量为0.5KGy,将预辐射交联后的片材,在70℃的热水浴中进一步交联24h。在水平发泡炉中发泡,发泡温度为190℃,发泡时间为20min。
对实施例10得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例11
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯70重量份、聚乳酸30重量份、非离子型抗静电剂7重量份、4,4’-氧代双苯磺酰肼15重量份、滑石粉5重量份、硬脂酸5重量份、乙烯基三乙氧基硅烷3重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行预辐照,辐照剂量为5KGy,将预辐射交联后的片材,在80℃的热水浴中进一步交联24h。在水平发泡炉中发泡,发泡温度为190℃,发泡时间为20min。
对实施例11得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
实施例12
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯70重量份、聚乳酸30重量份、非离子型抗静电剂7重量份、4,4’-氧代双苯磺酰肼15重量份、滑石粉5重量份、硬脂酸5重量份、乙烯基三(β-甲氧基乙氧基)硅烷5重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行预辐照,辐照剂量为9KGy,将预辐射交联后的片材,在70℃的热水浴中进一步交联48h。在水平发泡炉中发泡,发泡温度为190℃,发泡时间为20min。
对实施例12得到的抗静电可生物降解泡沫材料进行性能检测,检测结果如表1所示。
对比例1
抗静电可生物降解泡沫材料,由聚己二酸-对苯二甲酸丁二醇酯70重量份、聚乳酸30重量份、非离子型抗静电剂7重量份、4,4’-氧代双苯磺酰肼15重量份、滑石粉5重量份、硬脂酸5重量份、三羟甲基丙烷三甲基丙烯酸酯1重量份组成。
上述抗静电可生物降解泡沫材料的制备方法:先按组成和重量份称取上述原料,然后采用双螺杆挤出机进行混炼造粒,混炼造粒温度为80-170℃,然后采用单螺杆挤出机挤成片材,挤出温度为100-170℃,片材厚度为1.0mm。采用电子加速器,在室温下空气中对片材进行预辐照,辐照剂量为9KGy,将预辐射交联后的片材,在70℃的热水浴中进一步交联48h。在水平发泡炉中发泡,发泡温度为190℃,发泡时间为20min,无法制备抗静电可生物降解泡沫材料。
对比例1说明,只有采用特定的交联剂,才能两步交联制备性能优异的泡沫材料。
对实施例1-12和对比例1的生物降解辐射交联泡沫材料的表观密度、发泡倍率、拉伸强度、断裂伸长率、压缩强度和耐久性进行检测。其中,表观密度通过GB-T-6343-2009进行检测;拉伸强度和断裂伸长率采用GB/T6344-1996中的方法进行检测;压缩强度采用GB/T8813-2008中的方法进行检测;耐久性采用的方法进行检测。检测结果如表1所示。
表1实施例1-12和对比例1的抗静电生物降解抗静电泡沫材料的性能
从表1可以看出,本发明的泡沫材料具备物理性能优异、耐久性好、发泡倍率较高、抗静电性好的优点,且通过与其他生物可降解高分子,如聚乳酸、二氧化碳-环氧丙烷共聚物、聚丁二酸丁二醇酯等进行共混发泡,可以在很宽的范围内调控发泡材料的力学性能。
对实施例1-12的泡沫材料的耐水性进行检测,检测方法为:将辐射交联可生物降解泡沫材料于80摄氏度水中浸泡15天。经检测,浸泡30天后,本发明的泡沫材料的表观良好,没有明显变化,拉伸强度无明显降低。说明本发明的泡沫材料耐水性好。

Claims (10)

1.抗静电可生物降解泡沫材料,其特征在于,组成及重量份为:
所述可降解聚合物为聚乳酸、二氧化碳-环氧丙烷共聚物、聚丁二酸丁二醇酯中的一种或多种按任意比例的混合。
2.根据权利要求1所述的抗静电可生物降解泡沫材料,其特征在于,所述抗静电剂为导电炭黑、碳纳米管、石墨烯、非离子型抗静电剂和阳离子型抗静电剂中的一种或多种按任意比例的混合。
3.根据权利要求1所述的抗静电可生物降解泡沫材料,其特征在于,所述发泡剂为偶氮二甲酰胺、偶氮二甲酸钡、偶氮二甲酸二异丙酯、N,N-二亚硝基五次甲基四胺、4,4’-氧代双苯磺酰肼中的一种或多种按任意比例的混合。
4.根据权利要求1所述的抗静电可生物降解泡沫材料,其特征在于,所述无机填料为二氧化硅、滑石粉、碳酸钙、蒙脱土中的一种或多种按任意比例的混合。
5.根据权利要求1所述的抗静电可生物降解泡沫材料,其特征在于,所述助发泡剂为氧化锌、硬脂酸锌、硬脂酸钙中的一种或多种按任意比例的混合。
6.根据权利要求1所述的抗静电可生物降解泡沫材料,其特征在于,所述交联剂为三烯丙基异氰脲酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯中的一种或多种按任意比例的混合,或者为乙烯基三甲基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷中的一种或多种按任意比例的混合。
7.权利要求1-6任何一项所述的抗静电可生物降解泡沫材料的制备方法,其特征在于,步骤如下:
步骤一、按组成及重量份称取各原料,加入挤出机中进行混炼造粒,混炼造粒温度为80-170℃,得到的混炼造粒料在片材挤出机上挤出片材,片材厚度为0.5-3.0mm,挤出温度为100-170℃;
步骤二、室温下空气中,对共混物片材进行电离辐照,辐照剂量为2-100KGy,得到交联物料;
或者,室温下空气中,对步骤一得到的片材进行电离辐照,辐照剂量为0.5-9KGy,得到预交联物料;将预交联物料,在50-80℃的热水浴中进一步交联2-48h,得到交联物料;
步骤三、将交联物料进行发泡,温度为190-250℃,时间为1-20min,得到可生物降解聚己二酸-对苯二甲酸丁二醇酯泡沫材料。
8.根据权利要求7所述的抗静电可生物降解泡沫材料的制备方法,其特征在于,混炼造粒在双螺杆挤出机中完成,挤出片材的设备为单螺杆片材挤出机。
9.根据权利要求7所述的抗静电可生物降解泡沫材料的制备方法,其特征在于,电离辐射源为60Co源或电子加速器。
10.根据权利要求7所述的抗静电可生物降解泡沫材料的制备方法,其特征在于,交联物料在立式发泡炉或水平发泡炉中进行发泡。
CN201711196151.9A 2017-11-25 2017-11-25 抗静电可生物降解泡沫材料及其制备方法 Pending CN107857978A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711196151.9A CN107857978A (zh) 2017-11-25 2017-11-25 抗静电可生物降解泡沫材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711196151.9A CN107857978A (zh) 2017-11-25 2017-11-25 抗静电可生物降解泡沫材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107857978A true CN107857978A (zh) 2018-03-30

Family

ID=61702593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711196151.9A Pending CN107857978A (zh) 2017-11-25 2017-11-25 抗静电可生物降解泡沫材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107857978A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320845A (zh) * 2020-03-26 2020-06-23 中山大学 石墨烯增强增韧生物可降解聚酯复合物及其发泡材料
CN111748122A (zh) * 2020-06-29 2020-10-09 无锡会通轻质材料股份有限公司 一种可发性生物降解微粒及具有抗静电功能的高发泡倍率生物降解发泡珠粒
CN115139603A (zh) * 2022-07-04 2022-10-04 平湖市华达塑料制品有限公司 一种多层生物降解发泡缓冲膜及其制备方法
CN115612256A (zh) * 2021-07-16 2023-01-17 常州华润高性能复合材料有限公司 抗静电微发泡聚酯及其制备方法和应用
CN115637025A (zh) * 2021-07-19 2023-01-24 中国石油化工股份有限公司 一种抗静电可控生物降解发泡材料、发泡珠粒和成型体及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405227A2 (en) * 1989-06-15 1991-01-02 E.I. Du Pont De Nemours And Company Low density foamed thermoplastic elastomers
JP2005008869A (ja) * 2003-05-27 2005-01-13 Toray Ind Inc シート状ポリ乳酸架橋発泡体及びその製造方法
CN1596279A (zh) * 2001-11-29 2005-03-16 东丽株式会社 交联的生物降解性树脂连续发泡片及其制造方法
CN101402783A (zh) * 2008-11-12 2009-04-08 中国科学院长春应用化学研究所 可生物降解的聚丁二酸丁二醇酯泡沫塑料及其制备方法
CN101456966A (zh) * 2009-01-08 2009-06-17 上海交通大学 生物降解高分子复合发泡材料的制备方法
CN104448723A (zh) * 2013-09-24 2015-03-25 上海杰事杰新材料(集团)股份有限公司 一种抗静电可生物降解薄膜及其制备方法
CN104610632A (zh) * 2015-01-14 2015-05-13 湖北祥源新材科技有限公司 一种高性能彩色防静电辐照交联聚乙烯泡沫材料及其制备方法
CN105802143A (zh) * 2015-01-01 2016-07-27 晋江凯基高分子材料有限公司 一种pbat发泡体及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405227A2 (en) * 1989-06-15 1991-01-02 E.I. Du Pont De Nemours And Company Low density foamed thermoplastic elastomers
CN1596279A (zh) * 2001-11-29 2005-03-16 东丽株式会社 交联的生物降解性树脂连续发泡片及其制造方法
JP2005008869A (ja) * 2003-05-27 2005-01-13 Toray Ind Inc シート状ポリ乳酸架橋発泡体及びその製造方法
CN101402783A (zh) * 2008-11-12 2009-04-08 中国科学院长春应用化学研究所 可生物降解的聚丁二酸丁二醇酯泡沫塑料及其制备方法
CN101456966A (zh) * 2009-01-08 2009-06-17 上海交通大学 生物降解高分子复合发泡材料的制备方法
CN104448723A (zh) * 2013-09-24 2015-03-25 上海杰事杰新材料(集团)股份有限公司 一种抗静电可生物降解薄膜及其制备方法
CN105802143A (zh) * 2015-01-01 2016-07-27 晋江凯基高分子材料有限公司 一种pbat发泡体及其制备方法与应用
CN104610632A (zh) * 2015-01-14 2015-05-13 湖北祥源新材科技有限公司 一种高性能彩色防静电辐照交联聚乙烯泡沫材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
化工部合成材料研究院,等: "《聚合物防老化实用手册》", 30 June 1999, 化学工业出版社 *
李乔钧,等: "《塑料配方手册》", 31 March 2001, 江苏科学技术出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320845A (zh) * 2020-03-26 2020-06-23 中山大学 石墨烯增强增韧生物可降解聚酯复合物及其发泡材料
CN111320845B (zh) * 2020-03-26 2022-08-16 中山大学 石墨烯增强增韧生物可降解聚酯复合物及其发泡材料
CN111748122A (zh) * 2020-06-29 2020-10-09 无锡会通轻质材料股份有限公司 一种可发性生物降解微粒及具有抗静电功能的高发泡倍率生物降解发泡珠粒
CN115612256A (zh) * 2021-07-16 2023-01-17 常州华润高性能复合材料有限公司 抗静电微发泡聚酯及其制备方法和应用
CN115637025A (zh) * 2021-07-19 2023-01-24 中国石油化工股份有限公司 一种抗静电可控生物降解发泡材料、发泡珠粒和成型体及应用
CN115637025B (zh) * 2021-07-19 2024-05-07 中国石油化工股份有限公司 一种抗静电可控生物降解发泡材料、发泡珠粒和成型体及应用
CN115139603A (zh) * 2022-07-04 2022-10-04 平湖市华达塑料制品有限公司 一种多层生物降解发泡缓冲膜及其制备方法

Similar Documents

Publication Publication Date Title
CN107857978A (zh) 抗静电可生物降解泡沫材料及其制备方法
Rostami-Tapeh-Esmaeil et al. Chemistry, processing, properties, and applications of rubber foams
Jiang et al. Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder
JP4703402B2 (ja) 脂肪族ポリエステル樹脂組成物、その製造方法、前記樹脂組成物からなる成形体及び発泡体
Bahari et al. Radiation crosslinked poly (butylene succinate) foam and its biodegradation
CN107955343A (zh) 辐射交联可生物降解泡沫材料及其制备方法
CN108034199A (zh) 高填充可生物降解辐射交联泡沫材料及其制备方法
Sun et al. Study on foaming water‐swellable EPDM rubber
US20230076268A1 (en) Foamed sheet, manufacture, and method for producing foamed sheet
Lackner et al. Mechanical properties and structure of mixtures of poly (butylene-adipate-co-terephthalate)(PBAT) with thermoplastic starch (TPS)
CA2861004C (en) Process for the production of pet foams and pet foams obtained with said process
Attharangsan et al. The effect of rice husk powder on standard Malaysian natural rubber grade L (SMR L) and epoxidized natural rubber (ENR 50) composites
Wu et al. Preparation and physical properties of porous starch/natural rubber composites
NO772751L (no) Fremgangsm}te for fremstilling av et tverrbundet, lukketcellet skum av klorert h.d.-polyetylen
Tan et al. Preparation of room temperature vulcanized silicone rubber foam/SiO2 nanocomposite and its fatigue buffering performance
Sam et al. Effect of cobalt stearate on natural weathering of LLDPE/soya powder blends
CN112920491B (zh) 一种epe环保包装材料的制备方法
Aydemir et al. Thermal analysis of micro-and nano-lignocellulosic reinforced styrene maleic anhydride composite foams
CN116285239A (zh) 一种微发泡生物降解膜及其制备方法
US20110230576A1 (en) Foamable resin composition and foamed body
KR101473401B1 (ko) 항균, 탈취성능 및 형상복원력이 우수한 인솔 발포체용 수지 조성물의 제조방법 및 이 제조방법에 의해 제조된 인솔 발포체용 수지 조성물
EP4097172B1 (en) Foamed sheet, manufacture, and method for producing foamed sheet
Elmaghor et al. Recycling of high density polyethylene/poly (vinyl chloride)/polystyrene ternary mixture with the aid of high energy radiation and compatibilizers
JP2011213820A (ja) ポリ乳酸系樹脂組成物およびそれからなるポリ乳酸系樹脂発泡体
Kruželák et al. Influence of peroxide curing systems on the performance of natural rubber-based magnetic composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180330