CN107828803A - 3,6‑二氯水杨酸5‑羟基化酶基因dsmABC及其应用 - Google Patents

3,6‑二氯水杨酸5‑羟基化酶基因dsmABC及其应用 Download PDF

Info

Publication number
CN107828803A
CN107828803A CN201711069151.2A CN201711069151A CN107828803A CN 107828803 A CN107828803 A CN 107828803A CN 201711069151 A CN201711069151 A CN 201711069151A CN 107828803 A CN107828803 A CN 107828803A
Authority
CN
China
Prior art keywords
cytochrome
gene
monooxygenases
dsmabc
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711069151.2A
Other languages
English (en)
Other versions
CN107828803B (zh
Inventor
何健
李娜
姚利
丁德荣
陶青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Beijing Dabeinong Biotechnology Co Ltd
Original Assignee
Nanjing Agricultural University
Beijing Dabeinong Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University, Beijing Dabeinong Biotechnology Co Ltd filed Critical Nanjing Agricultural University
Priority to CN201711069151.2A priority Critical patent/CN107828803B/zh
Publication of CN107828803A publication Critical patent/CN107828803A/zh
Application granted granted Critical
Publication of CN107828803B publication Critical patent/CN107828803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • C12N9/0081Cholesterol monooxygenase (cytochrome P 450scc)(1.14.15.6)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/07Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with an iron-sulfur protein as acceptor (1.2.7)
    • C12Y102/07004Carbon-monoxide dehydrogenase (ferredoxin) (1.2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/15Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
    • C12Y114/15006Cholesterol monooxygenase (side-chain-cleaving) (1.14.15.6), i.e. cytochrome P450scc
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Water Supply & Treatment (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Soil Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了3,6‑二氯水杨酸5‑羟基化酶基因dsmABC及其应用。一种细胞色素P450单加氧酶系统基因dsmABC,由SEQ ID NO.1所示的细胞色素P450单加氧酶组分基因dsmA、SEQ ID NO.3所示的铁氧还蛋白基因dsmB和SEQ ID NO.5所示的dsmC组成。一种细胞色素P450单加氧酶系统,由SEQ ID NO.2所示的细胞色素P450单加氧酶组分DsmA、SEQ ID NO.4所示的铁氧还蛋白基因DsmB和SEQ ID NO.6所示的DsmC组成。本发明提供的细胞色素P450羟基化酶三组分基因回补到不能降解3,6‑DCSA的菌株中,使其获得降解3,6‑DCSA的功能。

Description

3,6-二氯水杨酸5-羟基化酶基因dsmABC及其应用
技术领域
本发明属于环境微生物和农业领域,涉及3,6-二氯水杨酸5-羟基化酶基因dsmABC及其应用。
背景技术
现代农业的发展是离不开农药的,合理使用农药可以有效的防治作物病害,提高作物产量,但是一旦农药使用不当会造成土壤、水体等环境药害。除草剂的使用能有效减轻农业劳动强度、保证农业正常生产,但是随着除草剂的大量使用,其残留对土壤造成的危害越来越严重。据统计我国每年农田受除草剂药害面积达到3000万亩,每年造成几十亿元的损失。微生物修复技术是一种原位生物修复技术,效果好,费用低,无二次污染,适合大面积面源污染修复,是土壤有机污染物修复技术的主流和发展方向。抗除草剂转基因是解决除草剂药害的有效途径,而抗除草机的基因一般均来自微生物降解基因。
麦草畏是苯甲酸系列的激素型除草剂,具有广谱、高效和低毒的特点,对一年生和多年生阔叶杂草则有明显的防除效果,是目前世界上使用量仅次于草甘膦的除草剂。麦草畏在环境中的降解目前主要为微生物降解,目前已筛选到多种麦草畏的降解菌株,克隆到多个麦草畏降解基因,目前关于麦草畏的微生物降解基本上第一步都是脱甲基生成无除草活性的3,6-DCSA,见图1。其中麦草畏O-脱甲基酶基因dmo(专利US7105724B2)转入大豆成功构建抗麦草畏转基因大豆,商标定为Roundup Ready 2XtendTM,该品种2013年在美国进行大田试验。麦草畏杂草抗性产生慢是非常理想的抗除草剂转基因的靶标除草剂。随着麦草畏混剂的开发和抗麦草畏的转基因作物技术研究的不断深入,麦草畏在世界范围内的需求量必将大幅增加。但是,到目前为止,微生物降解麦草畏微生物降解的第一步脱甲基产物3,6-DCSA的代谢途径及其分子机制还不清楚,这严重制约了对麦草畏的环境行为和生态安全方面的研究。
获得麦草畏脱甲基中间产物3,6-二氯水杨酸(3,6-DCSA)的降解菌株和降解基因在治理农药残留中主要具有以下作用,(一)通过现代微生物发酵技术将麦草畏降解菌株和基因制成降解菌剂或酶制剂实现土壤原位修复。(二)通过现代生物技术将降解基因导入作物构建相应的除草剂抗性转基因作物,综上所述,开展麦草畏脱甲基产物3,6-DCSA微生物降解代谢机制的研究具有非常重要的理论和实际应用价值。
发明内容
本发明的目的是针对现有麦草畏微生物降解途径研究的缺乏,提供一个3,6-二氯水杨酸5-羟基化酶基因dsmABC,该基因是首次发现的血红素蛋白细胞色素P450单加氧酶系统参与麦草畏下游代谢路径的酶系统,该基因编码的蛋白不仅能将3,6-二氯水杨酸的羟基化生成3,6-二氯龙胆酸,同时能羟基化水杨酸,3-甲基水杨酸,4-甲基水杨酸,6-甲基水杨酸,3-氯水杨酸,4-氯水杨酸,6-氯水杨酸,在水杨酸及水杨酸的衍生物降解去除中具有重要的应用价值。本发明的又一目的是提供该基因的应用。
本发明的目的可通过以下技术方案实现:
一种细胞色素P450单加氧酶系统基因dsmABC,由SEQ ID NO.1所示的细胞色素P450单加氧酶组分基因dsmA、SEQ ID NO.3所示的铁氧还蛋白基因dsmB和SEQ ID NO.5所示的dsmC组成。
一种细胞色素P450单加氧酶系统,由SEQ ID NO.2所示的细胞色素P450单加氧酶组分DsmA、SEQ ID NO.4所示的铁氧还蛋白基因DsmB和SEQ ID NO.6所示的DsmC组成。
含有所述的细胞色素P450单加氧酶系统基因dsmABC得重组表达载体。
所述的重组表达载体,优选将细胞色素P450单加氧酶系统基因dsmABC插入pBBR1MCS-2的KpnI和EcoRI位点之间所得;所述的细胞色素P450单加氧酶系统基因dsmABC是以保藏号为CCTCC NO:M 2014550的菌株Ndbn-20基因组DNA为模板,SEQID NO.11和SEQIDNO.12所示的引物进行PCR扩增得到。
含有所述的细胞色素P450单加氧酶系统基因dsmABC的基因工程菌。
所述的基因工程菌的表达菌株优选鞘酯菌Sphingobium quisquiliarum DC-2,保藏号为CCTCC NO:M 2012190。
所述细胞色素P450单加氧酶系统基因dsmABC在构建降解3,6-二氯水杨酸的转基因作物中的应用。
所述细胞色素P450单加氧酶系统在降解和转化3,6-二氯水杨酸中的应用。
所述基因工程菌在去除土壤、水体中3,6-二氯水杨酸中的应用。
所述细胞色素P450单加氧酶系统基因dsmABC、所述细胞色素P450单加氧酶系统或所述基因工程菌在降解或去除水杨酸及水杨酸的衍生物中的应用。
有益效果:
本发明首次公开了除草剂麦草畏微生物代谢过程中的一个细胞色素P450羟基化酶三组分基因dsmABC及其应用。麦草畏脱甲基产物3,6-二氯水杨酸(3,6-DCSA)5-羟基化酶基因dsmABC,其核苷酸及氨基酸序列分别为dsmA:SEQ ID NO.1,SEQ ID NO.2,编码417个氨基酸;dsmB:核苷酸序列为SEQ ID NO.3,氨基酸序列为SEQ ID NO.4,编码106个氨基酸;dsmC:核苷酸序列为SEQ ID NO.5,氨基酸序列为SEQ ID NO.6,编码398个氨基酸。3,6-二氯水杨酸(3,6-DCSA)5-羟基化酶基因dsmABC是首个公开能降解麦草畏中间代谢产物3,6-二氯水杨酸的基因,它编码的蛋白能将3,6-二氯水杨酸在苯环的5号位置加羟基,生成3,6-二氯龙胆酸,并且能5-羟基化水杨酸,3-甲基水杨酸,4-甲基水杨酸,6-甲基水杨酸,3-氯水杨酸,4-氯水杨酸,6-氯水杨酸。本发明提供的细胞色素P450羟基化酶三组分基因回补到不能降解3,6-DCSA的菌株Sphingobium quisquiliarum DC-2(CCTCC M 2012190)中,重组菌株能在24h内降解100mg/l左右的3,6-DCSA。因此,细胞色素P450羟基化酶三组分基因dsmABC在构建降解麦草畏转基因作物中应用潜能巨大,在降解麦草畏以及水杨酸衍生物中应用前景很好。
生物材料保藏信息:
Ndbn-20,分类命名为Rhizorhabdus dicambivorans Ndbn-20,保藏于中国典型培养物保藏中心,保藏地址为中国武汉大学,保藏日期为2014年11月5日,保藏编号为CCTCCNO:M 2014550。
DC-2,分类命名为鞘酯菌Sphingobium quisquiliarum DC-2,保藏于中国典型培养物保藏中心,保藏地址为中国武汉大学,保藏日期为2012年5月30日,保藏编号为CCTCCNO:M 2012190。
附图说明:
图1麦草畏脱甲基反应代谢途径
图2Ndbn-20m 48h降解麦草畏(A图)及3,6-DCSA(B图)的紫外图谱
图3野生株Ndbn-20和突变株Ndbn-20m基因组比对,红色圆圈标记处为Ndbn-20m丢失片段Ndbn-20delete约64.1kb
图4:敲除菌株PCR验证1,2:Ndbn-20总DNA dsmA(1.25kb)PCR扩增;3,4:敲除菌株Ndbn-20ΔdsmA的dsmA PCR扩增
图5:dsmABC功能验证技术路线
图6:A,B,C:Sphingobium quisquiliarum DC-2-pBBRdsmABC降解3,6-DCSA,12h,24h,36h HPLC;D,E,F:Ndbn20m-pBBRdsmABC降解3,6-DCSA,12h,24h,36h HPLC检测,均在5.2min左右产生新峰
图7:Sphingobium quisquiliarum DC-2-pBBRdsmABC降解3,6-DCSA的UHPLC-MS
图8:薄层层析(TLC)分离3,6-DCSA羟基化产物
图9:3,6-DCGA的X射线单晶衍射
具体实施方式
以下实施例中使用的微生物来源如下:大肠杆菌DH5α购自宝生物工程(大连)有限公司,大肠杆菌高表达载体pET-24b(+)购自Novegen公司,表达宿主菌大肠杆菌BL21(DE3)购自上海英骏生物技术有限公司。
实施例1.3,6-DCSA羟基化酶基因的克隆
1.1突变菌株的筛选
本实验的研究材料为由本实验室成员分离得到的麦草畏高效降解菌Rhizorhabdus dicambivorans Ndbn-20(CCTCC NO:M 2014550)。通过在没有添加3,6-DCSA的新鲜1/5LB平板上传代培养,采用菌泥进行传代划线,传了大约25代,将平板上的菌洗下,经过一定的稀释涂布在1/5LB(1/5LB为最适Ndbn-20生长的培养基)上,然后将长出的菌落分别采用灭菌的牙签点在1/5LB和添加了1Mm 3,6-DCSA为唯一碳源的MSM培养基上,将能够在1/5LB上生长而不能在MSM培养基上生长的菌株挑选出来,对其降解3,6-DCSA能力进行验证,通过3,6-DCSA的降解实验,得到了一株能将麦草畏降解为3,6-DCSA,但是不能降解3,6-DCSA的突变菌株,紫外图谱见图2。将筛选得到的失去降解3,6-DCSA功能的突变株命名为Ndbn-20m。
基础盐培养基(MSM)配方:1.5g K2HPO4·3H2O;0.5g KH2PO4;1.0g NH4NO3;0.5gNaCl;0.2g MgSO4·7H2O,加去离子水定容至1L,固体培养基中每升加入15.0g琼脂。
1.2降解3,6-DCSA的检测方法
将菌株接种至1/5LB液体培养基,30℃培养至对数期,低速离心收集菌体,菌体用无菌基础盐培养基冲洗2遍,重悬于含100mg/l 3,6-DCSA基础盐培养基中,30℃摇床培养。定性的实验,主要采用检测紫外扫描光谱,波长范围为200nm-400nm,将定时取样的培养液离心去除菌体,上清直接用于紫外扫描。定量检测,采用高效液相色谱(HPLC)检测,样品处理方法:将定时取样培养液采用HCl调节pH为2.0,然后采用等体积的乙酸乙酯(色谱纯)剧烈震荡抽提两次,静置1h后,取上层,上层用无水硫酸钠出去水分再过氮气干燥。样品用0.5ml色谱纯甲醇溶解,滤膜(孔径0.22μm)过滤,高效液相色谱(HPLC)进行检测。HPLC色谱条件:Kromasil 100-5C18反向分离柱(5μm,4.6mm×250mm),流动相为甲醇:水:乙酸:磷酸(70:30:0.3:0.2,V/V/V/V),柱温为40℃,紫外检测器测定波长为290nm,319nm,330nm,进样量20μL,流速为0.8mL/min,外标法按峰面积定量。运用HPLC-MS/MS和X射线单晶衍射对代谢产物的分析和鉴定。
1.3.野生菌株Ndbn-20和突变株Ndbn-20M的基因组分析和比较
1.3.1野生菌株Ndbn-20和突变株Ndbn-20M的总DNA的提取与质量检测
菌株Ndbn-20及其突变株Ndbn-20M在LB培养基中大量培养后,采用CTAB法提取高纯度、大片段的基因组总DNA,溶于灭菌的ddH20中,置于-20℃保藏,具体方法参考F·奥斯伯等编的《精编分子生物学实验指南》。大量提取全基因组DNA,然后进行琼脂糖凝胶电泳,检测所提的DNA的质量,细菌的基因组测序要求基因组DNA样品的OD260/OD280的值在1.8-2.0之间,浓度越高越好,Illumina PE文库浓度不低于20ng/μL,总量大于等于5μg。检测合格后进行全基因组测序,全基因组测序委托诺禾致源科技股份有限公司进行。
1.3.2菌株Ndbn-20基因组完成图与突变株Ndbn-20M基因组草图的测序及结果分析
菌株Ndbn-20全基因组完成图信息为:全基因组碱基数位5412710bp,其中包含1个环状染色体,4个质粒,基因共5380个。突变株Ndbn-20M基因组草图信息为:全长5249620bp,scaffolds:96个,基因:5046个。利用测序公司提供的该菌基因组各种注释信息和NCBI开放的生物信息学公共平台(如BlastX和ORF finder等)及OMEGA2.0等分子软件进行分析和定位。寻找在突变株中丢失的DNA序列,发现可能的3,6-DCSA降解基因。通过将Ndbn-20与Ndbn-20m全基因组序列在RAST(http://rast.nmpdr.org/)上进行在线比对,得到一个丢失的可能的目的基因片段命名为Ndbn-20delete,大小约为64150bp,该片段位于Ndbn-20中的Chromosome上面,见图3。对此丢失的大片段进行ORF分析及NCBI blast比对分析及注释,在丢失片段中我们仅仅发现了一个细胞色素P450羟基化酶三组分系统基因,命名为dsmABC,与Cytochrome P450型的羟基化酶的相似度为30%-36%,而且在紧挨着这个基因上游有两个orf分别注释为[2Fe-2S]ferredoxin,与[2Fe-2S)]ferredoxin FdxP(P37098.1)的相似度为55%,以及ferredoxin reductase,与ferredoxin reductase Thcd(P43494.2)的相似度为44%,因此dsmB和dsmC极有可能为此Cytochrome P450单加氧酶的电子传递链。
实施例2.Cytochrome P450单加氧酶系统dsmABC的功能验证
2.1实验技术
2.1.1dsmA敲除片段,dsmA和dsmABC片段的PCR扩增
以正向引物:5’-CTTGATATCGAATTCCTGCAGCTGGCCAGCGGCAGTTTCAGCGTTC-3’(SEQIDNO.7)和反向引物:5’-GCTCTAGAACTAGTGGATCCCCATGGGAAATCGTCCGCGTTGAGG-3’(SEQIDNO.8)为引物,用PCR从Ndbn-20基因组DNA中扩增出单加氧酶基因片段dsmA中间区域561bp的同源臂。以正向引物:5’-GGGGTACCCCCATCCCCGAAAGCCAGTTCTGACAC-3’(SEQIDNO.9)和反向引物:5’-CGGAATTCCGGGGCGTGTTTGATCGACGTAGCAG-3’(SEQ IDNO.10)为引物,用PCR从Ndbn-20基因组DNA中扩增出单加氧酶基因片段dsmA。以正向引物:5’-GGGGTACCCCGCTGGGGAAGGTCTTGGTCGCAT-3’(SEQID NO.11)和反向引物:5’-GCTCTAGAGACCTGGCGTAGCTCATCC-3’(SEQ ID NO.12)为引物,用PCR从Ndbn-20基因组DNA中扩增出单加氧酶三组分基因片段dsmABC。
PCR扩增体系:
Primer star酶(5U/μl)0.5μl
5×PCR Buffer II(Mg2+Plus)10μl
dNTP Mixture(各2.5mM)2μl
模板DNA 10ng
正向引物(20μM)1μl
反向引物(20μM)1μl
灭菌蒸馏水至50μl
PCR扩增程序:
a.98℃变性3min;
b.98℃变性0.5min,53℃退火0.5min,72℃延伸1min,进行30个循环;
c.72℃延伸10min,冷却到室温。
2.1.2酶切酶连
酶切体系:
10×Buffer 5μl
KpnI 2μl
EcoRI 2μl
DNA≤1μg
灭菌的蒸馏水加至50μl
在37℃水浴中,反应30min。酶切产物进行0.75%的琼脂糖凝胶电泳切胶回收。
2.1.3转化
将回收的片段和酶切好的pBBR1MCS-2进行酶连。将酶连好的含dsmA和dsmABC片段的pBBR1MCS-2重组质粒转化到E.coli DH5α中获得重组微生物,然后通过三亲接合或电转化的方法将重组质粒pBBRdsmA,pBBRdsmABC转化到其他不能降解3,6-DCSA的菌株中,或者回补到突变菌株Ndbn20m和敲除菌株Ndbn-20ΔdsmA中。
2.2dsmA基因的插入突变
2.2.1插入突变质粒的构建
插入突变质粒为自杀性质粒pJQ200SK,使用的感受态细胞为E.coli DH5α以菌株Ndbn-20的基因组DNA作为模板,用引物扩增dsmA基因中间约500bp左右的同源臂,扩增使用PrimeSTAR GXL DNA聚合酶。将pJQ200SK采用PstI/BamHI进行双酶切,然后将扩增好的片段与经过双酶切的片段通过同源重组的方法构建重组敲除质粒pJQ200SKdsmA。
2.2.2三亲接合及突变菌株的筛选
将供体菌E.coli DH5α-pJQ200SKdsmA,受体菌野生菌Ndbn-20、辅助菌pRK600分别接入含有相应抗生素的1/5LB液体培养基中,培养至对数期,离心后用无菌水重悬菌体按1:2:1的体积比在离心管中混合均匀。将无菌滤膜放置在无抗性的1/5LB平板上,随后吸取混合菌液200μL加至滤膜上,30℃静置培养1天后,用液体1/5LB洗下滤膜上的菌体,震荡混匀,取100μL菌液涂布于选择性抗性1/5LB平板(Str和Gm)上。培养4天挑取转入质粒的接合子在Gm和Sm双抗平板上划线纯化以备后续的降解功能验证试验。挑选长出的接合子进行多次转接和抗性平板和PCR验证,见图4,确定获得了dsmA敲除菌株Ndbn-20ΔdsmA。将敲除菌株Ndbn-20ΔdsmA进行降解3,6-DCSA效果验证,Ndbn-20ΔdsmA确实不能降解3,6-DCSA。
2.3dsmABC的异源表达及功能验证
功能验证实验的路线图见图5。
2.3.1重组菌株的构建及降解3,6-DCSA功能验证
将dsmA和dsmABC片段经过KpnI/EcoRI双酶切,然后分别与经过相应双酶切的广宿主载体pBBR1MCS-2进行酶连,通过热激转化进入E.coli DH5α,分别命名为E.coli DH5α-pBBRdsmA,E.coli DH5α-pBBRdsmABC,通过菌株降解实验液相检测发现E.coli DH5α-pBBRdsmABC能在24h之内将100ppm的3,6-DCSA降解80%以上,而E.coli DH5α-pBBRdsmA不能降解3,6-DCSA。
将重组载体pBBRdsmABC通过电转化方式导入到不能降解3,6-DCSA的Sphingobiumquisquiliarum DC-2中,通过菌体降解实验,重组菌株DC-2-pBBRdsmABC获得了降解3,6-DCSA的能力,24h之内将100ppm的3,6-DCSA降解90%以上,降解的HPLC结果见图6.
2.3.2dsmABC功能回补
将重组载体pBBRdsmABC通过三亲接合的方式回补到突变菌株Ndbn20m和敲除菌株Ndbn-20ΔdsmA中。突变菌株Ndbn20m和敲除菌株Ndbn-20ΔdsmA均获得了降解3,6-DCSA的能力,降解的HPLC结果见图6.
实施例3. 3,6-DCSA羟基化产物的鉴定
3.1 3,6-DCSA羟基化产物的质谱鉴定
重组菌株DC-2-pBBRdsmABC降解3,6-DCSA的降解液,进行离心菌体取上清,然后经过酸化、萃取、挥发溶剂等过程,将产物溶解在甲醇中,经过过滤后进行UHPLC-MS检测,检测结果见图7,在2.54min出现一个新峰,经质谱鉴定,在负离子模式下其分子量为221,因此其分子量应为222,此分子量正好与3,6-DCSA的分子206去氢加羟基,即加16相吻合。因此初步确定重组菌株DC-2-pBBRdsmABC转化3,6-DCSA的反应确实是羟基化反应,3,6-DCSA羟基化的位置有两种可能,一个是4号位,一个是5号位,这两个物质的质谱碎片峰的分子量绝大多数是相同的,因此很难通过质谱来确定羟基化的位置,因此我们通过纯化羟基化产物进行X-射线单晶衍射技术来产物进行鉴定。
3.2产物的纯化
采用薄层层析的方法将重组菌株DC-2-pBBRdsmABC转化3,6-DCSA的羟基化产物进行分离纯化,通过硅胶板预实验确定展开剂的配方,通过大量实验得到合适的展开剂为:氯仿:乙酸乙酯:甲酸=10:8:1,羟基化产物分离情况见图8,纯化后的产物经过液相和质谱的鉴定确定为单一的羟基化产物后进行结晶.
3.3X射线单晶衍射确定3,6-DCSA羟基化位置
结晶条件为:将20mg的羟基化样品溶解在50ml的色谱纯乙腈中,经过超声溶解后,静置,待乙腈自然挥发后即得单晶,通过显微镜选择合适的单晶进行X射线单晶衍射。采用单晶衍射仪为BRUKER D8,数据计算及分析软件为SHELXTL97,经过单晶衍射数据分析得到3,6-DCSA羟基化的位置在苯环的5号位置,羟基化产物为3,6-二氯龙胆酸(3,6-DCGA),见图9。
序列表
<110> 南京农业大学
北京大北农生物技术有限公司
<120> 3,6-二氯水杨酸5-羟基化酶基因dsmABC及其应用
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1254
<212> DNA
<213> Ndbn-20(Rhizorhabdus dicambivorans Ndbn-20)
<400> 1
atggccaaca atgacaaact gaccacatcg gtgcagacgg cggtccccgc cgatgcgaag 60
agcatcaaca tatttgccct gcccgatagt tatttcgcgg acccgacgcc gtggttcaag 120
aagctgaggg acgaagaccc gatccatcag aatgccgatg gcagcctgct gctgacgcgc 180
tatggcgacg tgaaggcact ctggcgcgac ctgaccggcc ttgtcgacaa gcgcgagcag 240
ttcgagcgcc gcttcggcaa tggtccggtg ttccagcatc atacgtccgg tatgctgttc 300
cgcgatccgc cggctcatga ccgcctgcgc cacatcgtga acccgttctt cacgcaatct 360
tctatcgaac gcctgtcagc ttatatcgac acccgcgttg acgaactgct ggccaatgcc 420
accgagatgc gagagctgga tttcgtcaag gatttcgcct tcggcctgcc gatctcggtg 480
atctgccgta ttttgggagt gccgaacgag gatggctact acctccacac attgggggcg 540
aagatccttt tcgtactcaa cccccatgtg tcgcaggacg atatcgatgc gggccatgcc 600
gcgacgacgc agttcatgga ctacctgcgg ccgttcatcc atttagcacg cgcccgtccc 660
gacctcgatc cgaccgacaa catcatctcg gccatggtgt atgccgagaa gcagggtgac 720
gaaatctcgg aagacgagat cctgcatatg tgcatcctca tgctcaatgg tgggcatgaa 780
acgacgacca acctcatggg cgttggcctc aacgggctgc tcgatcatcc cgatcagatc 840
agccgatggc gcgatcaacc cgaactgctt cccttcgcga tcgaggaact gatccgtttc 900
gtctctcctt tgcagttgca gggccgccgc acgacccgcg aggtgaaggt gcccagcggc 960
gtaatccccg ccgacaccga ggtcgtcatc agcccggccg cggcgaaccg ggacgaacgt 1020
gttttcgaca atcccgatgg gctggatatt ggccgtaagc caaatgcaca tctggcattc 1080
ggcgcgggta tccacgtctg catcggccgc cccctggcgc gcctggaggc cagcatcgcc 1140
ctgccaaaaa ttctcaagca cttctcgcgc atcgaacgca gtgggacgcc cgagttcaac 1200
cgcaacgccc gttttcgcgg cctcgcgcga ctgccggttc ggctcgaacc ctga 1254
<210> 2
<211> 417
<212> PRT
<213> Ndbn-20(Rhizorhabdus dicambivorans Ndbn-20)
<400> 2
Met Ala Asn Asn Asp Lys Leu Thr Thr Ser Val Gln Thr Ala Val Pro
1 5 10 15
Ala Asp Ala Lys Ser Ile Asn Ile Phe Ala Leu Pro Asp Ser Tyr Phe
20 25 30
Ala Asp Pro Thr Pro Trp Phe Lys Lys Leu Arg Asp Glu Asp Pro Ile
35 40 45
His Gln Asn Ala Asp Gly Ser Leu Leu Leu Thr Arg Tyr Gly Asp Val
50 55 60
Lys Ala Leu Trp Arg Asp Leu Thr Gly Leu Val Asp Lys Arg Glu Gln
65 70 75 80
Phe Glu Arg Arg Phe Gly Asn Gly Pro Val Phe Gln His His Thr Ser
85 90 95
Gly Met Leu Phe Arg Asp Pro Pro Ala His Asp Arg Leu Arg His Ile
100 105 110
Val Asn Pro Phe Phe Thr Gln Ser Ser Ile Glu Arg Leu Ser Ala Tyr
115 120 125
Ile Asp Thr Arg Val Asp Glu Leu Leu Ala Asn Ala Thr Glu Met Arg
130 135 140
Glu Leu Asp Phe Val Lys Asp Phe Ala Phe Gly Leu Pro Ile Ser Val
145 150 155 160
Ile Cys Arg Ile Leu Gly Val Pro Asn Glu Asp Gly Tyr Tyr Leu His
165 170 175
Thr Leu Gly Ala Lys Ile Leu Phe Val Leu Asn Pro His Val Ser Gln
180 185 190
Asp Asp Ile Asp Ala Gly His Ala Ala Thr Thr Gln Phe Met Asp Tyr
195 200 205
Leu Arg Pro Phe Ile His Leu Ala Arg Ala Arg Pro Asp Leu Asp Pro
210 215 220
Thr Asp Asn Ile Ile Ser Ala Met Val Tyr Ala Glu Lys Gln Gly Asp
225 230 235 240
Glu Ile Ser Glu Asp Glu Ile Leu His Met Cys Ile Leu Met Leu Asn
245 250 255
Gly Gly His Glu Thr Thr Thr Asn Leu Met Gly Val Gly Leu Asn Gly
260 265 270
Leu Leu Asp His Pro Asp Gln Ile Ser Arg Trp Arg Asp Gln Pro Glu
275 280 285
Leu Leu Pro Phe Ala Ile Glu Glu Leu Ile Arg Phe Val Ser Pro Leu
290 295 300
Gln Leu Gln Gly Arg Arg Thr Thr Arg Glu Val Lys Val Pro Ser Gly
305 310 315 320
Val Ile Pro Ala Asp Thr Glu Val Val Ile Ser Pro Ala Ala Ala Asn
325 330 335
Arg Asp Glu Arg Val Phe Asp Asn Pro Asp Gly Leu Asp Ile Gly Arg
340 345 350
Lys Pro Asn Ala His Leu Ala Phe Gly Ala Gly Ile His Val Cys Ile
355 360 365
Gly Arg Pro Leu Ala Arg Leu Glu Ala Ser Ile Ala Leu Pro Lys Ile
370 375 380
Leu Lys His Phe Ser Arg Ile Glu Arg Ser Gly Thr Pro Glu Phe Asn
385 390 395 400
Arg Asn Ala Arg Phe Arg Gly Leu Ala Arg Leu Pro Val Arg Leu Glu
405 410 415
Pro
<210> 3
<211> 321
<212> DNA
<213> Ndbn-20(Rhizorhabdus dicambivorans Ndbn-20)
<400> 3
gtgacgaaag taacttttgt cgagtccgac ggaaatgttc atgagcttga ggtcgagaat 60
ggcctcaccc tcatggaagc cgccgtcgac aatatgatcc ccggcatcga tgcggaatgc 120
ggaggtgcct gcgcctgcgc gacctgccac gtctatgtcg atgcgggatg ggcaaacaag 180
atcggcgaga tcggtcagtc cgagacgatc atgctagaac atgccgccca tcgcaagggc 240
aacagccggc tgagctgcca gatcgtcatc tccgacgcgc tcgacggcct gcgggtgacc 300
atccccgaaa gccagttctg a 321
<210> 4
<211> 106
<212> PRT
<213> Ndbn-20(Rhizorhabdus dicambivorans Ndbn-20)
<400> 4
Val Thr Lys Val Thr Phe Val Glu Ser Asp Gly Asn Val His Glu Leu
1 5 10 15
Glu Val Glu Asn Gly Leu Thr Leu Met Glu Ala Ala Val Asp Asn Met
20 25 30
Ile Pro Gly Ile Asp Ala Glu Cys Gly Gly Ala Cys Ala Cys Ala Thr
35 40 45
Cys His Val Tyr Val Asp Ala Gly Trp Ala Asn Lys Ile Gly Glu Ile
50 55 60
Gly Gln Ser Glu Thr Ile Met Leu Glu His Ala Ala His Arg Lys Gly
65 70 75 80
Asn Ser Arg Leu Ser Cys Gln Ile Val Ile Ser Asp Ala Leu Asp Gly
85 90 95
Leu Arg Val Thr Ile Pro Glu Ser Gln Phe
100 105
<210> 5
<211> 1197
<212> DNA
<213> Ndbn-20(Rhizorhabdus dicambivorans Ndbn-20)
<400> 5
gtgcaagaga atgttgtcat tgtcgggggt gggcaagcgg ccgcacaagc ggtgacgaac 60
ctgcgaagcg atggcttcga aggttcgatc accctcgtgt ccgacgaagc ctatcatccc 120
tatcagcgtc cgccgctgag caagaagatg ctggcgggtg aagtagcggc tgatcgcctg 180
ctactgaagc cgccacgctt ctacgaacag aatggcgtcg acgtccgcct gaacacgcgc 240
gccacggcga tcgatcgcga aaaccatatg gtcgtgcttg ccgacgcgcc cgccatcccg 300
tttgggaagc tgctgctggc gaccggatcg cgtccgcgac cgatcccggt gtctggcgct 360
gacttacctg gcatattcta tctgcgttcg ctagccgacg tctctgcgct gcggcctgaa 420
ctgagcgccg gtagcaagct cgttatagtg ggcgggggat atatcggcct cgaagttgcg 480
gccattgccc gctcgctcgg cgtcgaagtc catctggtcg aggcggcctc ccggctgctc 540
gcccgtgtgg caagcccggc aatctctgac ttctatctgg aaacccatcg cgctcgcggc 600
gtcgagattg ctctcgacat ggctgtgcat ggattctggg gcactggacg cgttgaaggt 660
gtccagctcg gtgacgaacg aacggtgccc gccgatctcg ttctcgtctg catcggagca 720
atcccgaaca gcgagctggc ccaagaggct ggattgactg tcgagggcgg catcctcgtc 780
gacgatcatg cccgcacgtc tgatcccgac atctacgccg tcggcgactg cgctgcacat 840
cgctcgccga tttatggcag cgtcatccgc ctcgaatccg tgcacaacgc gatcgagcaa 900
gccaaggccg catctgccgg catgacgggc aagcaccgcc cctatcatac gacaccgtgg 960
ttctggtcgg accagtatga gttcaagctc cagagcgctg gtctgctgat cggcgccgaa 1020
cgatccgagg tcatcggttc gctggccagc ggcagtttca gcgttcgcca cttcattggt 1080
gatgcgctgc gtgcggtcga atgcgtcaac gatccggcga ccttcatgac atcgcgcgcc 1140
gcgctgaacg aggcgctggt ctgcaccggc gcgacagccc ccactttcac ggagtaa 1197
<210> 6
<211> 398
<212> PRT
<213> Ndbn-20(Rhizorhabdus dicambivorans Ndbn-20)
<400> 6
Val Gln Glu Asn Val Val Ile Val Gly Gly Gly Gln Ala Ala Ala Gln
1 5 10 15
Ala Val Thr Asn Leu Arg Ser Asp Gly Phe Glu Gly Ser Ile Thr Leu
20 25 30
Val Ser Asp Glu Ala Tyr His Pro Tyr Gln Arg Pro Pro Leu Ser Lys
35 40 45
Lys Met Leu Ala Gly Glu Val Ala Ala Asp Arg Leu Leu Leu Lys Pro
50 55 60
Pro Arg Phe Tyr Glu Gln Asn Gly Val Asp Val Arg Leu Asn Thr Arg
65 70 75 80
Ala Thr Ala Ile Asp Arg Glu Asn His Met Val Val Leu Ala Asp Ala
85 90 95
Pro Ala Ile Pro Phe Gly Lys Leu Leu Leu Ala Thr Gly Ser Arg Pro
100 105 110
Arg Pro Ile Pro Val Ser Gly Ala Asp Leu Pro Gly Ile Phe Tyr Leu
115 120 125
Arg Ser Leu Ala Asp Val Ser Ala Leu Arg Pro Glu Leu Ser Ala Gly
130 135 140
Ser Lys Leu Val Ile Val Gly Gly Gly Tyr Ile Gly Leu Glu Val Ala
145 150 155 160
Ala Ile Ala Arg Ser Leu Gly Val Glu Val His Leu Val Glu Ala Ala
165 170 175
Ser Arg Leu Leu Ala Arg Val Ala Ser Pro Ala Ile Ser Asp Phe Tyr
180 185 190
Leu Glu Thr His Arg Ala Arg Gly Val Glu Ile Ala Leu Asp Met Ala
195 200 205
Val His Gly Phe Trp Gly Thr Gly Arg Val Glu Gly Val Gln Leu Gly
210 215 220
Asp Glu Arg Thr Val Pro Ala Asp Leu Val Leu Val Cys Ile Gly Ala
225 230 235 240
Ile Pro Asn Ser Glu Leu Ala Gln Glu Ala Gly Leu Thr Val Glu Gly
245 250 255
Gly Ile Leu Val Asp Asp His Ala Arg Thr Ser Asp Pro Asp Ile Tyr
260 265 270
Ala Val Gly Asp Cys Ala Ala His Arg Ser Pro Ile Tyr Gly Ser Val
275 280 285
Ile Arg Leu Glu Ser Val His Asn Ala Ile Glu Gln Ala Lys Ala Ala
290 295 300
Ser Ala Gly Met Thr Gly Lys His Arg Pro Tyr His Thr Thr Pro Trp
305 310 315 320
Phe Trp Ser Asp Gln Tyr Glu Phe Lys Leu Gln Ser Ala Gly Leu Leu
325 330 335
Ile Gly Ala Glu Arg Ser Glu Val Ile Gly Ser Leu Ala Ser Gly Ser
340 345 350
Phe Ser Val Arg His Phe Ile Gly Asp Ala Leu Arg Ala Val Glu Cys
355 360 365
Val Asn Asp Pro Ala Thr Phe Met Thr Ser Arg Ala Ala Leu Asn Glu
370 375 380
Ala Leu Val Cys Thr Gly Ala Thr Ala Pro Thr Phe Thr Glu
385 390 395
<210> 7
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cttgatatcg aattcctgca gctggccagc ggcagtttca gcgttc 46
<210> 8
<211> 45
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gctctagaac tagtggatcc ccatgggaaa tcgtccgcgt tgagg 45
<210> 9
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ggggtacccc catccccgaa agccagttct gacac 35
<210> 10
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
cggaattccg gggcgtgttt gatcgacgta gcag 34
<210> 11
<211> 33
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ggggtacccc gctggggaag gtcttggtcg cat 33
<210> 12
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gctctagaga cctggcgtag ctcatcc 27

Claims (10)

1.一种细胞色素P450单加氧酶系统基因dsmABC,其特征在于由SEQ ID NO.1所示的细胞色素P450单加氧酶组分基因dsmA、SEQ ID NO.3所示的铁氧还蛋白基因dsmB和SEQ IDNO.5所示的dsmC组成。
2.一种细胞色素P450单加氧酶系统,其特征在于由SEQ ID NO.2所示的细胞色素P450单加氧酶组分DsmA、SEQ ID NO.4所示的铁氧还蛋白基因DsmB和SEQ ID NO.6所示的DsmC组成。
3.含有权利要求1所述的细胞色素P450单加氧酶系统基因dsmABC得重组表达载体。
4.根据权利要求3所述的重组表达载体,其特征在于将细胞色素P450单加氧酶系统基因dsmABC插入pBBR1MCS-2的KpnI和EcoRI位点之间所得;所述的细胞色素P450单加氧酶系统基因dsmABC是以保藏号为CCTCC NO:M 2014550的菌株Ndbn-20基因组DNA为模板,SEQIDNO.11和SEQID NO.12所示的引物进行PCR扩增得到。
5.含有权利要求1所述的细胞色素P450单加氧酶系统基因dsmABC的基因工程菌。
6.根据权利要求5所述的基因工程菌,其特征在于所述的基因工程菌的表达菌株为鞘酯菌Sphingobium quisquiliarum DC-2,保藏号为CCTCC NO:M 2012190。
7.权利要求1所述细胞色素P450单加氧酶系统基因dsmABC在构建降解3,6-二氯水杨酸的转基因作物中的应用。
8.权利要求2所述细胞色素P450单加氧酶系统在降解和转化3,6-二氯水杨酸中的应用。
9.权利要求5所述基因工程菌在去除土壤、水体中3,6-二氯水杨酸中的应用。
10.权利要求1所述细胞色素P450单加氧酶系统基因dsmABC、权利要求2所述细胞色素P450单加氧酶系统或权利要求5所述基因工程菌在降解或去除水杨酸及水杨酸的衍生物中的应用。
CN201711069151.2A 2017-11-03 2017-11-03 3,6-二氯水杨酸5-羟基化酶基因dsmABC及其应用 Active CN107828803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711069151.2A CN107828803B (zh) 2017-11-03 2017-11-03 3,6-二氯水杨酸5-羟基化酶基因dsmABC及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711069151.2A CN107828803B (zh) 2017-11-03 2017-11-03 3,6-二氯水杨酸5-羟基化酶基因dsmABC及其应用

Publications (2)

Publication Number Publication Date
CN107828803A true CN107828803A (zh) 2018-03-23
CN107828803B CN107828803B (zh) 2020-12-22

Family

ID=61653608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711069151.2A Active CN107828803B (zh) 2017-11-03 2017-11-03 3,6-二氯水杨酸5-羟基化酶基因dsmABC及其应用

Country Status (1)

Country Link
CN (1) CN107828803B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068607A2 (en) * 1997-04-04 2002-09-06 Board Of Regents Of The University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms
CN102757915A (zh) * 2012-07-02 2012-10-31 南京农业大学 一种氯代乙酰胺类除草剂降解菌及其生产的菌剂和应用
CN104611304A (zh) * 2014-12-22 2015-05-13 北京大北农科技集团股份有限公司生物技术中心 除草剂耐受性蛋白质、其编码基因及用途
CN104630162A (zh) * 2014-12-22 2015-05-20 北京大北农科技集团股份有限公司生物技术中心 除草剂耐受性蛋白质、其编码基因及用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068607A2 (en) * 1997-04-04 2002-09-06 Board Of Regents Of The University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms
US20060168700A1 (en) * 1997-04-04 2006-07-27 Weeks Donald P Methods and materials for making and using transgenic dicamba-degrading organisms
CN102757915A (zh) * 2012-07-02 2012-10-31 南京农业大学 一种氯代乙酰胺类除草剂降解菌及其生产的菌剂和应用
CN104611304A (zh) * 2014-12-22 2015-05-13 北京大北农科技集团股份有限公司生物技术中心 除草剂耐受性蛋白质、其编码基因及用途
CN104630162A (zh) * 2014-12-22 2015-05-20 北京大北农科技集团股份有限公司生物技术中心 除草剂耐受性蛋白质、其编码基因及用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NONE: "ACCESSION NO:WP_066967578,MULTISPECIES: 2Fe-2S ferredoxin [Sphingomonadaceae]", 《GENBANK》 *
NONE: "ACCESSION NO:WP_066967581,MULTISPECIES: FAD-dependent oxidoreductase", 《GENBANK》 *
NONE: "ACCESSION NO:WP_096367743,cytochrome P450 [Rhizorhabdus dicambivorans]", 《GENBANK》 *
XIAO-ZHUO WANG ET AL.: "A Three-Component Enzyme System Catalyzes the O Demethylation of the Herbicide Dicamba in Pseudomonas maltophilia DI-6", 《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》 *
施超: "麦草畏降解菌株的分离、鉴定及降解特性研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN107828803B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
Que et al. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut
Bloch et al. Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph
Kamber et al. Characterization of the biosynthetic operon for the antibacterial peptide herbicolin in Pantoea vagans biocontrol strain C9-1 and incidence in Pantoea species
CN101182544B (zh) 转ads基因提高青蒿中青蒿素含量的方法
Bazzicalupo et al. Fungal heavy metal adaptation through single nucleotide polymorphisms and copy‐number variation
CN102575255A (zh) 具有配糖生物碱生物合成酶活性的蛋白及其编码基因
Jiang et al. Identification of genes for anatoxin-a biosynthesis in Cuspidothrix issatschenkoi
CN110042112A (zh) 黄芩黄酮苯丙素和类黄酮o-甲基转移酶基因及其载体构建和应用
CN111574605B (zh) 水稻基因OsLAT5在调节敌草快的吸收积累中的应用
CN108822194A (zh) 一个植物淀粉合成相关蛋白OsFLO10及其编码基因与应用
CN107760621A (zh) 异菌脲降解菌、降解酶IpaH与其编码基因ipaH及其应用
Zhao et al. Quantitative trait locus mapping and candidate gene analysis for Verticillium wilt resistance using Gossypium barbadense chromosomal segment introgressed line
Xu et al. A forward genetic screen in Sclerotinia sclerotiorum revealed the transcriptional regulation of its sclerotial melanization pathway
Zhang et al. Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde
Yang et al. Streptomyces alleviate abiotic stress in plant by producing pteridic acids
CN111876514B (zh) 水稻恶苗病菌中产生赤霉素小种的快速检测方法
Cardillo et al. Establishment, culture, and scale-up of Brugmansia candida hairy roots for the production of tropane alkaloids
CN108441503B (zh) 麦草畏中间产物3,6-二氯龙胆酸脱氯酶DsmH2及其编码基因的应用
CN107828803A (zh) 3,6‑二氯水杨酸5‑羟基化酶基因dsmABC及其应用
AU2012272544B2 (en) Novel Brachiaria-Urochloa endophytes
CN111560055B (zh) 水稻基因OsLAT3在调节敌草快的吸收累积中的应用
CN102268396B (zh) 降解乐果、氯苯胺灵和敌稗的酰胺酶基因dimtH及其编码的蛋白质及其应用
CN104178504A (zh) 氨基甲酸酯类农药降解酶CFH与其编码基因cfd以及二者的应用
He et al. Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat
CN115838699B (zh) 一种乌蕨c-糖基转移酶及其编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant