CN107827450A - 一种新型高介电材料的制备方法 - Google Patents

一种新型高介电材料的制备方法 Download PDF

Info

Publication number
CN107827450A
CN107827450A CN201711187405.0A CN201711187405A CN107827450A CN 107827450 A CN107827450 A CN 107827450A CN 201711187405 A CN201711187405 A CN 201711187405A CN 107827450 A CN107827450 A CN 107827450A
Authority
CN
China
Prior art keywords
dielectric material
temperature
high dielectric
new high
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711187405.0A
Other languages
English (en)
Inventor
邹黎清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU KEMAO ELECTRONIC MATERIAL TECHNOLOGY Co Ltd
Original Assignee
SUZHOU KEMAO ELECTRONIC MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU KEMAO ELECTRONIC MATERIAL TECHNOLOGY Co Ltd filed Critical SUZHOU KEMAO ELECTRONIC MATERIAL TECHNOLOGY Co Ltd
Priority to CN201711187405.0A priority Critical patent/CN107827450A/zh
Publication of CN107827450A publication Critical patent/CN107827450A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种新型高介电材料的制备方法,称取BaTiO3和Bi2O3混合均匀,随后加入双氧水溶液中超声反应15‑25min;升高温度至105‑110℃,搅拌反应1.5‑2.5h,过滤后干燥沉淀;称取Na2CO3和TiO2混合均匀,加入到无水乙醇中超声反应20‑25min;升高温度至60‑70℃,加入硅烷偶联剂搅拌反应4‑6h,过滤后干燥沉淀h;将上述所得产物粉碎后加入乙二醇丁醚中,分散20‑30min,随后加入氢氧化钠和氯化镁,于温度60‑80℃下搅拌反应1‑2h;经过滤干燥后得前驱体;将所述前驱体在300‑400℃的温度下烧结30‑50min,继续升温至850‑950℃,烧结反应3‑8h,待冷却后即可得到所述新型高介电材料。

Description

一种新型高介电材料的制备方法
技术领域
本发明属于电子材料领域,特别涉及一种新型高介电材料的制备方法。
背景技术
介电材料(dielectric material)又称电介质,是可用于控制存储电荷及电能的绝缘材料,在现代电子及电力系统中具有重要的战略地位。介电材料主要包括电容器介电材料和微波介电材料两大体系。其中用作电容器介质的介电材料,要求材料的电阻率高,介电常量大,在整个介电材料中占有很大比重。
随着近年来电子电气行业的快速发展,人们对高介电复合材料的要求越来越高。电子产品未来趋向于在提升性能的同时,把器件做的越来越小。电子产品小型化的瓶颈之一是印刷电路板的体积,因为电路板上有大量的无源元件,比如电容器,占据了大量的空间。嵌入式印刷电路板是解决电路板体积的有效方法之一,它的关键在于开发具有优越性能的高介电复合材料。高介电复合材料的另一用途是电应力控制。电气设备大型化可以提升效率,但也会使得设备中材料所受的电应力增加,容易损坏。因此,我们需要开发出新的高介电复合材料,来满足大型电气设备的电应力控制要求,促进电气行业的发展。此外,高介电复合材料还可以用来制备高储能器件,来应对当前社会对能源的需求。用高介电复合材料制备的储能器件具有很高的功率密度,在航空航天、尖端武器和电动汽车方面具有很重要的应用潜力。
发明内容
针对上述缺陷,本发明的目的是提供一种新型高介电材料的制备方法,以BaTiO3、Bi2O3等物质为基体,加入多种有机化合物改性剂,进而制备得到具有高介电性能的介电材料。
本发明的目的可以通过以下技术方案实现:
一种新型高介电材料的制备方法,包括如下步骤:
S1:按照质量比为1:2-5称取BaTiO3和Bi2O3混合均匀,随后加入到浓度为15-20%的双氧水溶液中超声反应15-25min,其中,BaTiO3/Bi2O3混合物和双氧水溶液的固液比为1-3g:10ml;升高温度至105-110℃,搅拌反应1.5-2.5h,过滤后将沉淀真空干燥5-8h;
S2:按照质量比为1-4:1称取Na2CO3和TiO2混合均匀,加入到无水乙醇中超声反应20-25min其中,Na2CO3和TiO2混合物和无水乙醇的固液比为1-5g:12ml;将温度升高至60-70℃,加入占Na2CO3/TiO2混合物质量百分比3-5%的硅烷偶联剂搅拌反应4-6h,过滤后将沉淀干燥3-5h;
S3:将步骤S1和步骤S2中所得产物粉碎后加入乙二醇丁醚中,分散20-30min,随后加入氢氧化钠和氯化镁,于温度60-80℃下搅拌反应1-2h;经过滤干燥后得前驱体;
S4:将步骤S3中所述前驱体在300-400℃的温度下烧结30-50min,继续升温至850-950℃,烧结反应3-8h,待冷却后即可得到所述新型高介电材料。
优选的,步骤S1中所述BaTiO3和Bi2O3的质量比为1:3;双氧水溶液浓度为18%;BaTiO3/Bi2O3混合物和双氧水溶液的固液比为2g:10ml。
优选的,步骤S1中所述超声反应20min,升高温度至108℃,搅拌反应2h,过滤后将沉淀真空干燥7h。
优选的,步骤S2中所述Na2CO3和TiO2的质量比为3:1;Na2CO3和TiO2混合物和无水乙醇的固液比为2.5g:12ml;硅烷偶联剂所占质量百分比4%。
优选的,步骤S2中所述加入到无水乙醇中超声反应22min,将温度升高至65℃,加入硅烷偶联剂搅拌反应5h,过滤后将沉淀干燥4h。
优选的,步骤S3中所述步骤S1和步骤S2中所得产物与乙二醇丁醚的固液比为2-5:7;氢氧化钠和氯化镁占乙二醇丁醚的质量比为2-4%。
优选的,步骤S3中所述分散25min,于温度70℃下搅拌反应1.5h。
优选的,步骤S4中前驱体在360℃的温度下烧结45min,继续升温至900℃,烧结反应7h。
本发明与现有技术相比,其有益效果为:
本发明所述一种新型高介电材料的制备方法,通过分别对BaTiO3和Bi2O3、Na2CO3和TiO2进行一级化学裹覆,再将两者混合后进行二级裹覆,通过本发明的二级化学包覆-共烧结处理,形成了晶界层厚度更厚的晶粒,进而大幅度提高了晶界层被击穿的电场强度,即提高了击穿电压,使该陶瓷介电材料适用范围更大,应用更广泛,满足微型化材料的需求。
具体实施方式
以下结合实施例对本发明作进一步的说明。
实施例1
S1:按照质量比为1:2称取BaTiO3和Bi2O3混合均匀,随后加入到浓度为15%的双氧水溶液中超声反应15min,其中,BaTiO3/Bi2O3混合物和双氧水溶液的固液比为1g:10ml;升高温度至105℃,搅拌反应1.5h,过滤后将沉淀真空干燥8h;
S2:按照质量比为1:1称取Na2CO3和TiO2混合均匀,加入到无水乙醇中超声反应20min其中,Na2CO3和TiO2混合物和无水乙醇的固液比为1g:12ml;将温度升高至60℃,加入占Na2CO3/TiO2混合物质量百分比5%的硅烷偶联剂搅拌反应4h,过滤后将沉淀干燥3h;
S3:将步骤S1和步骤S2所得产物混合,按照固液比为2:7再加入乙二醇丁醚,分散20min,随后加入氢氧化钠和氯化镁于温度60℃下搅拌反应2h;其中,氢氧化钠和氯化镁占乙二醇丁醚的质量比为2%;经过滤干燥后得前驱体;
S4:将步骤S3中所述前驱体在300℃的温度下烧结30min,继续升温至850℃,烧结反应3h,待冷却后即可得到所述新型高介电材料。
实施例2
S1:按照质量比为1:5称取BaTiO3和Bi2O3混合均匀,随后加入到浓度为20%的双氧水溶液中超声反应25min,其中,BaTiO3/Bi2O3混合物和双氧水溶液的固液比为3g:10ml;升高温度至110℃,搅拌反应2.5h,过滤后将沉淀真空干燥5h;
S2:按照质量比为4:1称取Na2CO3和TiO2混合均匀,加入到无水乙醇中超声反应25min其中,Na2CO3和TiO2混合物和无水乙醇的固液比为5g:12ml;将温度升高至70℃,加入占Na2CO3/TiO2混合物质量百分比3%的硅烷偶联剂搅拌反应6h,过滤后将沉淀干燥5h;
S3:将步骤S1和步骤S2所得产物混合,按照固液比为5:7再加入乙二醇丁醚,分散30min,随后加入氢氧化钠和氯化镁于温度80℃下搅拌反应1h;其中,氢氧化钠和氯化镁占乙二醇丁醚的质量比为4%;经过滤干燥后得前驱体;
S4:将步骤S3中所述前驱体在400℃的温度下烧结50min,继续升温至950℃,烧结反应8h,待冷却后即可得到所述新型高介电材料。
实施例3
S1:按照质量比为1:3称取BaTiO3和Bi2O3混合均匀,随后加入到浓度为16%的双氧水溶液中超声反应18min,其中,BaTiO3/Bi2O3混合物和双氧水溶液的固液比为2g:10ml;升高温度至108℃,搅拌反应2h,过滤后将沉淀真空干燥7h;
S2:按照质量比为2:1称取Na2CO3和TiO2混合均匀,加入到无水乙醇中超声反应22min其中,Na2CO3和TiO2混合物和无水乙醇的固液比为3g:12ml;将温度升高至65℃,加入占Na2CO3/TiO2混合物质量百分比3%的硅烷偶联剂搅拌反应5h,过滤后将沉淀干燥4h;
S3:将步骤S1和步骤S2所得产物混合,按照固液比为4:7再加入乙二醇丁醚,分散25min,随后加入氢氧化钠和氯化镁于温度65℃下搅拌反应1h;其中,氢氧化钠和氯化镁占乙二醇丁醚的质量比为3%;经过滤干燥后得前驱体;
S4:将步骤S3中所述前驱体在350℃的温度下烧结35min,继续升温至900℃,烧结反应4h,待冷却后即可得到所述新型高介电材料。
实施例4
S1:按照质量比为1:4称取BaTiO3和Bi2O3混合均匀,随后加入到浓度为18%的双氧水溶液中超声反应22min,其中,BaTiO3/Bi2O3混合物和双氧水溶液的固液比为1g:10ml;升高温度至110℃,搅拌反应1.5.h,过滤后将沉淀真空干燥5h;
S2:按照质量比为3:1称取Na2CO3和TiO2混合均匀,加入到无水乙醇中超声反应25min其中,Na2CO3和TiO2混合物和无水乙醇的固液比为4g:12ml;将温度升高至70℃,加入占Na2CO3/TiO2混合物质量百分比5%的硅烷偶联剂搅拌反应4.5h,过滤后将沉淀干燥3.5h;
S3:将步骤S1和步骤S2所得产物混合,按照固液比为3:7再加入乙二醇丁醚,分散28min,随后加入氢氧化钠和氯化镁于温度75℃下搅拌反应1.5h;其中,氢氧化钠和氯化镁占乙二醇丁醚的质量比为2%;经过滤干燥后得前驱体;
S4:将步骤S3中所述前驱体在380℃的温度下烧结45min,继续升温至870℃,烧结反应7h,待冷却后即可得到所述新型高介电材料。
实施例5
S1:按照质量比为1:3称取BaTiO3和Bi2O3混合均匀,随后加入到浓度为18%的双氧水溶液中超声反应20min,其中,BaTiO3/Bi2O3混合物和双氧水溶液的固液比为2g:10ml;升高温度至108℃,搅拌反应2h,过滤后将沉淀真空干燥7h;
S2:按照质量比为3:1称取Na2CO3和TiO2混合均匀,加入到无水乙醇中超声反应22min其中,Na2CO3和TiO2混合物和无水乙醇的固液比为2.5g:12ml;将温度升高至65℃,加入占Na2CO3/TiO2混合物质量百分比4%的硅烷偶联剂搅拌反应5h,过滤后将沉淀干燥4h;
S3:将步骤S1和步骤S2所得产物混合,按照固液比为4:7再加入乙二醇丁醚,分散25min,随后加入氢氧化钠和氯化镁于温度75℃下搅拌反应1.5h;其中,氢氧化钠和氯化镁占乙二醇丁醚的质量比为3%;经过滤干燥后得前驱体;
S4:将步骤S3中所述前驱体在350℃的温度下烧结45min,继续升温至900℃,烧结反应6h,待冷却后即可得到所述新型高介电材料。
将上述新型高介电材料性能测试(25℃、10KHZ),结果如下:
实验 介电常数 击穿电压(KV/mm)
实施例1 102 15.3
实施例2 104 15.5
实施例3 105 15.6
实施例4 108 15.8
实施例5 110 16.2
本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

1.一种新型高介电材料的制备方法,其特征在于,包括如下步骤:
S1:按照质量比为1:2-5称取BaTiO3和Bi2O3混合均匀,随后加入到浓度为15-20%的双氧水溶液中超声反应15-25min,其中,BaTiO3/Bi2O3混合物和双氧水溶液的固液比为1-3g:10ml;升高温度至105-110℃,搅拌反应1.5-2.5h,过滤后将沉淀真空干燥5-8h;
S2:按照质量比为1-4:1称取Na2CO3和TiO2混合均匀,加入到无水乙醇中超声反应20-25min其中,Na2CO3和TiO2混合物和无水乙醇的固液比为1-5g:12ml;将温度升高至60-70℃,加入占Na2CO3/TiO2混合物质量百分比3-5%的硅烷偶联剂搅拌反应4-6h,过滤后将沉淀干燥3-5h;
S3:将步骤S1和步骤S2中所得产物粉碎后加入乙二醇丁醚中,分散20-30min,随后加入氢氧化钠和氯化镁,于温度60-80℃下搅拌反应1-2h;经过滤干燥后得前驱体;
S4:将步骤S3中所述前驱体在300-400℃的温度下烧结30-50min,继续升温至850-950℃,烧结反应3-8h,待冷却后即可得到所述新型高介电材料。
2.根据权利要求1所述的一种新型高介电材料的制备方法,其特征在于,步骤S1中所述BaTiO3和Bi2O3的质量比为1:3;双氧水溶液浓度为18%;BaTiO3/Bi2O3混合物和双氧水溶液的固液比为2g:10ml。
3.根据权利要求1所述的一种新型高介电材料的制备方法,其特征在于,步骤S1中所述超声反应20min,升高温度至108℃,搅拌反应2h,过滤后将沉淀真空干燥7h。
4.根据权利要求1所述的一种新型高介电材料的制备方法,其特征在于,步骤S2中所述Na2CO3和TiO2的质量比为3:1;Na2CO3和TiO2混合物和无水乙醇的固液比为2.5g:12ml;硅烷偶联剂所占质量百分比4%。
5.根据权利要求1所述的一种新型高介电材料的制备方法,其特征在于,步骤S2中所述加入到无水乙醇中超声反应22min,将温度升高至65℃,加入硅烷偶联剂搅拌反应5h,过滤后将沉淀干燥4h。
6.根据权利要求1所述的一种新型高介电材料的制备方法,其特征在于,步骤S3中所述步骤S1和步骤S2中所得产物与乙二醇丁醚的固液比为2-5:7;氢氧化钠和氯化镁占乙二醇丁醚的质量比为2-4%。
7.根据权利要求1所述的一种新型高介电材料的制备方法,其特征在于,步骤S3中所述分散25min,于温度70℃下搅拌反应1.5h。
8.根据权利要求1所述的一种新型高介电材料的制备方法,其特征在于,步骤S4中前驱体在360℃的温度下烧结45min,继续升温至900℃,烧结反应7h。
CN201711187405.0A 2017-11-24 2017-11-24 一种新型高介电材料的制备方法 Pending CN107827450A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711187405.0A CN107827450A (zh) 2017-11-24 2017-11-24 一种新型高介电材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711187405.0A CN107827450A (zh) 2017-11-24 2017-11-24 一种新型高介电材料的制备方法

Publications (1)

Publication Number Publication Date
CN107827450A true CN107827450A (zh) 2018-03-23

Family

ID=61653532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711187405.0A Pending CN107827450A (zh) 2017-11-24 2017-11-24 一种新型高介电材料的制备方法

Country Status (1)

Country Link
CN (1) CN107827450A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847896A (zh) * 2018-11-23 2019-06-07 华中科技大学 利用光热快速升温预处理的废弃石墨电极破碎方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083350A (ko) * 2009-01-13 2010-07-22 충주대학교 산학협력단 Bnbt6 압전세라믹스 및 그의 제조방법
CN106518056A (zh) * 2016-11-17 2017-03-22 成都市创斯德机电设备有限公司 一种陶瓷介电材料及其制备方法
CN106699165A (zh) * 2016-11-22 2017-05-24 成都善水天下科技有限公司 一种高击穿电压陶瓷介电材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083350A (ko) * 2009-01-13 2010-07-22 충주대학교 산학협력단 Bnbt6 압전세라믹스 및 그의 제조방법
CN106518056A (zh) * 2016-11-17 2017-03-22 成都市创斯德机电设备有限公司 一种陶瓷介电材料及其制备方法
CN106699165A (zh) * 2016-11-22 2017-05-24 成都善水天下科技有限公司 一种高击穿电压陶瓷介电材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847896A (zh) * 2018-11-23 2019-06-07 华中科技大学 利用光热快速升温预处理的废弃石墨电极破碎方法

Similar Documents

Publication Publication Date Title
CN103304186B (zh) 一种铁氧体基复合磁介天线基板材料及其制备方法
CN208352420U (zh) 一种多极耳电芯、多端子电池及电池模组
CN104934223B (zh) 一种汽车用薄膜电容器
US11661639B2 (en) Method for whole component microwave fast digestion and precious metal extraction from ionic liquid of waste circuit board
US20190019626A1 (en) Polymer composite material for solid capacitor, capacitor package structure using the same and manufacturing method thereof
CN108922779A (zh) 一种片式通孔金电极芯片电容器及其制备方法
CN107827450A (zh) 一种新型高介电材料的制备方法
CN113634753A (zh) 一种低成本低污染铝电解电容器阳极箔及其制备方法
CN114497565A (zh) 一种具有高容量型磷酸铁锰锂正极材料及加工工艺
DE102012224220A1 (de) Elektrolytmaterialformulierung, daraus gebildete Elektrolytmaterialzusammensetzung und Verwendung derselben
CN205789506U (zh) 一种超薄耐高温聚丙烯电容器金属化薄膜
CN206312761U (zh) 电流尖峰吸收薄膜电容器
CN102775704B (zh) 复合电介质材料、制备方法、平板型电容器和印刷电路板
CN108192387B (zh) 一种用于防护中高频电磁波辐射的复合涂料及制备方法
CN102751102B (zh) 降低电解电容器等效串联电阻的方法
CN103929132B (zh) 基于带状线方式的小型大功率微波放大模块
CN107946092A (zh) 一种用于新能源汽车电容器的生产工艺
CN112538253A (zh) 一种磁介电树脂组合物、包含其的层压板及其印刷电路板
CN203851101U (zh) 基于带状线方式的小型大功率微波放大模块
CN112768248B (zh) 一种铝电解电容器用耐低温电解液
CN112538254A (zh) 一种磁介电树脂组合物、包含其的层压板及其印刷电路板
CN204927045U (zh) 一种电容器
CN110402040A (zh) 一种用于印制线路板内层芯板棕氧化工艺
CN110938853A (zh) 高比容电极箔电解液及其组合物和电极箔的制备方法
CN205069385U (zh) 一种电容器用的安全防爆膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180323

WD01 Invention patent application deemed withdrawn after publication