CN107746285A - 一种三维多孔氮化物纳米陶瓷及其制备方法 - Google Patents

一种三维多孔氮化物纳米陶瓷及其制备方法 Download PDF

Info

Publication number
CN107746285A
CN107746285A CN201710973319.6A CN201710973319A CN107746285A CN 107746285 A CN107746285 A CN 107746285A CN 201710973319 A CN201710973319 A CN 201710973319A CN 107746285 A CN107746285 A CN 107746285A
Authority
CN
China
Prior art keywords
source
dimensional porous
raw material
nano ceramics
nitride nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710973319.6A
Other languages
English (en)
Other versions
CN107746285B (zh
Inventor
张海军
田亮
梁峰
张少伟
李俊怡
董龙浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201710973319.6A priority Critical patent/CN107746285B/zh
Publication of CN107746285A publication Critical patent/CN107746285A/zh
Application granted granted Critical
Publication of CN107746285B publication Critical patent/CN107746285B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Catalysts (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明涉及一种三维多孔氮化物纳米陶瓷及其制备方法。其技术方案是:将0.5~25wt%的原料Ⅰ、0.5~25wt%的原料Ⅱ和55~99wt%的去离子水混合,在水浴条件下搅拌,得到混合溶液。所述原料Ⅰ为硼源、铝源、硅源和钛源中的一种,其中:硼源为硼酸、氧化硼或硼酸钠,铝源为氯化铝、异丙醇铝或铝溶胶,硅源为正硅酸乙酯、硅酸钠或硅溶胶,钛源为氯化钛、钛酸四丁酯或钛溶胶;所述原料Ⅱ为三聚氰胺、氮杂胞嘧啶或二氰二胺。再将所述混合溶液冷冻成块,于冷冻干燥机中干燥,然后置于箱式气氛炉内,在氮气气氛和900~1200℃保温2~4h,即得三维多孔氮化物纳米陶瓷。本发明工艺简单、成本低和产率高,所制制品表观密度低、气孔率高和应用前景广泛。

Description

一种三维多孔氮化物纳米陶瓷及其制备方法
技术领域
本发明属于多孔氮化物纳米陶瓷材料技术领域。具体涉及一种三维多孔氮化物纳米陶瓷及其制备方法。
背景技术
多孔材料可广泛用作催化剂载体、储氢材料、化学过滤提纯材料等。常用的多孔材料为多孔氧化物,如SiO2、γ-A12O3、沸石分子筛等,它们虽具有较高的比表面积,但其热导率低(易导致材料发生烧结)、具有亲水性表面(易在材料表面上吸附一层来自周围环境中的水)、化学活性强(易在材料表面形成酸性点或碱性点),此类材料在一些苛刻的反应条件下,如高温高压、强酸、原料杂质含量高时,将导致活性和稳定性大大降低,故多孔氧化物材料的应用范围受到一定的限制。相比于多孔氧化物,多孔氮化物具有更多优异的性能,如化学稳定性高、熔点高、密度低、热导性好和疏水性强,并且在高温和强光照条件下仍具有很好的抗氧化性,因此它在高温催化剂载体材料、吸附材料、隔音材料等领域具有广泛的应用前景。
目前,多孔氮化物陶瓷的制备方法主要包括:发泡法,如“氮化硅多孔陶瓷的制备方法”(CN101591173);模板合成法,如“网眼多孔陶瓷的制备方法”(CN1552670);添加造孔剂法,如“一种氮化硅纳米线增强氮化硅多孔陶瓷的方法”(CN103214264A)等。上述技术,无论是制备出的三维多孔结构材料还是生产方法,都存在着以下不足之处:制得多孔材料的表观密度高、孔隙率低;制备步骤较繁琐、生产周期较长、产率低、成本高,不利于工业大批量生产。
发明内容
本发明针对现有技术的缺陷,旨在提供一种方法简单、产率高和成本低的三维多孔氮化物纳米陶瓷材料的制备方法,用该方法制备的三维多孔氮化物纳米陶瓷表观密度低、气孔率高和应用前景好。
为实现上述目的,本发明采用的技术方案是:
步骤1、将0.5~25wt%的原料Ⅰ、0.5~25wt%的原料Ⅱ和55~99wt%的去离子水混合,在80~95℃水浴条件下搅拌30~180分钟,得到混合溶液。
所述原料Ⅰ为硼源、铝源、硅源和钛源中的一种,其中:所述硼源为硼酸、氧化硼和硼酸钠中的一种,所述铝源为氯化铝、异丙醇铝和铝溶胶中的一种,所述硅源为正硅酸乙酯、硅酸钠和硅溶胶中的一种,所述钛源为氯化钛、钛酸四丁酯和钛溶胶中的一种。
所述原料Ⅱ为三聚氰胺、氮杂胞嘧啶和二氰二胺中的一种。
步骤2、将所述混合溶液在-40~-4℃条件下冷冻成块,然后置于冷冻干燥机中于-70~-10℃条件下干燥16~32h,得到三维多孔氮化物前驱体。
步骤3、将所述三维多孔氮化硼前驱体置于箱式气氛炉内,在氮气气氛和900~1200℃条件下保温2~4h,即得三维多孔氮化物纳米陶瓷。
所述硼源、铝源、硅源和钛源均为工业纯或为分析纯;所述硼源中的硼酸、氧化硼和硼酸钠的粒径均≤200μm,所述铝源中的氯化铝和异丙醇铝的粒径均≤200μm,所述硅源中的硅酸钠的粒径≤200μm。
所述原料Ⅱ为工业纯或为分析纯,所述原料Ⅱ的粒径均≤200μm。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果和突出特点:
1、本发明采用热分解工艺,无需后续处理(如产物的洗涤、干燥),工艺简单,生产周期短、操作简便。
2、本发明能精确控制工艺参数,如原料配比和反应温度等,易于得到不同性能的产物,所制备的三维多孔氮化物纳米陶瓷的表观密度低和气孔率高。
3、本发明所用原料来源广泛、价格低廉、生产成本低和产率高,具有很大的产业化前景。
4、本发明所制备的三维多孔氮化物纳米陶瓷,可应用于污水处理、负载催化和减震降噪等领域,具有广泛的应用前景。
本发明所制备的三维多孔氮化硼纳米陶瓷经检测:表观密度为0.02~0.34g/cm3;气孔率为85~99%。
因此,本发明具有工艺简单、成本低、易于控制和产率高的特点,所制备的三维多孔氮化物纳米陶瓷表观密度低、气孔率高和应用前景广泛。
附图说明
图1是本发明制备的一种三维多孔氮化物纳米陶瓷的XRD图;
图2是图1所示的三维多孔氮化物纳米陶瓷的SEM图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式所涉及的原料统一描述如下,实施例中不再赘述:
所述硼源、铝源、硅源和钛源均为工业纯或为分析纯;所述硼源中的硼酸、氧化硼和硼酸钠的粒径均≤200μm,所述铝源中的氯化铝和异丙醇铝的粒径均≤200μm,所述硅源中的硅酸钠的粒径≤200μm。
所述原料Ⅱ为工业纯或为分析纯,所述原料Ⅱ的粒径均≤200μm。
实施例1
一种三维多孔氮化硼纳米陶瓷及其制备方法。本实施例所述制备方法是:
步骤1、将0.5~10wt%的原料Ⅰ、0.5~10wt%的原料Ⅱ和85~99wt%的去离子水混合,在80~86℃水浴条件下搅拌30~90分钟,得到混合溶液。
所述原料Ⅰ为硼源中的硼酸;所述原料Ⅱ为三聚氰胺。
步骤2、将所述混合溶液在-40~-4℃条件下冷冻成块,然后置于冷冻干燥机中于-70~-10℃条件下干燥16~32h,得到三维多孔氮化硼前驱体。
步骤3、将所述三维多孔氮化硼前驱体置于箱式气氛炉内,在氮气气氛和1000~1150℃条件下保温2~4h,即得三维多孔氮化硼纳米陶瓷。
本实施例所制备的三维多孔氮化硼纳米陶瓷经检测:表观密度为0.02~0.08g/cm3;气孔率为96~99%。
实施例2
一种三维多孔氮化硼纳米陶瓷及其制备方法。本实施例除下述原料外,其余同实施例1:
所述原料Ⅰ为硼源中的氧化硼;所述原料Ⅱ为氮杂胞嘧啶。
本实施例所制备的三维多孔氮化硼纳米陶瓷经检测:表观密度为0.04~0.14g/cm3;气孔率为94~98%。
实施例3
一种三维多孔氮化硼纳米陶瓷及其制备方法。本实施例除下述原料外,其余同实施例1:
所述原料Ⅰ为硼源中的硼酸钠;所述原料Ⅱ为二氰二胺。
本实施例所制备的三维多孔氮化硼纳米陶瓷经检测:表观密度为0.02~0.12g/cm3;气孔率为95~99%。
实施例4
一种三维多孔氮化铝纳米陶瓷及其制备方法。本实施例所述制备方法是:
步骤1、将5~15wt%的原料Ⅰ、5~15wt%的原料Ⅱ和75~90wt%的去离子水混合,在83~89℃水浴条件下搅拌60~120分钟,得到混合溶液。
所述原料Ⅰ为铝源中的氯化铝;所述原料Ⅱ为三聚氰胺。
步骤2、将所述混合溶液在-40~-4℃条件下冷冻成块,然后置于冷冻干燥机中于-70~-10℃条件下干燥16~32h,得到三维多孔氮化铝前驱体。
步骤3、将所述三维多孔氮化铝前驱体置于箱式气氛炉内,在氮气气氛和950~1100℃条件下保温2~4h,即得三维多孔氮化铝纳米陶瓷。
本实施例所制备的三维多孔氮化铝纳米陶瓷经检测:表观密度为0.08~0.12g/cm3;气孔率为96~98%。
实施例5
一种三维多孔氮化铝纳米陶瓷及其制备方法。本实施例除下述原料外,其余同实施例4:
所述原料Ⅰ为铝源中的异丙醇铝;所述原料Ⅱ为氮杂胞嘧啶。
本实施例所制备的三维多孔氮化铝纳米陶瓷经检测:表观密度为0.12~0.16g/cm3;气孔率为95~96%。
实施例6
一种三维多孔氮化铝纳米陶瓷及其制备方法。本实施例除下述原料外,其余同实施例4:
所述原料Ⅰ为铝源中的铝溶胶;所述原料Ⅱ为二氰二胺。
本实施例所制备的三维多孔氮化铝纳米陶瓷经检测:表观密度为0.08~0.14g/cm3;气孔率为96~98%。
实施例7
一种三维多孔氮化硅纳米陶瓷的制备方法。本实施例所述制备方法是:
步骤1、将10~20wt%的原料Ⅰ、10~20wt%的原料Ⅱ和65~80wt%的去离子水混合,在86~92℃水浴条件下搅拌90~150分钟,得到混合溶液。
所述原料Ⅰ为硅源中的正硅酸乙酯;所述原料Ⅱ为三聚氰胺。
步骤2、将所述混合溶液在-40~-4℃条件下冷冻成块,然后置于冷冻干燥机中于-70~-10℃条件下干燥16~32h,得到三维多孔氮化硅前驱体。
步骤3、将所述三维多孔氮化硅前驱体置于箱式气氛炉内,在氮气气氛和1050~1200℃条件下保温2~4h,即得三维多孔氮化硅纳米陶瓷。
本实施例所制备的三维多孔氮化硅纳米陶瓷经检测:表观密度为0.12~0.26g/cm3;气孔率为91~95%。
实施例8
一种三维多孔氮化硅纳米陶瓷及其制备方法。本实施例除下述原料外,其余同实施例7:
所述原料Ⅰ为硅源中的硅酸钠;所述原料Ⅱ为氮杂胞嘧啶。
本实施例所制备的三维多孔氮化硅纳米陶瓷经检测:表观密度为0.16~0.28g/cm3;气孔率为90~94%。
实施例9
一种三维多孔氮化硅纳米陶瓷及其制备方法。本实施例除下述原料外,其余同实施例7:
所述原料Ⅰ为硅源中的硅溶胶;所述原料Ⅱ为二氰二胺。
本实施例所制备的三维多孔氮化硅纳米陶瓷经检测:表观密度为0.14~0.26g/cm3;气孔率为92~95%。
实施例10
一种三维多孔氮化钛纳米陶瓷的制备方法。本实施例所述制备方法是:
步骤1、将15~25wt%的原料Ⅰ、15~25wt%的原料Ⅱ和55~70wt%的去离子水混合,在89~95℃水浴条件下搅拌120~180分钟,得到混合溶液。
所述原料Ⅰ为钛源中的氯化钛;所述原料Ⅱ为三聚氰胺。
步骤2、将所述混合溶液在-40~-4℃条件下冷冻成块,然后置于冷冻干燥机中于-70~-10℃条件下干燥16~32h,得到三维多孔氮化钛前驱体。
步骤3、将所述三维多孔氮化钛前驱体置于箱式气氛炉内,在氮气气氛和900~1050℃条件下保温2~4h,即得三维多孔氮化钛纳米陶瓷。
本实施例所制备的三维多孔氮化钛纳米陶瓷经检测:表观密度为0.22~0.32g/cm3;气孔率为87~93%。
实施例11
一种三维多孔氮化钛纳米陶瓷及其制备方法。本实施例除下述原料外,其余同实施例10:
所述原料Ⅰ为钛源中的钛酸四丁酯;所述原料Ⅱ为氮杂胞嘧啶。
本实施例所制备的三维多孔氮化钛纳米陶瓷经检测:表观密度为0.22~0.34g/cm3;气孔率为85~93%。
实施例12
一种三维多孔氮化钛纳米陶瓷及其制备方法。本实施例除下述原料外,其余同实施例10:
所述原料Ⅰ为钛源中的钛溶胶;所述原料Ⅱ为二氰二胺。
本实施例所制备的三维多孔氮化钛纳米陶瓷经检测:表观密度为0.22~0.28g/cm3;气孔率为88~93%。
本具体实施方式与现有技术相比具有如下积极效果和突出特点:
1、本具体实施方式采用热分解工艺,无需后续处理(如产物的洗涤、干燥),工艺简单,生产周期短、操作简便。
2、本具体实施方式能精确控制工艺参数,如原料配比和反应温度等,易于得到不同性能的产物,所制备的三维多孔氮化物纳米陶瓷如图1和图2所示,表观密度低和气孔率高。图1是实施例1制备的一种三维多孔氮化物纳米陶瓷的XRD图,图2是图1所示的三维多孔氮化物纳米陶瓷的SEM图。由图1可知,所制备的三维多孔氮化物纳米陶瓷的XRD衍射峰对应h-BN的衍射峰,其结晶度好;由图2可知,所制备的三维多孔氮化物纳米陶瓷由氮化硼纤维组成,气孔率高,且气孔分布均匀。
3、本具体实施方式所用原料来源广泛、价格低廉、生产成本低和产率高,具有很大的产业化前景。
4、本具体实施方式所制备的三维多孔氮化物纳米陶瓷,可应用于污水处理、负载催化和减震降噪等领域,具有广泛的应用前景。
本具体实施方式所制备的三维多孔氮化硼纳米陶瓷经检测:表观密度为0.02~0.34g/cm3;气孔率为85~99%。
因此,本具体实施方式具有工艺简单、成本低、易于控制和产率高的特点,所制备的三维多孔氮化物纳米陶瓷表观密度低、气孔率高和应用前景广泛。

Claims (4)

1.一种三维多孔氮化物纳米陶瓷的制备方法,其特征在于制备步骤为:
步骤1、将0.5~25wt%的原料Ⅰ、0.5~25wt%的原料Ⅱ和55~99wt%的去离子水混合,在80~95℃水浴条件下搅拌30~180分钟,得到混合溶液;
所述原料Ⅰ为硼源、铝源、硅源和钛源中的一种,其中:所述硼源为硼酸、氧化硼和硼酸钠中的一种,所述铝源为氯化铝、异丙醇铝和铝溶胶中的一种,所述硅源为正硅酸乙酯、硅酸钠和硅溶胶中的一种,所述钛源为氯化钛、钛酸四丁酯和钛溶胶中的一种;
所述原料Ⅱ为三聚氰胺、氮杂胞嘧啶和二氰二胺中的一种;
步骤2、将所述混合溶液在-40~-4℃条件下冷冻成块,然后置于冷冻干燥机中于-70~-10℃条件下干燥16~32h,得到三维多孔氮化物前驱体;
步骤3、将所述三维多孔氮化硼前驱体置于箱式气氛炉内,在氮气气氛和900~1200℃条件下保温2~4h,即得三维多孔氮化物纳米陶瓷。
2.根据权利要求1所述三维多孔氮化物纳米陶瓷的制备方法,其特征在于所述硼源、铝源、硅源和钛源均为工业纯或为分析纯;所述硼源中的硼酸、氧化硼和硼酸钠的粒径均≤200μm,所述铝源中的氯化铝和异丙醇铝的粒径均≤200μm,所述硅源中的硅酸钠的粒径≤200μm。
3.根据权利要求1所述三维多孔氮化物纳米陶瓷的制备方法,其特征在于所述原料Ⅱ为工业纯或为分析纯,所述原料Ⅱ的粒径均≤200μm。
4.一种三维多孔氮化物纳米陶瓷,其特征在于所述三维多孔氮化物纳米陶瓷是根据权利要求1~3项中任一项所述三维多孔氮化物纳米陶瓷的制备方法所制备的三维多孔氮化物纳米陶瓷。
CN201710973319.6A 2017-10-18 2017-10-18 一种三维多孔氮化物纳米陶瓷及其制备方法 Expired - Fee Related CN107746285B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710973319.6A CN107746285B (zh) 2017-10-18 2017-10-18 一种三维多孔氮化物纳米陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710973319.6A CN107746285B (zh) 2017-10-18 2017-10-18 一种三维多孔氮化物纳米陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN107746285A true CN107746285A (zh) 2018-03-02
CN107746285B CN107746285B (zh) 2020-09-08

Family

ID=61253989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710973319.6A Expired - Fee Related CN107746285B (zh) 2017-10-18 2017-10-18 一种三维多孔氮化物纳米陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN107746285B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108408698A (zh) * 2018-04-27 2018-08-17 南方科技大学 氧掺杂捆束状多孔氮化硼制备方法
CN108610056A (zh) * 2018-07-24 2018-10-02 广东工业大学 一种氮化硅陶瓷及其制备方法
CN110078519A (zh) * 2019-05-09 2019-08-02 西安航空学院 一种多孔氮化硅陶瓷的制备方法
CN113831581A (zh) * 2021-09-23 2021-12-24 航天特种材料及工艺技术研究所 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012125A (zh) * 2007-02-01 2007-08-08 北京工业大学 一种制备氮化铝/氮化硼复相陶瓷的方法
CN103964403A (zh) * 2014-04-08 2014-08-06 南京航空航天大学 三维多孔六方氮化硼的制备方法
CN104725049A (zh) * 2015-03-23 2015-06-24 北京科技大学 一种氮化铝/氮化硼复合陶瓷粉末的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012125A (zh) * 2007-02-01 2007-08-08 北京工业大学 一种制备氮化铝/氮化硼复相陶瓷的方法
CN103964403A (zh) * 2014-04-08 2014-08-06 南京航空航天大学 三维多孔六方氮化硼的制备方法
CN104725049A (zh) * 2015-03-23 2015-06-24 北京科技大学 一种氮化铝/氮化硼复合陶瓷粉末的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108408698A (zh) * 2018-04-27 2018-08-17 南方科技大学 氧掺杂捆束状多孔氮化硼制备方法
CN108408698B (zh) * 2018-04-27 2021-10-01 南方科技大学 氧掺杂捆束状多孔氮化硼制备方法
CN108610056A (zh) * 2018-07-24 2018-10-02 广东工业大学 一种氮化硅陶瓷及其制备方法
CN108610056B (zh) * 2018-07-24 2021-07-06 广东工业大学 一种氮化硅陶瓷及其制备方法
CN110078519A (zh) * 2019-05-09 2019-08-02 西安航空学院 一种多孔氮化硅陶瓷的制备方法
CN110078519B (zh) * 2019-05-09 2021-07-27 西安航空学院 一种多孔氮化硅陶瓷的制备方法
CN113831581A (zh) * 2021-09-23 2021-12-24 航天特种材料及工艺技术研究所 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法

Also Published As

Publication number Publication date
CN107746285B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
CN107746285A (zh) 一种三维多孔氮化物纳米陶瓷及其制备方法
Ding et al. Synthesis and textural evolution of mesoporous Si3N4 aerogel with high specific surface area and excellent thermal insulation property via the urea assisted sol-gel technique
CN103213996B (zh) 一种多级孔二氧化硅基复合气凝胶的制备方法
CN106699227B (zh) 一种纳米线自增强多孔氮化硅陶瓷及其制备方法
Kaya et al. Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: A comparison study
KR101218508B1 (ko) 세라믹-탄소 복합체 및 그 제조방법
CN105622162A (zh) 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法
JP2018048033A (ja) 球状窒化アルミニウム粉末の製造方法
CN101844935A (zh) 一种多晶硅或单晶硅用坩埚涂层及其制备方法
CN105503254A (zh) 一种钛酸钡泡沫陶瓷及其制备方法
CN103043673A (zh) 一种二氧化硅气凝胶的制备方法
Ding et al. Preparation and characterisation of porous biomorphic SiC/C ceramic from molten salt
CN110822816B (zh) 一种倍半硅氧烷气凝胶的常压干燥方法
CN108097180A (zh) 一种二氧化钛/二氧化硅复合气凝胶的制备方法
CN106747640A (zh) 一种氮化硅纳米线增强多孔碳化硅材料及其制备方法
CN106064239B (zh) 一种高分散度的空心反摇铃型铜/二氧化硅核壳纳米颗粒及其制备方法
KR102117617B1 (ko) 소수성 실리카 에어로겔의 제조방법 및 이를 이용하여 제조된 소수성 실리카 에어로겔
CN107694490A (zh) 一种硅‑铁复合气凝胶的制备方法
CN114031065B (zh) 一种碳化硅纤维/碳混合气凝胶及其制备方法
CN108328586A (zh) 一种可压缩回复的氮化硅气凝胶及其制备方法
Ashie et al. Photocatalytic hydrogen evolution using mesoporous honeycomb iron titanate
CN107759143B (zh) 一种高比表面介孔甲基硅倍半氧烷气凝胶块体及其制备方法
Kaur et al. High surface area SiC (O)‐based ceramic by pyrolysis of poly (ethylene glycol) methacrylate‐modified polycarbosilane
Wang et al. Synthesis of AgBiS 2 microspheres by a templating method and their catalytic polymerization of alkylsilanes
CN108947576B (zh) 一种反向模板法制备纳米线编织微球的陶瓷海绵材料方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200908

Termination date: 20211018