CN107723789B - 一种高质量灰锡单晶薄膜的低温外延制备方法 - Google Patents

一种高质量灰锡单晶薄膜的低温外延制备方法 Download PDF

Info

Publication number
CN107723789B
CN107723789B CN201710889208.7A CN201710889208A CN107723789B CN 107723789 B CN107723789 B CN 107723789B CN 201710889208 A CN201710889208 A CN 201710889208A CN 107723789 B CN107723789 B CN 107723789B
Authority
CN
China
Prior art keywords
temperature
single crystal
gray tin
insb
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710889208.7A
Other languages
English (en)
Other versions
CN107723789A (zh
Inventor
芦红
宋欢欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201710889208.7A priority Critical patent/CN107723789B/zh
Publication of CN107723789A publication Critical patent/CN107723789A/zh
Application granted granted Critical
Publication of CN107723789B publication Critical patent/CN107723789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种高质量灰锡单晶薄膜的低温外延制备方法,具体步骤包括:(1)对(100)晶面的InSb衬底加热进行去氧化处理;(2)通过分子束外延的方法在InSb衬底上生长一层InSb缓冲层,生长温度为450℃;(3)在InSb缓冲层的表面沉积一层50nm厚的非晶Sb作为保护层,防止氧化;(4)在Ⅳ族分子束外延设备中,将InSb衬底加热至400℃去除非晶Sb;(5)通过分子束外延的生长方法,在10℃~15℃的条件下,生长灰锡薄膜,生长速率为0.025A/sec;最终得到20nm~100nm厚的灰锡单晶薄膜。本发明利用低温外延法制备的灰锡薄膜的相变温度由已知的13.2℃提高到了120℃。

Description

一种高质量灰锡单晶薄膜的低温外延制备方法
技术领域
本发明涉及一种高质量的灰锡单晶薄膜的低温外延制备方法。
背景技术
灰锡,是常见金属锡的一种同素异形体,它是一种亚稳相,在13.2℃以下稳定存在,常为无定型态。体块灰锡是一种零带隙的半导体,对灰锡施加一定的应力,其会变成一种拓扑绝缘体或者狄拉克半金属。拓扑绝缘体和狄拉克半金属近年来被广泛研究,不管是在为理论研究提供良好的平台,还是有望实现室温低能耗的电子自旋器件上,单晶的灰锡薄膜的制备都有重大意义,提高其相转变温度,能为现有的理论研究和实际应用提供更多的可能。除此之外,由于锡优良的导热性能,单晶的灰锡薄膜在电子器件界面传热方面也有很好的应用前景。
虽然,灰锡与InSb的晶格匹配度很高(晶格失配度为0.14%),但是灰锡在InSb衬底表面生长的过程中,随着Sn原子在表面的排布,一定量的Sb原子会从衬底表面隙出,影响灰锡的生长,而且在生长达到一定厚度后,应力消失,Sn会倾向于β相(Sn的稳定相)的生长。这是灰锡生长技术中最大的难点。
在目前灰锡薄膜的生长方法中,生长温度普遍为室温,在InSb(100)衬底上生长的灰锡薄膜稳定存在的温度为100℃。采用室温的生长温度在分子束外延生长中虽然已经属于极低温度,但室温仍高于灰锡的相变温度13.2℃,Sb仍然可以获得一定的能量从InSb衬底表面隙出,从而产生一些缺陷,影响灰锡薄膜的质量。
发明内容
本发明的目的是提供一种在InSb衬底上低温生长灰锡单晶薄膜的方法,利用该方法制备的薄膜能提高灰锡薄膜的相转变温度。
本发明采用的技术方案如下:
一种高质量灰锡单晶薄膜的低温外延制备方法,具体步骤包括:
(1)首先对(100)晶面的InSb衬底加热进行去氧化处理,加热温度为500℃;
(2)通过分子束外延的方法在InSb衬底上生长一层InSb缓冲层,生长速率为
Figure BDA0001420740810000011
生长温度为450℃,厚度为50nm;
(3)在InSb缓冲层的表面沉积一层非晶Sb作为保护层,防止氧化,生长速率为
Figure BDA0001420740810000012
生长温度为150℃,厚度为50nm;
(4)在Ⅳ族分子束外延设备中,将步骤(3)得到的InSb衬底加热至400℃去除非晶Sb;
(5)通过分子束外延的生长方法,在10℃~15℃的条件下,生长单质锡薄膜,生长速率为
Figure BDA0001420740810000021
最终得到20nm~100nm厚的灰锡单晶薄膜,灰锡单晶薄膜的相变温度为120℃。
本发明在InSb衬底上低温外延生长高质量的灰锡单晶薄膜,提供了一种新型的制备手段,可以获得高质量的灰锡薄膜,并通过应力作用将相转变温度提高了100℃,相比现有技术具有以下优势:
(1)本发明制备得到的高质量的灰锡单晶薄膜的厚度可达到100nm,而现有文献中报道的多为几个或几十个分子层厚度;厚的单晶薄膜的应用更为广泛。
(2)本发明使用低温的生长方式(10℃-15℃),有利于维持界面的应力;
(3)本发明使用低温的生长方式(10℃-15℃),有利于减少Sb的析出,提高灰锡薄膜的质量;
(4)本发明生长得到的灰锡薄膜的相变温度由已知的13.2℃提高到了120℃,这为后续的研究和应用提供了更多的可能性。
附图说明
图1是本发明低温生长的灰锡薄膜材料的结构示意图。
图2是在10℃下生长的20nm厚的灰锡单晶薄膜的X射线衍射倒易空间扫描图。
图3是在15℃下生长的100nm厚的灰锡单晶薄膜的X射线衍射扫描图。
图4是在10℃下生长的20nm厚的灰锡单晶薄膜的变温X射线衍射图,温度变化为从室温到170℃。
图5是在10℃下生长的20nm厚的灰锡薄膜的变温X射线衍射图,温度变化为从180℃到250℃再降温到60℃。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细的说明。
本发明提供了一种通过分子束外延在InSb衬底上低温生长灰锡单晶薄膜并运用应力提高其相变温度的制备方法。图1是本实施例灰锡薄膜的结构示意图,具体制备方法如下:
通过一套Ⅲ-Ⅴ族的分子束外延设备,首先对(100)晶面InSb衬底进行去氧化处理,保持衬底旋转,旋转速度为6转/分钟,将衬底加热器升高至500℃,保持一段时间。
然后通过分子束外延的方法在去氧化完成的的InSb(100)衬底上生长一层InSb缓冲层,生长温度为450℃。缓冲层的生长可以为灰锡的生长提供一个更好的表面。
接下来,生长一层50nm厚度的非晶Sb作为保护,防止表面氧化。
最后,将有非晶Sb保护的InSb衬底转移至另一套Ⅳ族的分子束外延设备中,400℃的温度下,去除非晶Sb。再利用分子束外延的生长方法,在低于室温的条件下生长单质锡薄膜。
图2显示了在10℃下生长的20nm厚的灰锡薄膜的X射线衍射倒易空间扫描图,可以看出20nm厚的灰锡薄膜为单晶,在晶面内的晶格常数与InSb衬底一样,也就是说灰锡薄膜还是完全受InSb衬底的应力束缚的。
图3显示了在15℃下生长的100nm厚的灰锡薄膜的X射线衍射图,可以看出本发明得到了高质量的灰锡单晶薄膜,拟合的结果显示薄膜厚度为100nm。
图4显示的是10℃下生长的20nm厚的灰锡薄膜的变温X射线衍射图。从下往上是从室温,40℃,60℃,80℃,100℃,120℃,130℃,140℃,150℃,160℃,170℃的X射线衍射图,可以看出升温至120℃时灰锡的特征峰变弱,白锡(β-Sn)的特征峰开始出现,继续升温,灰锡的特征峰完全消失,白锡的特征峰更为明显。
图5显示的是10℃下生长的20nm厚的灰锡薄膜的变温X射线衍射图。从下往上是从180℃,190℃,200℃,220℃,250℃,降温至200℃,降温至60℃的X射线衍射图,可以看出随着温度继续升高至220℃,白锡的特征峰消失,考虑是白锡融化成无定型态,所以特征峰消失。温度再降至200℃,白锡的特征峰未出现,说明融化后的白锡很难再回到定型态,继续降温至60℃,灰锡的特征峰也未出现,说明该灰锡单晶薄膜向白锡的转变是不可逆的。
根据以上这些表征可以看出,本发明在InSb衬底上低温生长出高质量的灰锡单晶薄膜,且20nm厚的灰锡薄膜的相变温度提高至120℃。

Claims (4)

1.一种高质量灰锡单晶薄膜的低温外延制备方法,其特征在于,具体步骤包括:
(1)首先对(100)晶面的InSb衬底加热进行去氧化处理;
(2)通过分子束外延的方法在InSb衬底上生长一层InSb缓冲层;
(3)在InSb缓冲层的表面沉积一层非晶Sb作为保护层,防止氧化;
(4)在Ⅳ族分子束外延设备中,将步骤(3)得到的InSb衬底加热至400℃去除非晶Sb;
(5)通过分子束外延的生长方法,在10℃~15℃的条件下,生长单质锡薄膜,生长速率为
Figure FDA0002318859880000011
最终得到20nm~100nm厚的灰锡单晶薄膜,所述灰锡单晶薄膜的相变温度为120℃。
2.根据权利要求1所述的一种高质量灰锡单晶薄膜的低温外延制备方法,其特征在于,所述步骤(1)中,加热温度为500℃。
3.根据权利要求1所述的一种高质量灰锡单晶薄膜的低温外延制备方法,其特征在于,所述步骤(2)中,InSb缓冲层的生长速率为
Figure FDA0002318859880000012
生长温度为450℃,厚度为50nm。
4.根据权利要求1所述的一种高质量灰锡单晶薄膜的低温外延制备方法,其特征在于,所述步骤(3)中,保护层的生长速率为
Figure FDA0002318859880000013
生长温度为150℃,厚度为50nm。
CN201710889208.7A 2017-09-27 2017-09-27 一种高质量灰锡单晶薄膜的低温外延制备方法 Active CN107723789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710889208.7A CN107723789B (zh) 2017-09-27 2017-09-27 一种高质量灰锡单晶薄膜的低温外延制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710889208.7A CN107723789B (zh) 2017-09-27 2017-09-27 一种高质量灰锡单晶薄膜的低温外延制备方法

Publications (2)

Publication Number Publication Date
CN107723789A CN107723789A (zh) 2018-02-23
CN107723789B true CN107723789B (zh) 2020-05-12

Family

ID=61208138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710889208.7A Active CN107723789B (zh) 2017-09-27 2017-09-27 一种高质量灰锡单晶薄膜的低温外延制备方法

Country Status (1)

Country Link
CN (1) CN107723789B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786900B (zh) * 2018-12-14 2020-07-14 清华大学 太赫兹开关及压力标定装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2125617A (en) * 1982-08-06 1984-03-07 Standard Telephones Cables Ltd Negative effective mass device
CN105951055A (zh) * 2016-06-17 2016-09-21 中国科学院上海微系统与信息技术研究所 一种二维锡烯材料的制备方法
CN106363011A (zh) * 2016-08-31 2017-02-01 红河学院 一种通过α‑Sn相变分离回收无铅焊料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2125617A (en) * 1982-08-06 1984-03-07 Standard Telephones Cables Ltd Negative effective mass device
CN105951055A (zh) * 2016-06-17 2016-09-21 中国科学院上海微系统与信息技术研究所 一种二维锡烯材料的制备方法
CN106363011A (zh) * 2016-08-31 2017-02-01 红河学院 一种通过α‑Sn相变分离回收无铅焊料的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"a-Sn thin film grown on GaAs substrate by MBE and investigation of its multiquantum well structure";YI Xinjian et al.;《SCIENCE IN CHINA(Series A)》;19981231;第41卷(第4期);399-404 *
"First observation of a two-dimensional electron gas at the interface of α-Sn/InSb(100) grown by molecular beam epitaxy";W T Yuen;《Semiconductor Science and Technology》;19891231;第4卷;819-823 *
"Growth and annealing behaviour of α-Sn on InSb(001) measured by LEED and He atom scattering";B.F.Mason and B.R.Williams;《Surface Science》;19921231;第262卷;169-179 *
RHEED studies of the surface morphology of α-Sn pseudomorphically grown on lnSb(100) by MBE-a new kind of non-polar/polar system;W T Yuen et al.;《Semiconductor Science and Technology》;19901231;第5卷;943-947 *

Also Published As

Publication number Publication date
CN107723789A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Li et al. Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer
US20170342593A1 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
CN105655238A (zh) 基于石墨烯与磁控溅射氮化铝的硅基氮化镓生长方法
CN105239156A (zh) 一种外延定向生长、转移和集成平面半导体纳米线的方法
CN104576714B (zh) 一种硅上高迁移率GaN基异质结构及其制备方法
CN109065438A (zh) AlN薄膜的制备方法
US20110089415A1 (en) Epitaxial growth of single crystalline mgo on germanium
CN105684132A (zh) 缓和应力的无定形SiO2中间层
CN102623521A (zh) 一种氧化亚铜薄膜的制备方法
KR102232558B1 (ko) 13족 질화물 복합 기판, 반도체 소자, 및 13족 질화물 복합 기판의 제조 방법
CN107723789B (zh) 一种高质量灰锡单晶薄膜的低温外延制备方法
CN109913945A (zh) 一种在硅(211)衬底上生长硒化铋高指数面单晶薄膜的方法
CN110284198A (zh) 一种控制GaN纳米线结构与形貌的分子束外延生长方法
CN104593772B (zh) 一种在大晶格失配基底上异质外延生长锑化物半导体的方法
WO2023100540A1 (ja) 窒化物半導体基板及びその製造方法
CN111129114A (zh) 一种Si基GaN外延低位错薄膜及其制备方法
CN105977135A (zh) 基于二硫化锡和磁控溅射氮化铝的氮化镓生长方法
CN107195534B (zh) Ge复合衬底、衬底外延结构及其制备方法
CN110729182A (zh) 一种高质量自支撑氮化物衬底的制备方法及生长结构
Meng et al. Structural, optical and electrical properties of Cu2FeSnSe4 and Cu (In, Al) Se2 thin films
JPH04233219A (ja) 半導体デバイスからなる製品の製造方法
CN104377279A (zh) 大失配体系硅基无位错异质外延方法
CN110804727B (zh) 应变薄膜异质结、制备方法及应用
CN110085661B (zh) 一种氧化镓半导体叠层结构及其制备方法
Wang et al. Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant