CN107723661A - 一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温原位控制合成方法 - Google Patents

一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温原位控制合成方法 Download PDF

Info

Publication number
CN107723661A
CN107723661A CN201710867656.7A CN201710867656A CN107723661A CN 107723661 A CN107723661 A CN 107723661A CN 201710867656 A CN201710867656 A CN 201710867656A CN 107723661 A CN107723661 A CN 107723661A
Authority
CN
China
Prior art keywords
iodine
copper silver
copper
film material
ternary compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710867656.7A
Other languages
English (en)
Other versions
CN107723661B (zh
Inventor
郑直
董佩哲
雷岩
贾祖孝
宋皓
陈璐
刘松子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuchang University
Original Assignee
Xuchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuchang University filed Critical Xuchang University
Priority to CN201710867656.7A priority Critical patent/CN107723661B/zh
Publication of CN107723661A publication Critical patent/CN107723661A/zh
Application granted granted Critical
Publication of CN107723661B publication Critical patent/CN107723661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种铜银元素比例可调的碘铜银三元化合物薄膜材料及其制备方法。碘铜银三元化合物薄膜材料为薄膜状,厚度100‑500nm,所述碘铜银三元化合物分子式为CuxAg1‑xI,其中x=0.1‑0.9。其制备方法如下:采用磁控溅射方法在基底材料表面溅射一层单质铜,再溅射一层单质银,然后将溅射有铜银的样品置于密封容器中,密封容器中另外放置有碘粒,室温下反应得到碘铜银三元化合物薄膜材料。本发明提供的碘铜银三元化合物薄膜材料为薄膜状,铜银元素比例在1:9‑9:1范围内可调,可调控得到不同光学禁带宽度(2.7‑3.0eV)的膜材料;其在常温条件下采用元素直接反应的方法合成,操作简单,反应迅速,制备过程绿色环保、耗能低。

Description

一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温 原位控制合成方法
技术领域
本发明属于无机材料技术领域,具体涉及一种铜银元素比例可调的碘铜银三元化合物薄膜材料及其制备方法。
背景技术
近年来,卤化铅钙钛矿太阳能电池由于其优异的光电性能引起了人们广泛的关注。空穴传输层是卤化铅钙钛矿太阳能电池器件中减少光生电子在正极上复合的关键半导体层。目前该层主要由有机半导体材料制备。由于有机材料的种种缺点,如价格昂贵、电荷迁移率低、有机溶剂使用量大、容易受到环境的影响等,引起了人们对采用无机材料制备该层材料的广泛研究。目前部分无机材料如氧化镍、氧化铜、硫化铜、碘化亚铜、碘化银等已经作为空穴传输材料应用到高性能卤化铅钙钛矿太阳能电池中。
优化卤化铅钙钛矿和无机半导体材料之间的能级关系是提高以无机半导体材料为空穴传输层器件性能的关键。但是目前上述材料很难利用简单、低成本的的化学方法控制能带结构的变化,不能有效地应用到以无机材料为空穴传输层的钙钛矿太阳能电池器件的研究当中。三元或多元化合物理论上可以进行材料能带结构的调控,如铜铟镓硒(CIGS),铜锌锡硫(CZTS)等等另外,现有报道中有提到碘铜银三元化合物,但其报道产物多为粉末,不能直接应用到光电器件的制备当中。碘铜银三元化合物理论上有多种铜银原子比,可以通过改变铜银元素比例进而调控材料能带结构。但现有技术报道的调控一般均需较为苛刻的高温、气氛保护的条件下进行。在温和的条件下进行原子比例连续可控的半导体材料的制备研究具有极大的挑战性。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种铜银元素比例可调的碘铜银三元化合物薄膜材料及其制备方法。本发明提供的碘铜银三元化合物薄膜材料为薄膜状,铜银元素比例在1:9-9:1范围内可调,可调控得到不同光学禁带宽度(2.7-3.0eV)的碘铜银三元化合物薄膜材料;其在常温条件下采用元素直接反应的方法合成,操作简单,反应迅速,制备过程绿色环保、耗能低。
为解决上述技术问题,本发明提供的技术方案是:
提供一种铜银元素比例可调的碘铜银三元化合物薄膜材料,为薄膜状,厚度100-500nm,铜、银单质层厚度5~150nm,所述碘铜银三元化合物分子式为CuxAg1-xI,其中x=0.1-0.9。
按上述方案,上述铜银元素比例可调的碘铜银三元化合物薄膜材料还包括用于负载碘铜银三元化合物的基底材料。
按上述方案,所述基底材料为ITO导电玻璃、FTO导电玻璃、硅片中的一种。
本发明还提供上述铜银元素比例可调的碘铜银三元化合物薄膜材料的制备方法,其步骤如下:在基底材料表面溅射一层单质铜,然后进一步溅射一层单质银,然后将溅射有铜银的样品置于密封容器中于碘蒸汽环境中室温反应至溅射有铜银的样品完全变色得到碘铜银三元化合物薄膜材料。
按上述方案,所述的溅射为直流磁控溅射。
按上述方案,上述制备方法中基底材料表面溅射的单质铜和单质银层的厚度根据需要调控。
按上述方案,密封容器中放置碘粒,作为碘蒸气来源,并且碘粒与溅射有铜银的样品不直接接触。
按上述方案,所述室温温度范围为18-40℃,反应时间10-30min。
按上述方案,所述铜、银靶材纯度为99.99%。
本发明还包括上述铜银元素比例可调的碘铜银三元化合物薄膜材料在太阳能电池光电转换器件中的应用。
碘化铜银作为一种三元宽禁带宽度半导体,理论上有多种铜银原子比,因此可通过控制铜银原子的元素比例实现该材料能带结构及光学性质的调控,更好地作为卤化铅钙钛矿太阳能电池器件中空穴传输层材料使用。目前该材料的合成鲜见报道。而且通常情况下原子比例连续可控的半导体材料是要在较为苛刻的高温、气氛保护的条件下进行的,在温和的条件下进行原子比例连续可控的半导体材料的制备研究具有极大的挑战性。本申请通过在基底材料表面溅射一层单质铜,然后进一步溅射一层单质银,然后将溅射有铜银的样品置于密封容器中于碘蒸汽环境中室温反应10-30min至溅射有铜银的样品完全变色得到碘铜银三元化合物薄膜材料,可实现铜银比的调整,由此可调控得到具有不同光学禁带宽度(2.7-3.0eV)的膜材料,调控方法简单,反应条件温和,不需要光照、加温、催化等辅助其反应,在常温即可进行。
本发明的有益效果在于:
1.本发明提供的碘铜银三元化合物半导体薄膜材料中碘铜银三元化合物分子式为CuxAg1-xI,其中x=0.1-0.9,铜银元素比例在1:9-9:1范围内可调,所得的不同铜银元素比例的碘铜银三元化合物的XRD会出现变化,而且变化具有一定的规律,通过调控铜银前驱体的厚度对所得碘铜银薄膜材料的晶体结构进行方便地调控。
2.本发明提供的碘铜银三元化合物半导体薄膜材料可通过铜银元素比例的调整得到具有不同光学禁带宽度(2.7-3.0eV)的碘铜银三元化合物半导体薄膜材料。带隙改变可实现材料的能带结构的调控,从而可以与其他材料之间更好地进行能带关系的匹配,进而提高体系传输载流子的能力,直接应用大卤化铅钙钛矿太阳能电池器件的组装。
3.本发明通过严格控制制备工艺包括铜,银的溅射顺序等条件利用碘熏原位制备出碘铜银三元化合物薄膜材料,产物纯度高且铜银元素摩尔比可通过沉积的铜和银的厚度进行调控,得到一系列铜银比可调的碘铜银三元化合物。制备方法简单,并且反应条件温和,不需要光照、加温、催化等辅助其反应,在常温条件下(18-40℃)即可进行,而且反应迅速,几乎无能量损耗,操作方便快捷;重复性好。
4.本发明制备的碘铜银三元化合物薄膜材料在太阳能电池等技术领域具有良好的应用前景。
附图说明
图1为本发明实施例1所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图2为实施例1所制备的碘铜银半导体薄膜材料的XRD图谱;
图3为实施例1所制备的碘铜银半导体薄膜材料的紫外可见光吸收曲线;
图4为实施例2所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图5为实施例2所制备的碘铜银半导体薄膜材料的XRD图谱;
图6为实施例2所制备的碘铜银半导体薄膜材料的紫外可见光吸收曲线;
图7为实施例3所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图8为实施例3所制备的碘铜银半导体薄膜材料的XRD图谱;
图9为实施例3所制备的碘铜银半导体薄膜材料的紫外可见光吸收曲线;
图10为实施例4所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图11为实施例4所制备的碘铜银半导体薄膜材料的XRD图谱;
图12为实施例4所制备的碘铜银半导体薄膜材料的紫外可见光吸收曲线;
图13为实施例5所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图14为实施例5所制备的碘铜银半导体薄膜材料的XRD图谱;
图15为实施例5所制备的碘铜银半导体薄膜材料的紫外可见光吸收曲线;
图16为实施例6所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图17为实施例6所制备的碘铜银半导体薄膜材料的XRD图谱;
图18为实施例6所制备的碘铜银半导体薄膜材料的紫外可见光吸收曲线;
图19为实施例7所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图20为实施例7所制备的碘铜银半导体薄膜材料的XRD图谱;
图21为实施例7所制备的碘铜银半导体薄膜材料的紫外可见光吸收曲线;
图22为实施例8所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图23为实施例8所制备的碘铜银半导体薄膜材料的XRD图谱;
图24为实施例8所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片;
图25为各个实施例XRD图谱中衍射峰位置变化曲线;
图26为实施例9所制备的基于碘铜银半导体薄膜材料的太阳能电池器件性能曲线图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
本发明实施例磁控溅射方法所用铜、银靶材纯度为99.99%。
实施例1
制备碘铜银(Cu0.1Ag0.9I)薄膜材料,具体步骤如下:
1、准备工作:玻璃基底依次用洗洁精和去离子水进行20min的超声,然后在氨水(质量百分数:25%):双氧水(质量百分数:30%):去离子水体积比=1:2:5的混合溶液中80℃水浴加热30min,最后再用去离子水超声20min,超声后在烘干箱中80℃进行烘干。利用磁控溅射仪在基底表面先溅射厚度为8nm的铜层,然后再溅射厚度为92nm的银层,利用膜厚监控控制上述铜银膜厚,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20min左右;
3、后处理:反应结束后,得到Cu0.1Ag0.9I碘铜银薄膜样品,将样品放在避光、干燥的环境中保存,样品颜色为淡黄色。
如图1所示为本实施例所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片,可见材料在扫描电子显微镜下的微观结构为片状。样品XRD图谱见图2,第一个特征衍射峰位置在24.1°;样品的紫外可见光吸收曲线见图3,可知其光学禁带宽度为2.78eV。
实施例2
制备碘铜银(Cu0.3Ag0.7I)薄膜材料,具体步骤如下:
1、准备工作:同实施例1,利用磁控溅射仪在基底表面先溅射厚度为24nm的铜层,然后再溅射厚度为76nm的银层,利用膜厚监控控制上述铜银膜厚,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20分钟左右;
3、后处理:反应结束后,得到Cu0.3Ag0.7I碘铜银薄膜样品,将样品放在避光、干燥的环境中保存。产品颜色为淡黄色。
如图4所示为本实施例所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片,可见材料在扫描电子显微镜下的微观结构为片状。样品XRD图谱见图5,第一个衍射峰位置在24.4°;样品的紫外可见光吸收曲线见图6,可知其光学禁带宽度为2.76eV。
实施例3
制备碘铜银(Cu0.4Ag0.6I)薄膜材料,具体步骤如下:
1、准备工作:同实施例1。利用磁控溅射仪在基底表面先溅射厚度为30nm的铜层,然后再溅射厚度为70nm的银层,利用膜厚监控控制上述铜银膜厚,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20分钟左右;
3、后处理:反应结束后,得到Cu0.4Ag0.6I碘铜银薄膜样品,将样品放在避光、干燥的环境中保存。产品颜色为淡黄色。
如图7所示为本实施例所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片,可见材料在扫描电子显微镜下的微观结构为片状。样品XRD图谱见图8,第一个特征衍射峰位置在24.6°;样品的紫外可见光吸收曲线见图9,可知其光学禁带宽度为2.77eV。
实施例4
制备碘铜银(Cu0.5Ag0.5I)薄膜材料,具体步骤如下:
1、准备工作:同实施例1。利用磁控溅射仪在基底表面先溅射厚度为41nm的铜层,然后再溅射厚度为59nm的银层,利用膜厚监控控制上述铜银膜厚,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20分钟左右;
3、后处理:反应结束后,得到Cu0.5Ag0.5I碘铜银薄膜样品,将样品放在避光、干燥的环境中保存。产品颜色为淡黄色。
如图10所示为本实施例所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片,可见材料在扫描电子显微镜下的微观结构为片状。样品XRD图谱见图11,第一个特征衍射峰位置在24.8°;样品的紫外可见光吸收曲线见图12,可知其光学禁带宽度为2.78eV。
实施例5
制备碘铜银(Cu0.6Ag0.4I)薄膜材料,具体步骤如下:
1、准备工作:同实施例1。利用磁控溅射仪在基底表面先溅射厚度为51nm的铜层,然后再溅射厚度为49nm的银层,利用膜厚监控控制上述铜银膜厚,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20分钟左右;
3、后处理:反应结束后,得到Cu0.6Ag0.4I碘铜银薄膜样品,将样品放在避光、干燥的环境中保存。产品颜色为淡黄色。
如图13所示为本实施例所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片,可见材料在扫描电子显微镜下的微观结构为片状。样品XRD图谱见图14,第一个特征衍射峰位置在25.0°;样品的紫外可见光吸收曲线见图15,可知其光学禁带宽度为2.81eV。
实施例6
制备碘铜银(Cu0.7Ag0.3I)薄膜材料,具体步骤如下:
1、准备工作:同实施例1。利用磁控溅射仪在基底表面先溅射厚度为62nm的铜层,然后再溅射厚度为38nm的银层,利用膜厚监控控制上述铜银膜厚,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20分钟左右;
3、后处理:反应结束后,得到Cu0.7Ag0.3I碘铜银薄膜样品,将样品放在避光、干燥的环境中保存。产品颜色为淡黄色。
如图16所示为本实施例所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片,可见材料在扫描电子显微镜下的微观结构为片状。样品XRD图谱见图17,第一个特征衍射峰位置在25.2°;样品的紫外可见光吸收曲线见图18,可知其光学禁带宽度为2.82eV。
实施例7
制备碘铜银(Cu0.8Ag0.2I)薄膜材料,具体步骤如下:
1、准备工作:同实施例1。利用磁控溅射仪在基底表面先溅射厚度为74nm的铜层,然后再溅射厚度为26nm的银层,利用膜厚监控控制上述铜银膜厚,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20分钟左右;
3、后处理:反应结束后,得到Cu0.8Ag0.2I碘铜银薄膜样品,将样品放在避光、干燥的环境中保存。产品颜色为淡黄色。
如图19所示为本实施例所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片,可见材料在扫描电子显微镜下的微观结构为片状。样品XRD图谱见图20,第一个特征衍射峰位置在25.3°;样品的紫外可见光吸收曲线见图21,可知其光学禁带宽度为2.89eV。
实施例8
制备碘铜银(Cu0.9Ag0.1I)薄膜材料,具体步骤如下:
1、准备工作:同实施例1。利用磁控溅射仪在基底表面先溅射厚度为86nm的铜层,然后再溅射厚度为14nm的银层,利用膜厚监控控制上述铜银膜厚,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20分钟左右;
3、后处理:反应结束后,得到Cu0.9Ag0.1I碘铜银薄膜样品,将样品放在避光、干燥的环境中保存。产品颜色为淡黄色。
如图22所示为本实施例所制备的碘铜银半导体薄膜材料的扫描电子显微镜照片,可见材料在扫描电子显微镜下的微观结构为片状。样品XRD图谱见图23,第一个特征衍射峰位置在25.5°;样品的紫外可见光吸收曲线见图24,可知其光学禁带宽度为2.95eV。
从实施例1-8的XRD图可以看出,随着Ag组分比例减小,第一个特征衍射峰位置逐渐右移,,而且变化具有一定的规律,因此本申请通过调控铜层和银层的厚度可对所得碘铜银薄膜材料的晶体结构进行方便地调控。另外,由于晶体中铜银比例的变化,导致了材料中能带结构的变化,进而影响了碘铜银材料光学禁带宽度的变化,其禁带宽度的变化范围在2.7-3.0eV内。
实施例9
1、准备工作:同实施例1。利用磁控溅射技术,在清洗好的ITO导电玻璃上溅射摩尔比为6:4的Ag单质和Cu单质薄膜,控制薄膜的总厚度为40nm,将样品放在避光的培养皿中等待使用;
2、反应步骤:将称取好的1g碘粒放入密闭的容器中,将上述薄膜金属面向上平放到有碘蒸气的密闭容器中,保证金属层不与碘直接接触,在25℃条件下反应20分钟左右;
3、器件制备:在手套箱中,将1mmol醋酸铅和3mmolCH3NH3I溶解到1mL的DMF中,得到1mmol/mL的CH3NH3PbI3前驱体溶液,取50μL该前驱体溶液旋涂到上述样品表面,4000转/min旋涂55s,后在加热板上125℃加热5min,然后冷却至室温即可得到ITO/(Ag0.6Cu0.4I)/CH3NH3PbI3薄膜。称量20mg的PCBM于一个干净的小瓶中,加入1mL的氯苯,搅拌溶解后,取60苯,旋涂在已经制备好的碘铜银/钙钛矿薄膜上,4000转/min旋涂60s,随后在110℃下退火30min,自然冷却至室温后获得ITO/(Ag0.6Cu0.4I)/CH3NH3PbI3/PCBM薄膜。采用真空蒸镀方法在ITO/(Ag0.6Cu0.4I)/CH3NH3PbI3/PCBM薄膜表面制备一层80nm的Ag电极完成器件的组装,组装的电池结构为ITO/(Ag0.6Cu0.4I)/CH3NH3PbI3/PCBM/Ag。
4、性能测试:使用太阳光模拟器对制备的器件进行性能测试,光强为100mW/cm2。相关J-V曲线见图26。电池效率为9.51%,其相应的开路电压为0.69V,电流密度为21.3mA/cm2,填充因子为64.73%。

Claims (9)

1.一种铜银元素比例可调的碘铜银三元化合物薄膜材料,其特征在于:为薄膜状,厚度100-500nm,铜、银单质层厚度5~150nm,所述碘铜银三元化合物分子式为CuxAg1-xI,其中x=0.1-0.9。
2.根据权利要求1所述的铜银元素比例可调的碘铜银三元化合物薄膜材料,其特征在于:上述铜银元素比例可调的碘铜银三元化合物薄膜材料还包括用于负载碘铜银三元化合物的基底材料。
3.根据权利要求1所述的铜银元素比例可调的碘铜银三元化合物薄膜材料,其特征在于:所述基底材料为ITO导电玻璃、FTO导电玻璃、硅片中的一种。
4.权利要求1所述的铜银元素比例可调的碘铜银三元化合物薄膜材料的制备方法,其特征在于:步骤如下:在基底材料表面溅射一层单质铜,然后进一步溅射一层单质银,然后将溅射有铜银的样品置于密封容器中于碘蒸汽环境中室温反应至溅射有铜银的样品完全变色得到碘铜银三元化合物薄膜材料;基底材料表面溅射的单质铜和单质银层的厚度根据需要调控。
5.根据权利要求1所述的铜银元素比例可调的碘铜银三元化合物薄膜材料的制备方法,其特征在于:所述的溅射为磁控溅射。
6.根据权利要求1所述的铜银元素比例可调的碘铜银三元化合物薄膜材料的制备方法,其特征在于:密封容器中放置碘粒,作为碘蒸气来源,并且碘粒与溅射有铜银的样品不直接接触。
7.根据权利要求1所述的铜银元素比例可调的碘铜银三元化合物薄膜材料的制备方法,其特征在于:所述室温温度范围为18-40℃,反应时间10-30min。
8.根据权利要求1所述的铜银元素比例可调的碘铜银三元化合物薄膜材料的制备方法,其特征在于:所述铜、银靶材纯度为99.99%。
9.权利要求1所述的碘铜银三元化合物薄膜材料在光电转换器件中的应用。
CN201710867656.7A 2017-09-22 2017-09-22 一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温原位控制合成方法 Active CN107723661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710867656.7A CN107723661B (zh) 2017-09-22 2017-09-22 一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温原位控制合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710867656.7A CN107723661B (zh) 2017-09-22 2017-09-22 一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温原位控制合成方法

Publications (2)

Publication Number Publication Date
CN107723661A true CN107723661A (zh) 2018-02-23
CN107723661B CN107723661B (zh) 2020-02-28

Family

ID=61206815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710867656.7A Active CN107723661B (zh) 2017-09-22 2017-09-22 一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温原位控制合成方法

Country Status (1)

Country Link
CN (1) CN107723661B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660914A (zh) * 2018-06-28 2020-01-07 许昌学院 一种低温原位控制合成碘铋铜三元化合物半导体光电薄膜材料的化学方法
CN110660915A (zh) * 2018-06-28 2020-01-07 许昌学院 室温原位控制合成碘铋铜薄膜的方法及由其组装的光电转换器件
CN115594218A (zh) * 2022-10-11 2023-01-13 许昌学院(Cn) 一种新型带隙可调碘铋银铜化合物薄膜、太阳能电池器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048947A1 (en) * 2011-08-22 2013-02-28 Craig A. Grimes Methods to fabricate vertically oriented anatase nanowire arrays on transparent conductive substrates and applications thereof
CN103247718A (zh) * 2013-04-09 2013-08-14 许昌学院 常温下原位控制合成硫铜银三元化合物半导体光电薄膜材料的化学方法
CN103606591A (zh) * 2013-11-13 2014-02-26 福州大学 一种太阳电池吸收层材料铜锌锡硫薄膜的制备方法
CN106449367A (zh) * 2016-11-21 2017-02-22 许昌学院 一种合成碘化铜锌三元宽带隙化合物半导体薄膜材料的化学方法
CN106848062A (zh) * 2016-12-29 2017-06-13 许昌学院 铜掺杂钙钛矿薄膜、原位制备方法及无空穴传输层太阳能电池器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048947A1 (en) * 2011-08-22 2013-02-28 Craig A. Grimes Methods to fabricate vertically oriented anatase nanowire arrays on transparent conductive substrates and applications thereof
CN103247718A (zh) * 2013-04-09 2013-08-14 许昌学院 常温下原位控制合成硫铜银三元化合物半导体光电薄膜材料的化学方法
CN103606591A (zh) * 2013-11-13 2014-02-26 福州大学 一种太阳电池吸收层材料铜锌锡硫薄膜的制备方法
CN106449367A (zh) * 2016-11-21 2017-02-22 许昌学院 一种合成碘化铜锌三元宽带隙化合物半导体薄膜材料的化学方法
CN106848062A (zh) * 2016-12-29 2017-06-13 许昌学院 铜掺杂钙钛矿薄膜、原位制备方法及无空穴传输层太阳能电池器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梁翠: "银纳米颗粒的制备及其连接性能的研究", 《中国优秀硕士学位论文数据库工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660914A (zh) * 2018-06-28 2020-01-07 许昌学院 一种低温原位控制合成碘铋铜三元化合物半导体光电薄膜材料的化学方法
CN110660915A (zh) * 2018-06-28 2020-01-07 许昌学院 室温原位控制合成碘铋铜薄膜的方法及由其组装的光电转换器件
CN110660915B (zh) * 2018-06-28 2023-08-08 许昌学院 室温原位控制合成碘铋铜薄膜的方法及由其组装的光电转换器件
CN110660914B (zh) * 2018-06-28 2023-08-08 许昌学院 一种低温原位控制合成碘铋铜三元化合物半导体光电薄膜材料的化学方法
CN115594218A (zh) * 2022-10-11 2023-01-13 许昌学院(Cn) 一种新型带隙可调碘铋银铜化合物薄膜、太阳能电池器件及其制备方法

Also Published As

Publication number Publication date
CN107723661B (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
Liu et al. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering
Reda Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells
CN107068872B (zh) 一种制备钙钛矿Cs3Bi2I9薄膜电池的方法
CN100590893C (zh) 一种用于光伏电池的ⅱ-ⅵ族半导体薄膜的制备方法
CN106917068A (zh) 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
CN111739961B (zh) 基于有序SnO2纳米棒阵列的无机钙钛矿太阳能电池及其制备方法
Ma et al. Fabrication of Cu2ZnSn (S, Se) 4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes
CN107723661A (zh) 一种铜银元素比例可调的碘铜银三元化合物薄膜材料及常温原位控制合成方法
Pant et al. Residual PbI2 Beneficial in the Bulk or at the interface? An investigation study in sputtered NiO x hole-transport-layer-based Perovskite solar cells
CN106783541A (zh) 一种硒化亚锗多晶薄膜和含有该薄膜的太阳能电池及其制备方法
Lin et al. Zn (O, S) buffer layer for in situ hydrothermal Sb2S3 planar solar cells
CN108461556A (zh) 制备高效czts太阳能电池的前驱体溶液及其电池制备与应用
CN109742245A (zh) 苯酚取代的富勒烯衍生物在钙钛矿太阳能电池中的应用、钙钛矿太阳能电池及其制备方法
Ambade et al. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells
Long et al. Mechanistic aspects of preheating effects of precursors on characteristics of Cu2ZnSnS4 (CZTS) thin films and solar cells
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN110660914B (zh) 一种低温原位控制合成碘铋铜三元化合物半导体光电薄膜材料的化学方法
CN104934490B (zh) 一种原位大面积合成氧化亚锡半导体光电薄膜材料的方法
Bao et al. Enhanced interstitial oxygen-enabled efficient CuAl (M) O2 hole extractors for air-stable all-inorganic perovskite solar cells
CN110054628B (zh) 一种水稳定杂化铅碘钙钛矿材料及其应用
Wang et al. Low-cost TiO2/Sb2 (S, Se) 3 heterojunction thin film solar cell fabricated by sol-gel and chemical bath deposition
CN108574044B (zh) 一种基于Nb(OH)5的全室温钙钛矿太阳能电池及其制备方法
CN106784038B (zh) 一种组分可调光电薄膜的制备方法
CN109851571A (zh) 一种共轭有机小分子界面修饰材料、制备方法及其构成的有机太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant