CN107709979B - 气体传感器及其使用方法 - Google Patents

气体传感器及其使用方法 Download PDF

Info

Publication number
CN107709979B
CN107709979B CN201680038272.8A CN201680038272A CN107709979B CN 107709979 B CN107709979 B CN 107709979B CN 201680038272 A CN201680038272 A CN 201680038272A CN 107709979 B CN107709979 B CN 107709979B
Authority
CN
China
Prior art keywords
gas sensor
film
graphene film
graphene
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680038272.8A
Other languages
English (en)
Other versions
CN107709979A (zh
Inventor
原田直树
佐藤信太郎
林贤二郎
山口淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN107709979A publication Critical patent/CN107709979A/zh
Application granted granted Critical
Publication of CN107709979B publication Critical patent/CN107709979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0054Ammonia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种气体传感器及其使用方法,该气体传感器包含有:半导体层(101~103);石墨烯膜(105),设置于半导体层(101~103)上方且至少一部分与气体接触;以及半导体层(101~103)与石墨烯膜(105)之间的阻挡膜(104)。

Description

气体传感器及其使用方法
技术领域
本发明涉及气体传感器及其使用方法。
背景技术
气体传感器是化学物质传感器的一种,检测气体中所含有的化学物质。气体传感器例如使用于医疗设备以及诊断设备。公知有在人罹患某特定的疾病的情况下,呼气中所含的特定的化学物质的含量发生变化,若能够检测该变化量,则能够实现简便且迅速的诊断。简便且迅速的诊断可以对高龄化社会中的健康维持以及医疗费抑制作出贡献。例如,公知有若罹患胃癌则呼气中的氨气浓度增加,氨气浓度的后续观察对判定胃癌发病有效,认为该诊断阈值是200ppb左右。因此,能够检测ppb等级的氨气的气体传感器对胃癌的诊断有效。
然而,到目前为止并未开发出能够以ppb等级的高灵敏度检测氨气这样的气体传感器。对于其他的气体,也希望提高检测灵敏度。
专利文献1:日本专利第3555739号公报
专利文献2:日本特开平9-159633号公报
专利文献3:日本专利第4866880号公报
专利文献4:日本特开2011-169634号公报
专利文献5:日本特开2013-108987号公报
专利文献6:日本特开2010-78604号公报
专利文献7:日本特开2012-247189号公报
非专利文献
非专利文献1:D.J.Kearney et al.,Dig.Dis.Sci.47,2523(2002)
非专利文献2:I.Lundstrom et al.,Appl.Phys.Lett.,vol.26,no.2,pp.55(1975)
非专利文献3:I.Lundstrom et al.,Sensors and Actuators B,vol.1,pp.15(1990)
非专利文献4:F.Schedin et al.,Nature Mater.Vol.6,pp.652(2007)
非专利文献5:H.J.Yoon et al.,Sensors and Actuators B,vol.157,pp.310(2011)
非专利文献6:M.Gautan et al.,Materials Science and EngineeringC,vol.31,pp.1405(2011)
发明内容
本发明的目的在于提供能够提高氨气等气体的检测灵敏度的气体传感器及其使用方法。
气体传感器的一实施方式包含有:半导体层;石墨烯膜,设置于上述半导体层上方且至少一部分与气体接触;以及上述半导体层与上述石墨烯膜之间的阻挡膜。所谓石墨烯膜是指由1或者2以上的石墨烯的单位层构成的膜。
在气体传感器的使用方法的一实施方式中,检测与上述的气体传感器的上述石墨烯膜的功函数的变化量相当的物理量。
根据上述的气体传感器等,由于包含有适当的石墨烯膜、阻挡膜以及半导体层,所以能够高灵敏度地检测氨气等气体。
附图说明
图1是表示第一实施方式所涉及的气体传感器的结构的剖视图。
图2是表示氨分子的覆盖率与石墨烯的功函数的变化量的关系的图。
图3A是表示第一实施方式所涉及的气体传感器的使用方法的图。
图3B是表示石墨烯膜、绝缘膜以及p型层的带结构的图。
图4是表示平带电压的变化与漏极电流的变化的关系的图。
图5A是表示第一实施方式所涉及的气体传感器的制造方法的剖视图。
图5B是接着图5A表示气体传感器的制造方法的剖视图。
图5C是接着图5B表示气体传感器的制造方法的剖视图。
图5D是接着图5C表示气体传感器的制造方法的剖视图。
图5E是接着图5D表示气体传感器的制造方法的剖视图。
图5F是接着图5E表示气体传感器的制造方法的剖视图。
图6A是表示在绝缘膜上设置石墨烯膜的方法的剖视图。
图6B是接着图6A表示在绝缘膜上设置石墨烯膜的方法的剖视图。
图6C是接着图6B表示在绝缘膜上设置石墨烯膜的方法的剖视图。
图6D是接着图6C表示在绝缘膜上设置石墨烯膜的方法的剖视图。
图7是表示第一实施方式所涉及的气体传感器中的漏极电流对栅极电压的依存性的图。
图8是表示第一实施方式以及参考例的针对氨气的灵敏度的图。
图9是表示第一实施方式以及参考例的针对二氧化氮的灵敏度的图。
图10是表示第二实施方式所涉及的气体传感器的结构的剖视图。
图11是表示第三实施方式所涉及的气体传感器的结构的剖视图。
图12A是表示第四实施方式所涉及的气体传感器的结构的剖视图。
图12B是表示第一实施方式以及第四实施方式的针对氢气的灵敏度的图。
图13是表示沉积纳米粒子所使用的装置的例子的图。
图14A是表示第五实施方式所涉及的气体传感器的结构的剖视图。
图14B是表示石墨烯纳米网结构的图。
图15是表示第五实施方式的变形例的图。
具体实施方式
以下,参照附图对实施方式具体地进行说明。
(第一实施方式)
首先,对第一实施方式进行说明。图1是表示第一实施方式所涉及的气体传感器的结构的剖视图。
如图1所示,第一实施方式所涉及的气体传感器100包含有p型层101、p型层101上的绝缘膜104以及绝缘膜104上的石墨烯膜105。气体传感器100包含有p型层101的表面的n型层102以及n型层103。n型层102以及n型层103在俯视时夹着绝缘膜104以及石墨烯膜105。气体传感器100包含有石墨烯膜105上的栅电极106、n型层102上的源电极107以及n型层103上的漏电极108。气体传感器100包含有覆盖栅电极106、源电极107以及漏电极108的保护膜109。石墨烯膜105的一部分从保护膜109露出,对于气体曝露。p型层101是半导体层的一个例子,绝缘膜104是阻挡膜的一个例子。
这里,对石墨烯的性质进行说明。若石墨烯吸附有氨分子(NH3),则该氨分子对于石墨烯作为施主杂质发挥作用,石墨烯被掺杂为n型。吸附了氨分子的石墨烯的功函数能够通过使用密度泛函理论的第一原理计算法求出。图2是表示氨分子的覆盖率与氨分子的吸附前后的石墨烯的功函数的变化量Δφg的关系的图。所谓覆盖率是指吸附分子数相对于表面原子数的比例(%)。如图2所示,随着覆盖率增加,换句话说,随着吸附分子数增加,石墨烯的功函数减少。为了比较,图2也示出在铜(Cu)层的表面吸附有与一价正电荷相当的碱金属原子的钾(K)的情况下的功函数的变化量。该变化量参照参考文献(村田好正,八木克道,服部健雄,“固体表面と界面の物性”,培風館(1999),81页~83页)。
如图2所示,与金属比较,石墨烯的功函数的变化量大,特别在覆盖率低的情况下是2倍以上。这能够如以下那样解释。认为功函数的变化由(1)吸附分子的电荷迁移所引起的偶极子效应、以及(2)n型掺杂所引起的费米能级的上升的效应引起。若将所掺杂的电子浓度设为ρ,则根据(2)的费米能级的上升量ΔEF是ρ/D左右。这里D是物质的状态密度。石墨烯的状态密度在费米能级为0,所以上升量ΔEF比较大。其另一方面,铜等金属的状态密度一般在费米能级较大,所以上升量ΔEF较小。由于这样的理由,认为与金属相比,石墨烯的功函数的变化量变大。
因此,若第一实施方式中的石墨烯膜105吸附有氨分子,则即使其量很少,石墨烯膜105的功函数也较大变化。因此,能够通过检测该变化的量,来高精度地检测吸附于石墨烯膜105的氨分子的量,高精度地确定出环境中的氨气的浓度。
接下来,对使用气体传感器100的方法进行说明。图3A是表示第一实施方式所涉及的气体传感器的使用方法的图。
如图3A所示,气体传感器100例如在源电极107与漏电极108之间连接检测流过它们之间的电流的电流监测装置111来使用。源电极107接地,通过偏置电源112对栅电极106施加偏置电压Vbias。电流监测装置111例如也可以包括各种电源、放大电路、取样电路、模拟-数字(AD)转换器、数据处理用计算机等。
图3B示出石墨烯膜105、绝缘膜104以及p型层101的能带图。在石墨烯膜105的功函数φg与p型层101的功函数φs之间,使用平带电压VFB而如下的关系成立。
VFB=φg-φs
若石墨烯膜105吸附作为被检分子的氨分子113,则氨分子113对于石墨烯膜105作为施主杂质发挥作用,石墨烯膜105被掺杂为n型。其结果为,石墨烯膜105的功函数变化,平带电压也变化。若将石墨烯膜105的功函数的变化量设为Δφg,将平带电压的变化量设为ΔVFB,则如下的关系成立。
ΔVFB=Δφg
而且,若平带电压发生变化,则如图4所示,相同的偏置点Vbias上的漏极电流从Id1向Id2变化ΔId。通过用电流监测装置111检测该变化量ΔId,能够确定出石墨烯膜105吸附的氨分子113的数量,并能够根据该数量确定出氨气的浓度。变化量ΔId是物理量的一个例子。
由于变化量ΔId取决于互导,所以通过例如使用亚阈值区域的电压作为偏置电压Vbias,从而漏极电流呈指数变化。因此,即使石墨烯膜105的功函数的变化量很少,也能够使漏极电流的变化量ΔId较大。例如,在功函数的变化量是60mV的情况下能够得到一位数的变化量,即1000%作为ΔId/Id1。另外,在例如使用导通区域的电压作为偏置电压Vbias的情况下,漏极电流的绝对变化能够设定在其场效应晶体管的最大电流附近。根据这样的本实施方式,能够简单地检测ppb等级的氨气。
此外,若石墨烯膜105吸附氨分子113,则石墨烯膜105的电导率根据其量变化,所以也不能通过检测它来确定氨气的浓度。然而,电导率的变化与功函数的变化相比极小,所以无法高灵敏度地检测氨气的浓度。
石墨烯膜105所含的石墨烯的单位层的数量并不限定,但考虑到制造工序的容易度以及石墨烯膜105本身的(寄生)电阻,优选是1层~100层,特别优选是1层。另外,为了得到更高的灵敏度,优选石墨烯膜105的与气体接触的部分的面积和被保护膜或者电极等覆盖的部分的面积相比较越大越好。
接下来,对第一实施方式所涉及的气体传感器的制造方法进行说明。图5A至图5F是按工序顺序表示第一实施方式所涉及的气体传感器的制造方法的剖视图。
首先,如图5A所示,在p型层101的表面形成n型层102以及n型层103。例如,p型层101能够通过p型杂质对硅衬底的表面的离子注入而形成,n型层102以及n型层103能够通过n型杂质对p型层101的表面的离子注入而形成。接下来,在p型层101、n型层102以及n型层103上形成绝缘膜104。绝缘膜104能够通过例如p型层101、n型层102以及n型层103的表面的热氧化而形成。
然后,如图5B所示,在绝缘膜104上设置石墨烯膜105。石墨烯膜105能够通过例如生长以及转印到后面描述的生长基板上而形成。
接着,如图5C所示,对石墨烯膜105进行图案化。石墨烯膜105能够通过例如光刻技术以及蚀刻技术图案化。作为蚀刻技术,举出使用了例如氧等离子体的反应离子蚀刻(reactive ionetching:RIE)。
接下来,如图5D所示,对绝缘膜104进行图案化来使n型层102的至少一部分以及n型层103的至少一部分露出。绝缘膜104能够通过例如光刻技术以及蚀刻技术图案化。
然后,如图5E所示,在石墨烯膜105上形成栅电极106,在n型层102上形成源电极107,在n型层103上形成漏电极108。在栅电极106、源电极107以及漏电极108的形成中,例如形成露出形成它们的预定区域的掩模,并通过真空沉积法形成金属膜,将掩模与其上的金属膜一起除去。即,栅电极106、源电极107以及漏电极108能够通过剥离法形成。在金属膜的形成中,例如形成厚度为5nm的Ti膜,在其上形成厚度为200nm的Au膜。
接着,如图5F所示,覆盖栅电极106、源电极107以及漏电极108,形成露出石墨烯膜105的至少一部分的保护膜109。
这样能够制造第一实施方式所涉及的气体传感器。
这里,对在绝缘膜104上设置石墨烯膜105的方法进行说明。图6A至图6D是表示按工序顺序表示在绝缘膜104上设置石墨烯膜105的方法的剖视图。
首先,如图6A所示,使石墨烯膜105在具有催化剂作用的生长基板121上生长。作为生长基板121,能够使用例如Cu基板。例如能够使用化学气相沉积(chemical vapordeposition:CVD)合成炉来生长石墨烯膜105。此时,例如,将生长基板121的温度设为1000℃,使用H2以及CH4的混合气体作为原料气体,将H2的流量设为CH4的流量的500倍,将总压力设为760Torr。
接下来,如图6B所示,在石墨烯膜105上形成支承体122。作为支承体122,例如能够使用聚甲基丙烯酸甲酯(polymethyl methacrylate:PMMA)膜。
然后,如图6C所示,除去生长基板121。生长基板121例如能够用氯化铁溶液溶解。
接着,如图6D所示,在绝缘膜104上配置石墨烯膜105。而且,使用有机溶剂除去支承体122。
这样能够通过转印而在绝缘膜104上设置石墨烯膜105。
这里,对本发明的发明人对第一实施方式进行的实验进行说明。本发明的发明人制造第一实施方式所涉及的气体传感器,测量其漏极电流对栅极电压的依存性。图7示出其结果。该气体传感器的沟道长约为5μm,栅极氧化膜的厚度约为14nm,漏极电压为1V。该气体传感器所包含的晶体管是增强型。
接下来,在测量室内放置气体传感器,导入1ppm的氨气,观察漏极电流的变化。为了比较,也进行了使用了将石墨烯用于沟道的气体传感器(参考例)的同样的观察。图8示出了这些结果。图8的横轴表示经过时间,纵轴表示漏极电流Id与测量开始时的漏极电流Id0的比例(Id/Id0)。在该观察中,栅极电压为800mV,漏极电压为1V。如图8所示,相对于参考例中的漏极电流的变化的比例是1%左右,在第一实施方式所涉及的气体传感器中得到了百分之几十的变化的比例。该情况意味着第一实施方式所涉及的气体传感器对于氨气示出显著高于参考例的灵敏度。
并且,在测量室内放置气体传感器,导入1ppm的二氧化氮,与上述同样地观察漏极电流的变化。为了比较,也进行了使用了将石墨烯用于沟道的气体传感器(参考例)的同样的观察。图9示出了这些结果。如图9所示,在第一实施方式所涉及的气体传感器中示出了远远大于参考例的漏极电流的变化的比例。该情况意味着第一实施方式所涉及的气体传感器对于二氧化氮也示出显著高于参考例的灵敏度。
(第二实施方式)
接下来,对第二实施方式进行说明。图10是表示第二实施方式所涉及的气体传感器的构造的剖视图。
如图10所示,与第一实施方式同样地,第二实施方式所涉及的气体传感器200包含有p型层101、n型层102、n型层103、绝缘膜104、源电极107以及漏电极108。气体传感器200还包含有绝缘膜104上的栅电极206、覆盖绝缘膜104等的覆盖层间绝缘膜221以及设置于层间绝缘膜221内且与栅电极206接触的导电层222。在气体传感器200包含有覆盖层间绝缘膜221以及导电层222的上表面并与导电层222接触的石墨烯膜205。石墨烯膜205经由层间绝缘膜221内的导电层222与绝缘膜104电接触。作为栅电极206的材料,例示了多晶Si以及金属。导电层222例如是金属通孔等导电通孔。
若氨分子吸附于第二实施方式中的石墨烯膜205,则即使其量很少,石墨烯膜205的功函数也较大地变化。石墨烯膜205与导电层222接触,导电层222与栅电极206接触,所以石墨烯膜205的功函数的变化被传递到栅电极206。因此,与第一实施方式同样地,能够测量与石墨烯膜205的功函数的变化量对应的漏极电流的变化量ΔId。并且,第二实施方式中的石墨烯膜205的与气体接触的部分的面积大于第一实施方式中的石墨烯膜105的与气体接触的部分的面积。因此,根据第二实施方式,能够以更高的灵敏度测量氨气的浓度。
(第三实施方式)
接下来,对第三实施方式进行说明。图11是表示第三实施方式所涉及的气体传感器的结构的剖视图。
如图11所示,与第一实施方式同样地,第三实施方式所涉及的气体传感器300包含有p型层101、n型层102、绝缘膜104以及石墨烯膜105。气体传感器300还包含有与栅电极106同样的电极306和与源电极107同样的电极307。
在第三实施方式中,伴随氨分子的吸附的石墨烯膜105的功函数的变化量,换句话说,平带电压的变化量被表现为电极306与电极307之间的电容量的变化量ΔC。因此,通过测量该变化量ΔC能够确定氨气的浓度。根据这样的第三实施方式,能够对于第一实施方式实现小型化以及与此相伴的低成本化。另外,能够不流动漏极电流地进行测量,所以也能够实现省电力化。变化量ΔC是物理量的一个例子。
(第四实施方式)
接下来,对第四实施方式进行说明。图12A是表示第四实施方式所涉及的气体传感器的结构的剖视图。
如图12A所示,第四实施方式所涉及的气体传感器400包含有使石墨烯膜105上的石墨烯的功函数变化的纳米粒子411。其他的构成与第一实施方式相同。例如,纳米粒子411的粒径是1nm~100nm左右,纳米粒子411对石墨烯膜105的覆盖率是5%~100%左右,但并不局限于此。作为纳米粒子411的材料,例如举出金、银、铜、钪、钛、钒、铬、锰、铁、钴、镍、锌、铝、钇、锆、铌、钼、钌、铑、钯、铪、钽、钨、锇、铱以及铂等金属。作为纳米粒子411的材料,也可以使用这些金属的氧化物。作为纳米粒子411的材料,也可以使用硅、锗、氧化锌以及氧化锡等半导体。也可以在石墨烯膜105上混合材料不同的多种纳米粒子411。
在第四实施方式中,石墨烯的功函数通过纳米粒子411变化,所以灵敏度与第一实施方式不同,对于氨气以及二氧化氮以外的气体也可以表示高灵敏度。另外,根据纳米粒子411的材料,纳米粒子411本身与气体反应,而纳米粒子411的状态变化,由此,灵敏度也变化。
例如,钯纳米粒子吸收氢气,钯的与石墨烯的界面中的功函数变化,其结果为,石墨烯的功函数也变化。因此,晶体管的阈值电压变化而沟道的漏极电流变化。另外,镍、钴或者铁的纳米粒子吸附甲烷以及乙炔等烃类的气体,所以在纳米粒子411包括镍、钴或者铁的情况下,气体传感器400可以作为烃类气体的传感器发挥作用。
图12B示出使用了Pd的纳米粒子411的气体传感器400的响应例。该气体传感器400所包含的晶体管是n沟道晶体管,通过吸附氢而阈值电压向负侧变化,如果栅极电压相同则漏极电流增加。因此,根据使用了Pd的纳米粒子411的气体传感器400,如图12B所示,对于氢气表示比第一实施方式高的灵敏度。
这里,对堆积纳米粒子411的方法的一个例子进行说明。图13是表示沉积纳米粒子411所使用的装置的例子的图。在使用该装置的方法中,通过低压He气体中的激光消融产生纳米粒子。具体而言,将1slpm(标准公升每分钟)~2slpm的He气体导入生成室61,将生成室61的压力调整为约1kPa。而且,用脉冲激光63照射设置于生成室61的金属目标62,例如Co目标。这里,作为脉冲激光63,例如使用YAG(YttriumAluminum Garnet:钇铝石榴石)激光的2倍波(532nm),功率是2W,脉冲的反复频率为20Hz。通过激光的照射从金属目标62生成金属蒸气,若该金属蒸气被He气体快速冷却,则形成了粒径为1nm~100nm左右的粒子。粒径为1nm~100nm左右的粒子被称为纳米粒子。而且,粒子通过He气体被输送到粒度选择部(冲击器)64。
冲击器64是利用粒子的惯性除去某尺寸以上的粒子的装置。纳米粒子一般通过凝聚等随着时间生长,所以纳米粒子的尺寸存在下限。因此,若通过冲击器64除去某尺寸以上的纳米粒子,则控制了经过冲击器64的纳米粒子的尺寸。这里,例如,利用经过冲击器64的纳米粒子的直径约为5nm这样的条件使用冲击器64。通过冲击器64尺寸选择出的纳米粒子其后通过使用泵65以及66的差速排气,被导入连接有泵67的10-3Pa左右的压力的沉积室70。在被导入沉积室70的过程中纳米粒子成为电子束状,几乎垂直地与放置于工作台68的板69碰撞来沉积。在该方法中,纳米粒子411没有最密填充地排列而采取随机的配置。根据该方法,可以沉积尺寸非常均匀且在表面上高度结晶和清洁的纳米粒子411。该沉积时,仅对沟道部使用光刻进行开口,并也可仅在沟道部沉积纳米粒子。这样的方法例如记载于文献“非专利文献A-2:Satoetal.,Sensors and Materials,21,373(2009)”以及文献“Satoetal.,Chem.Phys.Lett.382,361(2003)”。
(第五实施方式)
接下来,对第五实施方式进行说明。图14A是表示第五实施方式所涉及的气体传感器的结构的剖视图。
如图14A所示,第五实施方式所涉及的气体传感器500代替石墨烯膜105包含有石墨烯纳米网512。其他的构成与第一实施方式相同。如图14B所示,石墨烯纳米网512构成为在石墨烯膜105形成有多个孔514。孔514的尺寸以及空间例如是1nm~50nm左右。通过形成孔514而石墨烯膜105的电子状态变化,与针对石墨烯膜105的气体分子的吸附的方法以及伴随吸附的功函数的变化不同。因此,灵敏度与第一实施方式不同,对于氨气以及二氧化氮以外的气体也可示出高灵敏度。
孔514的边缘也可以被H、F、NH2、CH3、Cl、Br、OH、COOH等特定的原子或者分子化学修饰。能够通过化学修饰调节气体传感器500的反应性或者灵敏度。
如图15所示,纳米粒子411也可以进入孔514的一部分或者全部内。该情况下也能够调节气体传感器500的反应性或者灵敏度。该结构例如通过如第四实施方式那样通过激光消融沉积纳米粒子411之后,通过加热使纳米粒子411吸收石墨烯膜105的碳而获得。此外,若使用稀盐酸或者氯化铁水溶液等酸性溶液除去吸收了石墨烯膜105的碳的纳米粒子411,则得到石墨烯纳米网512。
作为半导体层的材料,例示出IV族半导体、III-V族化合物半导体、II-VI族化合物半导体、氧化物半导体、有机半导体、金属硫族化合物半导体、层状物质半导体、半导体碳纳米管或者石墨烯纳米带。作为IV族半导体,例示出单结晶Si以及多晶Si。作为III-V族化合物半导体,例示出GaAs等砒化物半导体以及GaN等氮化物半导体。作为II-VI族化合物半导体,例示出CdTe。作为氧化物半导体,例示出ZnO。作为有机半导体,例示出并五苯。作为金属硫族化合物半导体,例示出MoS2。作为层状物质半导体,例示出黑磷。
作为绝缘膜104的材料,例示出氧化硅、氮化硅、氮氧化硅、氧化锗、高介电常数绝缘物或者层状绝缘物。作为高介电常数绝缘物,例示出铝、钛、钽或者铪或者包括它们的任意的组合的绝缘物,例如氧化铝以及氧化铪。作为层状绝缘物,例示出六方氮化硼(BN)以及氮化硼与石墨烯的混合晶体亦即六方硼炭氮化合物(BCN)。
阻挡膜并不局限于绝缘膜。例如,在半导体层使用化合物半导体的情况下,能够使用带隙比半导体层的化合物半导体宽的III-V族化合物半导体或者II-VI族化合物半导体作为阻挡膜。例如,作为半导体层以及阻挡膜的材料的组合,例示出GaAs以及AlGaAs的组合、InGaAs以及InAlAs的组合和GaN以及AlGaN的组合。
保护膜109也可以根据用途或环境省略。检测对象的气体(被检气体)的种类并不局限于氨气。例如,也能够通过这些实施方式测量氢气(H2)、氧气(O2)、一氧化碳(CO)、水(H2O)、乙醇、甲醇、二氧化氮(NO2)的浓度。这些实施方式中的半导体层的导电型也可以相反。即,也可以代替p型层101使用n型层,代替n型层102使用p型层,代替n型层103使用p型层。
以上,详细地对本发明的优选的实施方式进行了说明,但本发明并不局限于这样的例子。若是具有本发明所属的技术领域中的通常知识的人,则显然能够在权利要求书所记载的技术思想的范畴内想到各种变更例或者修正例,可以理解的是这些也当然属于本发明的技术范围。
工业上的可利用性
根据上述的气体传感器等,因为包含有适当的石墨烯膜、阻挡膜以及半导体层,所以能够高灵敏度地检测氨气等气体。

Claims (11)

1.一种气体传感器,其特征在于,具有:
半导体层;
石墨烯膜,设置于上述半导体层上方,且至少一部分与气体接触;
上述半导体层与上述石墨烯膜之间的阻挡膜;
与上述石墨烯膜接触并电连接的第一电极;
一对第二电极,与上述半导体层接触并电连接;
偏置电源,与上述第一电极电连接,对上述第一电极施加偏置电压;以及
电流监测装置,与上述一对第二电极以及上述偏置电源电连接,检测在上述一对第二电极之间流动的电流。
2.根据权利要求1所述的气体传感器,其特征在于,
在上述半导体层的表面具有2个电极,所述2个电极被设置为它们之间夹持上述阻挡膜的下方的部分。
3.根据权利要求1所述的气体传感器,其特征在于,
具有覆盖上述阻挡膜的层间绝缘膜,
上述石墨烯膜设置在上述层间绝缘膜上,
上述石墨烯膜经由上述层间绝缘膜内的导电层与上述阻挡膜电接触。
4.根据权利要求1所述的气体传感器,其特征在于,
上述石墨烯膜与上述阻挡膜直接接触。
5.根据权利要求1所述的气体传感器,其特征在于,
具有上述石墨烯膜上的纳米粒子。
6.根据权利要求1所述的气体传感器,其特征在于,
在上述石墨烯膜形成有多个孔。
7.根据权利要求6所述的气体传感器,其特征在于,
上述孔的边缘被化学修饰。
8.根据权利要求1所述的气体传感器,其特征在于,
上述半导体层的材料是IV族半导体、III-V族化合物半导体、II-VI族化合物半导体、氧化物半导体、有机半导体、金属硫族化合物半导体、层状物质半导体、半导体碳纳米管或者石墨烯纳米带。
9.根据权利要求1所述的气体传感器,其特征在于,
上述阻挡膜的材料是氧化硅、氮化硅、氮氧化硅、氧化锗、高介电常数绝缘物或者层状绝缘物。
10.根据权利要求1所述的气体传感器,其特征在于,
上述半导体层的材料是第一化合物半导体,
上述阻挡膜的材料是第二化合物半导体,
上述第二化合物半导体的带隙比上述第一化合物半导体的带隙宽。
11.一种气体传感器的使用方法,其特征在于,
具有检测与权利要求1至10中的任意一项所述的气体传感器的上述石墨烯膜的功函数的变化量相当的物理量的工序。
CN201680038272.8A 2015-06-30 2016-06-29 气体传感器及其使用方法 Active CN107709979B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015131229 2015-06-30
JP2015-131229 2015-06-30
PCT/JP2016/069267 WO2017002854A1 (ja) 2015-06-30 2016-06-29 ガスセンサ及びその使用方法

Publications (2)

Publication Number Publication Date
CN107709979A CN107709979A (zh) 2018-02-16
CN107709979B true CN107709979B (zh) 2020-07-07

Family

ID=57609307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680038272.8A Active CN107709979B (zh) 2015-06-30 2016-06-29 气体传感器及其使用方法

Country Status (4)

Country Link
US (1) US11156576B2 (zh)
JP (1) JP6687862B2 (zh)
CN (1) CN107709979B (zh)
WO (1) WO2017002854A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610078B (zh) * 2016-11-15 2018-01-01 國立中山大學 氣體檢測模組及其氣體感測器
JP6955145B2 (ja) * 2017-07-12 2021-10-27 富士通株式会社 トランジスタ及びその製造方法
JP6985596B2 (ja) 2017-11-30 2021-12-22 富士通株式会社 電子デバイス、電子デバイスの製造方法及び電子機器
EP3735582A4 (en) * 2018-01-04 2021-11-10 Lyten, Inc. RESONANT GAS SENSOR
US11913901B2 (en) 2018-01-04 2024-02-27 Lyten, Inc. Analyte sensing device
US11988628B2 (en) 2018-01-04 2024-05-21 Lyten, Inc. Container including analyte sensing device
US11137368B2 (en) 2018-01-04 2021-10-05 Lyten, Inc. Resonant gas sensor
US12119462B2 (en) 2018-01-04 2024-10-15 Lyten, Inc. Sensing device for detecting analytes in batteries
JP6806724B2 (ja) * 2018-03-22 2021-01-06 株式会社東芝 分子検出素子及び分子検出装置
CN108892125B (zh) * 2018-07-10 2020-06-30 浙江大学 一种气体分子探测膜
KR102090489B1 (ko) * 2018-10-19 2020-03-18 한국과학기술연구원 산화구리 나노입자로 도핑된 그래핀을 이용한 암모니아 가스 검출 센서 및 이를 포함하는 암모니아 가스 검출 장치
CN109448798B (zh) * 2018-11-30 2021-09-03 湘潭大学 一种分子动力学模拟二元掺杂离子液体润滑薄膜结构特性的方法
TWI695168B (zh) * 2019-05-22 2020-06-01 長庚大學 氣體感測裝置及其製作方法
JP7215347B2 (ja) * 2019-06-14 2023-01-31 富士通株式会社 ガスセンサ、及びガスセンサの製造方法
JP2022545670A (ja) 2019-08-20 2022-10-28 ボストン サイエンティフィック サイムド,インコーポレイテッド グラフェンベースの化学センサの非共有結合性修飾
WO2021040050A1 (ja) * 2019-08-30 2021-03-04 太陽誘電株式会社 ガス判定装置、ガス判定方法及びガス判定システム
CN110514698B (zh) * 2019-09-27 2022-09-30 福州京东方光电科技有限公司 一种气体感测装置和气体检测设备
EP3819260A1 (en) * 2019-11-07 2021-05-12 Infineon Technologies AG A composite material, a chemoresistive gas sensor, a chemoresistive gas sensor system and a method for making and using same
WO2021138505A1 (en) * 2019-12-30 2021-07-08 The Regents Of The University Of California Multi-gas detection with cs-fet arrays for food quality assessment
EP4158324A1 (en) * 2020-05-26 2023-04-05 Regents of the University of Minnesota Non-covalent modification of graphene with nanoparticles
US11988629B2 (en) 2020-06-23 2024-05-21 Lyten, Inc. Method of manufacturing a graphene-based biological field-effect transistor
CN112505108B (zh) * 2020-12-18 2021-07-06 联合微电子中心有限责任公司 气体检测系统和方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181645A (ja) * 1984-02-28 1985-09-17 Sharp Corp 複合センサ及びその製造方法
JPS6133645A (ja) * 1984-07-25 1986-02-17 住友電気工業株式会社 生体用センサ−
JPH09159633A (ja) 1995-12-05 1997-06-20 Tokyo Gas Co Ltd ガスセンサ
JP3555739B2 (ja) 1998-08-18 2004-08-18 富士電機機器制御株式会社 薄膜ガスセンサの製造方法
US8236569B2 (en) * 2007-08-07 2012-08-07 University Of South Carolina Multi-dimensional integrated detection and analysis system (MIDAS) based on microcantilvers
JP4866880B2 (ja) 2008-06-16 2012-02-01 株式会社日立製作所 電極、ガスセンサおよびその製造方法
US8698226B2 (en) * 2008-07-31 2014-04-15 University Of Connecticut Semiconductor devices, methods of manufacture thereof and articles comprising the same
KR20100035380A (ko) 2008-09-26 2010-04-05 삼성전자주식회사 박막형 센싱부재를 이용한 화학 센서
US20110138882A1 (en) * 2009-12-11 2011-06-16 Electronics And Telecommunications Research Institute Semiconductor gas sensor having low power consumption
JP2011169634A (ja) 2010-02-16 2011-09-01 Fuji Electric Co Ltd 薄膜ガスセンサ
JP5603193B2 (ja) 2010-09-29 2014-10-08 株式会社日立製作所 ガスセンサ
JP2012202864A (ja) * 2011-03-25 2012-10-22 Rohm Co Ltd Isfetおよびisfetアレイ
WO2012150884A1 (en) * 2011-05-05 2012-11-08 Sensic Ab Field effect transistor for chemical sensing using graphene, chemical sensor using the transistor and method for producing the transistor
CN102778481B (zh) * 2011-05-09 2014-06-11 中国科学院微电子研究所 感应栅型非晶态金属氧化物tft气体传感器
JP5462219B2 (ja) * 2011-05-25 2014-04-02 株式会社日立製作所 グラフェンセンサ、該センサを利用した物質種分析装置および該センサを利用した物質種検知方法
DE102011118930A1 (de) 2011-11-21 2013-05-23 Micronas Gmbh Halbleiter-Gassensor
US8901680B2 (en) * 2012-04-12 2014-12-02 International Business Machines Corporation Graphene pressure sensors
JP6533465B2 (ja) * 2012-10-16 2019-06-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ナノワイヤプラットフォームに基づく広いダイナミックレンジを持つ流体センサ
GB201220804D0 (en) * 2012-11-20 2013-01-02 Provost Fellows Foundation Scholars And The Other Members Of Board Of Asymetric bottom contacted 2D layer devices
US20140260545A1 (en) * 2013-03-15 2014-09-18 Infineon Technologies Ag Sensor and sensing method
GB2516247A (en) * 2013-07-16 2015-01-21 Nokia Corp An apparatus and associated methods

Also Published As

Publication number Publication date
CN107709979A (zh) 2018-02-16
US20180136157A1 (en) 2018-05-17
US11156576B2 (en) 2021-10-26
JP6687862B2 (ja) 2020-04-28
WO2017002854A1 (ja) 2017-01-05
JPWO2017002854A1 (ja) 2018-04-19

Similar Documents

Publication Publication Date Title
CN107709979B (zh) 气体传感器及其使用方法
Wu et al. Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination
Bag et al. Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review
Baek et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe 2 films
Liu et al. Two‐dimensional nanostructured materials for gas sensing
Chen et al. Probing surface band bending of surface-engineered metal oxide nanowires
Kim et al. Chemically modulated graphene diodes
Zhao et al. Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities
Kumar et al. Enhanced thermionic emission and low 1/f noise in exfoliated graphene/GaN Schottky barrier diode
Smyth et al. Engineering the palladium–WSe2 interface chemistry for field effect transistors with high-performance hole contacts
Rajkumar et al. Gas sensors based on two-dimensional materials and its mechanisms
Ji et al. Tunable mobility in double-gated MoTe2 field-effect transistor: effect of coulomb screening and trap sites
Alexiadou et al. Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance
Das et al. Facile Synthesis of 2D-HfS 2 Flakes for $\mu $-IDE-Based Methanol Sensor: Fast Detection at Room Temperature
JP6413824B2 (ja) ガスセンサ及びその製造方法
Kang et al. High-performance electrically transduced hazardous gas sensors based on low-dimensional nanomaterials
Chee et al. Defect-assisted contact property enhancement in a molybdenum disulfide monolayer
Chang et al. Thermodynamic perspective on the oxidation of layered materials and surface oxide amelioration in 2D devices
Chinh et al. pn-Heterojunction of the SWCNT/ZnO nanocomposite for temperature dependent reaction with hydrogen
Sharma et al. Recent progress on group III nitride nanostructure-based gas sensors
Loes et al. Synergistic Effect of TiS3 and Ti3C2T x MXene for Temperature-Tunable p-/n-Type Gas Sensing
Kushwaha et al. Chemiresistive gas sensors beyond metal oxides: Using ultrathin two-dimensional nanomaterials
Ghosal et al. Fabrication, characterization, and gas sensing performance of Pd, rGO, and MnO 2 nanoflowers-based ternary junction device
Daniel et al. Carbon monoxide sensor based on printed ZnO
Le et al. Room-temperature sub-ppm detection and machine learning-based high-accuracy selective analysis of ammonia gas using silicon vertical microwire arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant