CN1076968A - 无液相烧结的在原位形成合金的方法 - Google Patents

无液相烧结的在原位形成合金的方法 Download PDF

Info

Publication number
CN1076968A
CN1076968A CN92114179A CN92114179A CN1076968A CN 1076968 A CN1076968 A CN 1076968A CN 92114179 A CN92114179 A CN 92114179A CN 92114179 A CN92114179 A CN 92114179A CN 1076968 A CN1076968 A CN 1076968A
Authority
CN
China
Prior art keywords
powder
coating
metal
composition
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN92114179A
Other languages
English (en)
Inventor
戴维德S·拉什莫
约翰A·特斯克
摩西P·达赖尔
爱德华·埃斯卡兰特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Government
US Department of Commerce
Original Assignee
US Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Government filed Critical US Government
Publication of CN1076968A publication Critical patent/CN1076968A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/17Particle size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • A61K6/842Rare earth metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • A61K6/844Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/955Producing dental product

Abstract

由对至少一种选自金属元素,合金或金属间化合 物的粉末包覆替代氧化物的金属形成的无氧化物金 属,合金或金属间化合物。该无氧化物的化合物可在 不添加液体烧结剂,并在温度低于该化合物熔点之 下,在足够压力时被压实,以形成一均匀、致密固结的 金属间化合物体。

Description

本发明涉及一种金属间化合的合金的形成方法,更优选地,涉及一种作原位牙科修补时使用的形成金属间化合的合金的形成方法。
汞齐及有关合金一直被用于各种商业用途,且已知有多种这类汞齐的生产方法。例如,美国第4,664,855号专利揭示了一种广泛使用的方法,该方法使用烧结助剂汞,将元素金属或金属间化合物合金研碎成碎末状或粉碎成圆球状粉末,再使用所生成的汞齐压紧形成一均匀、致密固结的金属间互化物合金。该方法可认为是一种液相和活性烧结金属的结合。经细研的金属或金属间互化物粉末与汞反应,且当对该反应产物加压时,即形成一致密的高密度块状物。美国第3,933,961号专利则公开了一种制备经预称重的、匀重的小块状合金,该小块状合金接着用一称量过的Hg研磨以形成一传统的汞齐合金。
金属粉末具有二种基本形式:1)车床切削下来的金属屑;2)经粉(雾)化的球状粉粒。车床切削下来的锉屑随后须经磨细、筛分以产生所需的微粒尺寸。商业用的车床削合金中的微粒尺寸可在60~120μm长、10~70μm宽和10~35μm厚的范围之内。另一方面,由粉化方法产生的球状微粒具有40-50μm的最大尺寸。由该方法,一微滴雾流在一惰性气体(如,氩)或液体(如,水)的环境中被固化(Dental    Amalgams,William    J.O'Brien,Ph.D.,Quintessence    Publishing    Co.,1989,在p.264,266)。
150多年来,牙科医生一直将Ag-Sn系统合金及有关金属间合金用于牙科修补中的牙科汞齐的制备,例如,填料(牙)和假牙。最具代表性的形成Ag-Sn牙科制备物的汞齐反应如下(Dental    Materials,Supra,p.269):
上述汞齐反应完成后,该高熔点Ag3Sn(伽玛)产物被嵌入汞反应产物基质中。Ag2Hg3(伽玛1)和Sn7Hg(伽玛2)相都形成一连续网络。但在上述汞齐结构中,Sn7Hg易由下列反应而被腐蚀:
牙科汞齐的腐蚀产生了一种减弱的结构以及进一步形成一种无支承体的、“边缘”汞齐,该“边缘”汞齐在张力作用下易发生断裂。
现在所用的汞齐在1960年后引入(这些汞谓之“高铜”汞齐),它防止Sn7Hg(伽玛2)的形成而消除了该Sn7Hg的腐蚀现象。然而即使将铜添加进汞齐合金显著地改善了该牙科汞齐的完整性,根据以下反应(Dental Materials,Supra,at293),该Cu6Sn5(该铜汞齐体系中的原始性η相)仍易发生腐蚀。
而且更进一层,在高铜汞齐体系的腐蚀使浸出铜的量增加,这样要考虑关联到这些现有铜汞齐的生物适合性。
一个更近的、消除已知的Ag-Sn和Ag-Sn-Cu汞合金系列的腐蚀倾向的试验被记载于美国第4,181,757号专利。该专利公开了用一种浆料(系由一低熔点的金合金粉末、一种溶解无机氧化物的助熔剂和有机液体所组成)在母体金属上作表面涂层,焙烧该浆料以产生一个粘合在母体金属表面上的复合的、耐腐蚀层的方法。该揭示的方法是计划用于假牙,并不真正适用于牙科原位修补,如,填料(牙)。
另外,最新的资料提出了有关现在使用的牙科汞齐的生物适合性问题,资料提出,那些用该汞齐作牙科修补的牙科病人呼出的气一特别是在咀嚼口香糖之后一呼出的气,比起未用汞齐作牙科修补的病人,具有显著高的水银蒸汽含量。
为以一更具生物适合性的金属互化物取代以往的牙科汞齐的尝试,已有人就由研碎的液体镓和金属粉末形成的镓合金作了很多试验(《福冈牙科学院月报》,“Gallium    Alloys    for    Dental    Restorations”,Takashi    Horibe等人,12(4):198-204,1986)。然而,该牙科健康月报又报导,供至大鼠和小鼠口腔的镓合金对试验动物引起了毒性反应(《牙科健康月报》,“Study    on    Toxicity    of    a    New    Gallium    Alloy    for    Dental    Restorations”,37.361-371,1989)。这就提出了该镓合金作为用于牙科修补的传统汞齐的取代物的安全性问题。
本发明涉及一种无氧化物的游离金属、合金或金属间化合物,该金属或金属间化合物由用一种能替换氧化物的金属,涂复到至少一种基本元素金属、合金或金属间化合物而成。本发明进一步涉及一种制备金属间化合物合金体的方法,该方法不用添加液体烧结剂,而由压实包覆(涂敷)的粉末或金属元素粉末和包覆粉末的混合物,以在原位形成一合金体。压实可在一足够的压力下,在低于所涂覆的粉末和第二种金属元素粉末的熔点以下温度下进行,以形成一均匀的合金。
按照本发明制得的金属间化合物及合金比现有的商业用或实验合金具有更充分的生物适合性。
图1为一压实的Ag-Sn金属间化合物AGSN7的X-射线衍射光谱。
图2为图1中试样的第二个X-射线衍射光谱。
图3为一压实的Ag-Sn金属间化合物试样AGSN19的X-射线衍射光谱。
图4为一In-Sn压实试样,INSN1的X-射线衍射光谱。
图5a和5b为一压实的Ga-Sn试样DL1的电子显微照片。
图6a和6b为一压实的Ga-Sn试样DL2的电子显微照片。
图7a和7b为一压实的Ga-Sn试样EE1的电子显微照片。
根据本发明的、可无需如水银的液体烧结剂的、形成金属间化合物的方法,依靠于对汞齐方法的一种取代方法。
这样一种“非汞齐法”方法包括金属合金或金属间化合物粉末的快速扩散原理,快速扩散起因于该扩散的各种物质能渗入到该主基体间隙的能力。通过透入间隙的机理产生扩散代替了大多数金属通常的扩散空位机理的特征。间隙扩散通常比由金属空位机理所控制的扩散更快。
为了使用于金属粉末中的扩散过程能在一合理的时间内和室温下达到完成,须从该金属、合金或金属间化合物粉末中除去自然形成的表面氧化物。存在于大多数快速扩散的金属上的表面氧化物,起了一种抑制扩散的作用。
当自然形成的金属、合金或金属间化合物粉末的表面氧化物被完全除去后,该金属,合金或金属间化合物将无须使用一种液体烧结剂,并在所需条件(例如,在或近于主体体温下,且在牙科应用中使用正常的或改进的牙科器械产生的压力下)形成所希望的金属间化合物或有关化合物。
因此,本发明包括了,产生一种无氧化物的金属或一种形成非粘滞的氧化物的金属替代表面氧化物,制得至少一种无氧化物的金属合金或金属间化合物。
在一电化学方法中,一种金属元素、合金或金属间化合物的粉末被涂敷以如Ag,Au,Pd或Pt等替换氧化物的金属,即将该粉末浸于一含电解质的溶液中,接着从该电解液中,用真空过滤、蒸发或其它适当方法,将涂覆好的粉末分离出来。
本发明中可用的电解质的例子有,但并不限于此,包括Ag,Au,PD和Pt的氰化物、硝酸盐、焦磷酸盐、及亚硫酸盐离子,较好的是使用硝酸离子的银盐,更好地,用其浓度为约1×10-5~1×10-2M,最好地,用其浓度为约1×10-2M。
除了上述的电化学方法外,也可使用其它方法以除去氧化物,防止氧化物的进一步形成。例如,惰性或还原性气氛的气体的等离子体,如形成的气体(5%H2和95%N2),也可从金属中除去表面氧化物。同样,气相沉积或喷镀也将给包覆粉末涂上Ag、Au或有关合金的保护层。
在电解氧化物的去除过程中所形成的金属枝晶抑止了粉末对压坯的扩散。对该电解溶液添加金属复合剂可减少不希望的金属枝晶在该粉末表面生成。本发明中适用的金属复合剂的例子有,但并不限于此,氨,柠檬酸盐,乙二胺四乙酸,焦磷酸盐,氯化钠,焦磷酸四钠,酒石酸钠钾,氨基磺酸盐,亚硫酸盐和硫脲。硫脲为优选的金属复合剂。最好其浓度为1×10-5至1×10-3M,更好地为约1×10-3M情况下使用。
对该电解溶液添加其它金属枝晶抑制剂也可抑制不希望的枝晶生长。本发明中适用的金属枝晶抑制剂的例子有,但并不限于此,Au,Pt,Pd或Ir的盐,如,AuCl2,PtCl2和PdCl2。AuCl2为一优选的金属枝晶抑制剂。且最好在其浓度为约1×10-5至约1×10-3M下使用。
在用本发明被涂覆的金属粉末的例子有,但并不限于此,Au,Ag,Co,Cu,Fe,Ga,In,Ir,La,Ni,Pd,Pt,Re,Rh,Ru,Sn,Ti,Y或Zn的粉末,优选Sn。
通常,在诊所的室温下,在使用牙科器械所达的压力下,并在主体体温下具有这样低的快速扩散反应率的一些金属要用于牙科应用是不现实的。
根据本发明的生物适合的Ag-Sn系列属于一组二元金属体系,该体系已被发现显示了所谓的“超快速扩散”的特性。这些组元包括,Ag,Au,Co,Cu,Ga,In和Sn。超快速扩散的特征在于,小尺寸的、低价的组元的扩散金属(例如,Ag)在大尺寸的通常为高价的组分(例如,Sn)基质中的扩散速率要高得多(高许多个数量级)。对于单价金属(例如,Ag,Au和Cu),和某些过渡金属(例如,Co,Fe,Ni及Pd)作为扩散金属以及Zn,Ⅳ-B族金属(例如,Sn)和过渡金属(例如,La,Ti,Y和Zn),作为活性金属基质也可观察到类似情况。
本发明中有用的合金或金属间化合物粉末的例子有,但并不限于此,选自La,Sn,Ti,Y和Zn的至少一种第一类金属元素和选自Ag,Au,Co,Cu,Fe,In,Ir,Ga,Ni,Pd,Pt,Re,Rh和Ru中的至少一种的第二类金属元素。
一个优选的合金或金属间化合物粉末包括一种第一类金属元素,Sn,和一种第二类金属元素,Ag。Ag-Sn合金或金属间化合物粉末的较好的Ag∶Sn原子比为约1∶1至10∶1。更好地,该Ag∶Sn原子比为约3∶1。该Ag-Sn金属间化合物的特性可由用其它少量元素金属粉末添加混合,或由添加少量元素至该合金或金属间化合物粉末而加以改变。
在用以替代氧化物的金属对金属元素,合金或金属间化合物粉末作涂敷之后,由压实(制)至少一种无氧化物、包覆的粉末或一金属元素粉末和包覆粉末的混合物,且较好不添加液体烧结剂,可在原位(例如,在一牙腔或商业用镶压机模)形成一固结的作牙科修补的合金体。压实(制)成型包括,但并不限于此,可“热等压”,(即用热的均压压实)和热压。
一个原位牙科修补,如举例的牙科填料(牙),是如此形成的压制合金的较好应用。在本发明的一个实例中,Ag和Sn粉末,分别被以金属替代氧化物涂敷,在主体温度下被压实成型。
用于牙科应用中的优选的包镀粉末为Sn,优选的基本元素为Ag。且,优选的Ag-Sn合金或金属间化合物粉末的Ag∶Sn原子比为约1∶1~10∶1。优选的金属间化合物粉末为Ag3Sn,其中Sn接近化学计算量过量存在。
上述合金的原位中成形最好是在包镀粉末的熔点以下温度和在一外加压力下发生。可形成合金的温度和压力的举例范围分别为,但并不限于此,约20℃~100℃和约20KSI~约70KSI(1KSI=1000PSI)。合金形成的优选温度为约人体温度,其优选压力为约45KSI。
最好保持金属或金属间化合物的扩散长度降至2-5μm的量级。因此,根据本发明,在制备金属间化合物的过程中,粉末具有一例举的约0.5μm~约100μm的等轴粒径。该粉末的优选微粒尺寸为约0.5μm~50μm。
在生产无氧化物金属或金属间化合物的电化学方法中,优选的是具有雾化了的、粒径为约2μm~5μm的球状微粒的Ag-Sn金属间化合物粉末。优选的压制成型原位合金的Ag3Sn金属间化合物粉末最好包括由雾化的、具有粒径为0.5μm~50μm的球状微粒组成。
根据本发明形成的粉末和合金的例举的制备方法和性能在以下实施例中得到详述。
实施例1
按以下步骤制备1.0×10-2M AgNO3电解质溶液和1×10-4M硫脲溶液:
称重1.90365克硫脲,加入至250ml蒸馏水中,以形成一1.0×10-1M的硫脲溶液。吸取25ml的1.0×10-1M硫脲溶液并加入至250ml的蒸馏水以制得-1.0×10-2M的硫脲溶液。吸液最后的25ml体积的1×10-2M硫脲溶液并加入250ml蒸馏水中,以形成1.0×10-3M的硫脲溶液。
称量得16.992克的硝酸银,加于1升烧瓶中的1升蒸馏水中以制得-1.0×10-1M AgNO3溶液。吸液25ml 1.0×10-1M的Ag-NO3溶液与25ml吸液体积的1.0×10-3M硫脲混合。然后,用蒸馏水稀释该50ml AgNO3和硫脲溶液至250ml,制得1.0×10-2M AgNO3和1.0×10-4M硫脲电解质溶液。
一种商业上可购的2.5g/l AuCl2(1.3×10-3M)溶液被用作金属枝晶抑制剂。
称重2.4363克的菲舍尔(Fisher)Sn粉末(Cat.No.T129,Lot No.743145),加于一布氏过滤器。将25cc的1.0×10-2M AgNO3和1.0×10-3M硫脲的1∶1溶液及1.3×10-3M的AuCl2溶液加于布氏滤器,搅拌4分钟。静置该含Sn粉末的混合液1分钟,真空滤去液体。生成的包覆粉末以蒸馏水漂洗二次,烘干48小时。
实施例2
按实施例1指导,制备1.0×10-2M AgNO3和1.0×10-3M硫脲溶液。称重1.4259克菲舍尔Sn金属粉末并置于一布氏滤器中,将20cc的该1.0×10-2M AgNO31.0×10-3M硫脲溶液加于含Sn金属的布氏滤器中,用玻璃棒搅拌4分钟。静置该含Sn粉末的电解质溶液1分钟后,以真空过滤法过滤30分钟,除去电解质溶液。加入一足够量的蒸馏水漂洗生成的包覆粉末后,以真空过滤法滤去蒸馏水。最后的清洗以商业可购的光谱级纯的甲醇进行。然后将含包覆过的Sn粉末的布氏过滤器置于一真空干燥器内1小时,从该真空干燥器取出湿粉末和布氏滤器,再从该布氏滤器中取出粉末,置于蒸发盘上,抽气约1小时。
将上述制备的涂敷和干燥过的Sn粉末与4.2778克的菲舍尔Ag粉末混合。用一种商业可购的牙科混合器(Vortex-Genie混合器型号S8223,Sicentific    Products)被用于在-0.25英寸直径的PR-22镶压机模中混合Sn和Ag粉末。加热该粉末至100℃约1小时,在22KSI压力下压实。制得的固结的Ag-Sn金属间化合物标为AGSN7,并施以X-射线衍射分析。图1和2为所得的X-射线衍射光谱。用-TUKON显微硬度测试仪测得试样AGSN7的努普硬度值(Knoop    hardness),示于表1。
实施例3
由混合15cc的1.0×10-2M AgNO3,1.0×10-3M硫脲溶液(按实施例1的步骤所制备)加至15cc的1.3×10-3M AuCl2溶液混合,制得-1.0×10-2M AgNO3,1.0×10-3硫脲溶液和1.3×10-3M AuCl2溶液。通过一细孔布氏滤器滤出生成的1∶1溶液。由混合一滴该1∶1溶液和一滴可引起AgCl沉淀的AgNO3可证实没有过量的AgNO3。称重0.6945克的Sn粉末试样,与5cc上述制备的1∶1电解质溶液混合,搅拌4分钟。静置该电解质溶液和粉末1分钟。接着,将2.0853克Ag粉末加于中型布氏滤器中存放的电解质溶液,混合30秒。作部分抽真空以从滤器中除去一些液体,直至余下混合物仍“潮湿”。用10cc蒸馏水清洗生成的粉末,然后以真空过滤除去水。用一刮杓混合混合物,并将一些材料置于-0.25英寸直径的压模,在36℃下压实至43.6KSI达10小时。
将余下的粉末混合物部分置于一“适合您需要的Bake试验”(“Baker-test    your    adaption”)卢赛特(合成)丙烯树脂模,用压实和打磨用的牙科工具予以压实固结及抛光。该模和固结的金属间化合物粉末开发了一种光亮的金属外观,在40℃下退火过夜。其试样,AGSN19,作X-射线衍射,X-射线衍射光谱示于图3。AGSN19的努普硬度示于表1。
实施例4
由用25cc在实施例2中所用的1.3×10-3M AuCl2溶液与在实施例1中所制备的25cc1×10-2M AgNO3,1×10-3M硫脲溶液混合,制得1.0×10-2M AgNO3,1.0×10-3M硫脲和1.3×10-3M AuCl2的溶液。制得的50cc溶液经一细孔布氏过滤器过滤。
称重0.4772克以上制备的纯Sn粉末,与称重的1.9090克铟粉末试样混合。在二塑料试管中称重该二粉末,手工混合。手工粉碎铟粉末,然后,使用牙科振动器(如“Wig-L-Bug汞齐化器(A-malgammator)”型号LP-60,(rescent    Dental    Mfg.Co产)混合该手工混合的粉末30秒。将1.0克称重的Sn-In金属间化合物粉末的试样置于-0.25英寸直径的模,在室温下加压至21KSI达10分钟。4分钟后,压力下降,接着持续的泵打恢复压力至21KSI。该材料从压模上移去后即发生反应,产生液化并在模中形成一薄箔状样品。从该样品中切下一小圆形试样,INSN1,并获得-X-射线衍射图。所得X-射线衍射光谱示于图4。其努普硬度示于表1。
实施例5
由在二只抛光的不锈钢小轧辊(约为1.5和2cm直径)头端之间的打碎作用制得Ga的小颗粒材料以备用。在一塑料试管中称重0.3207克Sn粉末,再称重0.9616克Ag粉末加入试管中,用一Vortex-Genie牙科混合器混合30秒钟产生的混合粉末。称出0.06044克上述捣碎的Ga的试样,将1小颗粒的捣碎的Ga(约1mm直径)置于一“Baker”塑料模。加入一小部分上述制得的3∶1的Ag-Sn粉末,混合后用牙科工具压制。以相似方法制得另外一个样品。层铺第三个压实的金属间化合物,直至形成一个小“丸”。这些样品分别被标为DL1,DL2和EE1。上述样品的显微照片(DL1、DL2和EE1)示于图5a和5b,6a和6b及7a和7b。
表1
使用50g载荷的计算硬度
(特别注明的除外)
粉碎的合金
计算努普
样品    标度单位    硬度值    平均值
(Kg/mm2)
AGSN7    503    61.6    53.6
584    45.7
AGSN19    572    47.6    46.9
581    46.2
INSN1(5g载荷)    926    1.8    1.9
878    2.0

Claims (49)

1、一种方法包括对选自金属元素,合金和金属间化合物的组元中至少一种的粉末进行替代氧化物的金属的涂敷。
2、如权利要求1所述的方法,其特征在于,其中所述的涂敷由以下完成:
将所述粉末浸于一含电解质的溶液中,和从该电解质溶液中分离出该包覆的粉末。
3、如权利要求2所述的方法,其特征在于,其中所述的电解质溶液进一步包含用于所述的替代氧化物金属的复合剂。
4、如权利要求3所述的方法,其特征在于,其中,所述的电解质溶液进一步包含用于所述的替代氧化物金属的枝晶抑制剂。
5、如权利要求3所述的方法,其特征在于,其中,所述的复合剂选自下列组元:氨,柠檬酸盐,乙二胺四乙酸,焦磷酸盐,氯化钠,焦磷酸四钠,酒石酸钠钾,氨基磺酸盐,亚硫酸盐和硫脲。
6、如权利要求3所述的方法,其特征在于,所述的复合剂为硫脲。
7、如权利要求6所述的方法,其特征在于,其中,硫脲的使用浓度为约1×10-5~1×10-3M。
8、如权利要求6所述的方法,其特征在于,其中,硫脲的使用浓度为约1×10-3M。
9、如权利要求4所述的方法,其特征在于,其中,所述的枝晶抑制剂为选自Au,Pt,Pd和Ir的金属的盐。
10、如权利要求4所述的方法,其特征在于,其中,所述的枝晶抑制剂为AuCl2
11、如权利要求10所述的方法,其特征在于,其中,所述枝晶抑制剂AuCl2的使用浓度为约1×10-5~1×10-3M。
12、如权利要求10所述的方法,其特征在于,其中,所述枝晶抑制剂AuCl2的使用浓度为约1×10-3M。
13、如权利要求2所述的方法,其特征在于,其中,所述的电解质为选自Ag,Au,Pd或Pt的至少一种氰酸盐,硝酸盐,焦磷酸盐或亚硫酸盐。
14、如权利要求2所述的方法,其特征在于,其中所述的电解质为AgNO3
15、如权利要求14所述的方法,其特征在于,其中,AgNO3的使用浓度为约1×10-5~1×10-2M。
16、如权利要求1所述的方法,其特征在于,其中所述的基本金属化合物选自:Au,Ag,Co,Cu,Fe,Ga,In,Ir,La,Ni,Pd,Pt,Re,Rh,Ru,Sn,Ti,Y和Zn。
17、如权利要求1所述的方法,其特征在于,其中所述的基本金属化合物元素为Sn。
18、如权利要求1所述的方法,其特征在于,其中,所述的金属间化合物包括至少一种选自La,Sn,Ti,Y和Zn的第一种金属元素和至少一种选自Ag,Au,Co,Cu,Fe,In,Ir,Ga,Ni,Pd,Pt,Re,Rh和Ru的第二种金属元素。
19、如权利要求18所述的方法,其特征在于,其中,所述的第一种基本金属元素为Sn,第二种基本金属元素为Ag。
20、如权利要求19所述的方法,其特征在于,所述的Sn和Ag具有约为1∶1~10∶1的原子比。
21、如权利要求20所述的方法,其特征在于,其中,所述的Ag∶Sn原子比为约3∶1。
22、如权利要求21所述的方法,其特征在于,其中,所述的粉末包括雾化的、具约0.5μm~50μm等轴颗粒尺寸的球状微粒。
23、一种制备金属间化合物合金体的方法,该方法包括以下步骤:
a)对选自金属元素,合金和金属间化合物的至少一种组元的第一种粉末进行替代氧化物金属涂敷;及
b)在不添加液体烧结剂的情况下,压实该包覆的第一种粉末或基本金属元素的第二种粉末与该包覆的第一种粉末的混合物,在原位形成一合金体。
24、如权利要求23所述的方法,其特征在于,其中,所述的包覆的第一种粉末和第二种元素粉末的压实由热等压完成。
25、如权利要求23所述的方法,其特征在于,其中,所述的包覆的第一种粉末和第二种基本元素粉末的压实由热压完成。
26、如权利要求23所述的方法,其特征在于,其中,所述的合金体为在口腔内压实的原位牙科修补。
27、如权利要求23所述的方法,其特征在于,其中所述的包覆的第一种粉末为包覆的Sn,而第二种基本元素粉末为Ga。
28、如权利要求27所述的方法,其特征在于,其中,所述的Ga和Sn使用原子比为约1∶20。
29、如权利要求23所述的方法,其特征在于,其中,所述的包覆的第一种粉末为包覆的Ag-Sn金属间化合物而第二种基本元素粉末为Ga。
30、如权利要求23所述的方法,其特征在于,所述的压实发生在低于包覆的第一种粉末和第二种粉末的熔点温度,且在一外加压力下进行。
31、如权利要求30所述的方法,其特征在于,其中所述的温度范围为约20℃~100℃,而外加压力范围为约20KSI~75KSI。
32、如权利要求30所述的方法,其特征在于,其中,所述的外加压力为约20KSI~75KSI。
33、如权利要求30所述的方法,其特征在于,其中,所述的温度为接近主体体温。
34、如权利要求30所述的方法,其特征在于,其中,所述的包覆的第一种粉末为包覆的Sn粉末,而第二种基本金属元素粉末为Ag粉末。
35、如权利要求34所述的方法,其特征在于,其中,所述的第二种粉末中的Ag与用于包覆的第一种粉末中的Sn的原子比约为1∶1~10∶1。
36、如权利要求23所述的方法,其特征在于,其中,所述的粉末为雾化的,具约0.5μm~50μm粒径的Ag3Sn球状微粒。
37、如权利要求23所述的方法,其特征在于,所述的涂敷前的第一种粉末具有约为0.5μm~100μm的等轴粒径。
38、如权利要求23所述的方法,其特征在于,所述的涂敷前的第一种粉末具有约为0.5μm~50μm的等轴粒径。
39、一种组合物,该组合物包括一涂敷以替代氧化物的金属的无氧化物的金属元素,合金或金属间化合物粉末。
40、如权利要求39所述的组合物,其特征在于,其中,所述的金属元素粉末选自Au,Ag,Co,Cu,Fe,Ga,In,Ir,La,Ni,Pd,Pt,Re,Rh,Ru,Sn,Ti,Y和Zn。
41、如权利要求39所述的组合物,其特征在于,其中,所述基本金属元素粉末为Sn。
42、如权利要求39所述的组合物,其特征在于,其中,所述的金属间组合物粉末包括至少一种选自La,Sn,Ti,Y和Zn的第一种金属元素,及至少一种选自Ag,Au,Co,Cu,Fe,In,Ir,Ga,Ni,Pd,Pt,Re,Rh和Rn的第二种金属元素。
43、如权利要求42所述的组合物,其特征在于,其中,所述第一种金属元素为Sn,而第二种金属元素为Ag。
44、如权利要求43所述的组合物,其特征在于,其中,所述的Sn和Ag具有约为1∶1-10∶1的Ag∶Sn原子比。
45、如权利要求44所述的组合物,其特征在于,其中,所述的Ag∶Sn原子比为3∶1。
46、如权利要求44所述的组合物,其特征在于,其中,所述的粉末由雾化的,具约0.5μm~50μm粒径的Ag3Sn球状微粒组成。
47、如权利要求39所述的组合物,其特征在于,所述的涂敷前的粉末具有约为0.5μm~100μm的等轴粒径。
48、如权利要求39所述的组合物,其特征在于,其中,所述的涂敷前的第一种粉末具有约为0.5μm~50μm的等轴粒径。
49、一种在主体温度下压实Ag和Sn的方法,其特征在于,由此方法,Ag和Sn粉末分别地被包覆上替代氧化物的金属。
CN92114179A 1991-12-04 1992-12-04 无液相烧结的在原位形成合金的方法 Pending CN1076968A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/802,420 US5318746A (en) 1991-12-04 1991-12-04 Process for forming alloys in situ in absence of liquid-phase sintering
US802,420 1991-12-04

Publications (1)

Publication Number Publication Date
CN1076968A true CN1076968A (zh) 1993-10-06

Family

ID=25183665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92114179A Pending CN1076968A (zh) 1991-12-04 1992-12-04 无液相烧结的在原位形成合金的方法

Country Status (10)

Country Link
US (1) US5318746A (zh)
EP (1) EP0618849A4 (zh)
JP (1) JPH07501853A (zh)
CN (1) CN1076968A (zh)
AU (1) AU662795B2 (zh)
CA (1) CA2125031A1 (zh)
FI (1) FI942553A0 (zh)
HU (1) HUT67941A (zh)
RU (1) RU94030492A (zh)
WO (1) WO1993010927A1 (zh)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648064A (zh) * 2009-12-08 2012-08-22 贝克休斯公司 制备纳米基质粉末金属压块的方法
US8714268B2 (en) 2009-12-08 2014-05-06 Baker Hughes Incorporated Method of making and using multi-component disappearing tripping ball
US8783365B2 (en) 2011-07-28 2014-07-22 Baker Hughes Incorporated Selective hydraulic fracturing tool and method thereof
US9022107B2 (en) 2009-12-08 2015-05-05 Baker Hughes Incorporated Dissolvable tool
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US9267347B2 (en) 2009-12-08 2016-02-23 Baker Huges Incorporated Dissolvable tool
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US10301909B2 (en) 2011-08-17 2019-05-28 Baker Hughes, A Ge Company, Llc Selectively degradable passage restriction
US10335858B2 (en) 2011-04-28 2019-07-02 Baker Hughes, A Ge Company, Llc Method of making and using a functionally gradient composite tool
CN109971982A (zh) * 2019-02-22 2019-07-05 北京科技大学 原位自生陶瓷相增强钛基复合材料的制备方法及制品
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10697266B2 (en) 2011-07-22 2020-06-30 Baker Hughes, A Ge Company, Llc Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001289A (en) * 1991-12-04 1999-12-14 Materials Innovation, Inc. Acid assisted cold welding and intermetallic formation
AU691530B2 (en) * 1993-10-08 1998-05-21 Glenn L. Beane Acid assisted cold welding and intermetallic formation and dental applications thereof
AU718126B2 (en) * 1993-10-08 2000-04-06 Glenn L. Beane Acid assisted cold welding and intermetallic formation and dental applications thereof
WO1998042466A1 (en) * 1997-03-24 1998-10-01 Materials Innovation, Inc. Method for making parts from particulate ferrous material
SE512809C2 (sv) * 1998-09-11 2000-05-15 Nobel Biocare Ab Metod, anordning och användning vid dental eller annan människokroppsrelaterad produkt
US6110254A (en) * 1999-02-24 2000-08-29 The United States Of America As Represented By The Secretary Of Commerce Method for chemical precipitation of metallic silver powder via a two solution technique
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
DE102005045698B4 (de) * 2005-09-20 2010-11-11 Dentaurum J.P. Winkelstroeter Kg Formkörper aus einer Dentallegierung zur Herstellung von dentalen Teilen
GB0916995D0 (en) * 2009-09-29 2009-11-11 Rolls Royce Plc A method of manufacturing a metal component from metal powder
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US8776884B2 (en) 2010-08-09 2014-07-15 Baker Hughes Incorporated Formation treatment system and method
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004332A (en) * 1958-09-02 1961-10-17 Bell Telephone Labor Inc Powder metallurgy process
US3914507A (en) * 1970-03-20 1975-10-21 Sherritt Gordon Mines Ltd Method of preparing metal alloy coated composite powders
US3933961A (en) * 1974-12-13 1976-01-20 Pennwalt Corporation Tabletting spherical dental amalgam alloy
USRE29093E (en) * 1974-12-13 1976-12-28 Pennwalt Corporation Tabletting spherical dental amalgam alloy
US4218507A (en) * 1975-01-13 1980-08-19 Graham Magnetics, Inc. Coated particles and process of preparing same
CA1107584A (en) * 1977-10-27 1981-08-25 William V. Youdelis Process for surface coating alloys to enhance corrosion resistance
US4323395A (en) * 1980-05-08 1982-04-06 Li Chou H Powder metallurgy process and product
DE3046334A1 (de) * 1980-12-09 1982-07-22 Etablissement Dentaire Ivoclar, Schaan Aufsinterbare grundmasse zur herstellung einer zwischenschicht zwischen einer hochschmelzenden dentalmetall-legierung und zahnporzellan
US4997699A (en) * 1985-04-15 1991-03-05 Itzhak Shoher Material for reinforcing dental structures
US4742861A (en) * 1985-04-15 1988-05-10 Itzhak Shoher Method and material for dental structures
US4664855A (en) * 1985-11-12 1987-05-12 Special Metals Corporation Method for producing amalgamable alloy
US4990394A (en) * 1986-12-02 1991-02-05 Itzhak Shoher Method and materials for dental structures
NL8700935A (nl) * 1987-04-21 1988-11-16 Philips Nv Geimpregneerde kathodes met een gekontroleerde porositeit.
DE3717048C1 (de) * 1987-05-21 1988-11-03 Degussa Verfahren zur Herstellung von Legierungspulvern fuer Dentalamalgame
JP2652866B2 (ja) * 1988-03-03 1997-09-10 勇 菊池 含油軸受用焼結材およびその製造法
DE3820970C1 (zh) * 1988-06-22 1989-11-09 Degussa Ag, 6000 Frankfurt, De
DE3841902C1 (zh) * 1988-12-13 1989-11-02 Degussa Ag, 6000 Frankfurt, De
JPH02253837A (ja) * 1989-03-28 1990-10-12 Agency Of Ind Science & Technol 不活性粒状体表面の被覆方法
DE69028360T2 (de) * 1989-06-09 1997-01-23 Matsushita Electric Ind Co Ltd Verbundmaterial sowie Verfahren zu seiner Herstellung

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US10669797B2 (en) 2009-12-08 2020-06-02 Baker Hughes, A Ge Company, Llc Tool configured to dissolve in a selected subsurface environment
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
CN102648064A (zh) * 2009-12-08 2012-08-22 贝克休斯公司 制备纳米基质粉末金属压块的方法
CN102648064B (zh) * 2009-12-08 2014-07-16 贝克休斯公司 制备纳米基质粉末金属压块的方法
US9267347B2 (en) 2009-12-08 2016-02-23 Baker Huges Incorporated Dissolvable tool
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US8714268B2 (en) 2009-12-08 2014-05-06 Baker Hughes Incorporated Method of making and using multi-component disappearing tripping ball
US9022107B2 (en) 2009-12-08 2015-05-05 Baker Hughes Incorporated Dissolvable tool
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9631138B2 (en) 2011-04-28 2017-04-25 Baker Hughes Incorporated Functionally gradient composite article
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US10335858B2 (en) 2011-04-28 2019-07-02 Baker Hughes, A Ge Company, Llc Method of making and using a functionally gradient composite tool
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
US10697266B2 (en) 2011-07-22 2020-06-30 Baker Hughes, A Ge Company, Llc Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US8783365B2 (en) 2011-07-28 2014-07-22 Baker Hughes Incorporated Selective hydraulic fracturing tool and method thereof
US10092953B2 (en) 2011-07-29 2018-10-09 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US10301909B2 (en) 2011-08-17 2019-05-28 Baker Hughes, A Ge Company, Llc Selectively degradable passage restriction
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9802250B2 (en) 2011-08-30 2017-10-31 Baker Hughes Magnesium alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US10737321B2 (en) 2011-08-30 2020-08-11 Baker Hughes, A Ge Company, Llc Magnesium alloy powder metal compact
US9925589B2 (en) 2011-08-30 2018-03-27 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US11090719B2 (en) 2011-08-30 2021-08-17 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US10612659B2 (en) 2012-05-08 2020-04-07 Baker Hughes Oilfield Operations, Llc Disintegrable and conformable metallic seal, and method of making the same
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US11613952B2 (en) 2014-02-21 2023-03-28 Terves, Llc Fluid activated disintegrating metal system
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite
US11898223B2 (en) 2017-07-27 2024-02-13 Terves, Llc Degradable metal matrix composite
CN109971982A (zh) * 2019-02-22 2019-07-05 北京科技大学 原位自生陶瓷相增强钛基复合材料的制备方法及制品
CN109971982B (zh) * 2019-02-22 2020-07-21 北京科技大学 原位自生陶瓷相增强钛基复合材料的制备方法及制品

Also Published As

Publication number Publication date
WO1993010927A1 (en) 1993-06-10
AU662795B2 (en) 1995-09-14
FI942553A (fi) 1994-05-31
RU94030492A (ru) 1996-04-20
US5318746A (en) 1994-06-07
FI942553A0 (fi) 1994-05-31
HUT67941A (en) 1995-05-29
EP0618849A4 (en) 1996-08-21
HU9401682D0 (en) 1994-09-28
CA2125031A1 (en) 1993-06-10
EP0618849A1 (en) 1994-10-12
AU3237893A (en) 1993-06-28
JPH07501853A (ja) 1995-02-23

Similar Documents

Publication Publication Date Title
CN1076968A (zh) 无液相烧结的在原位形成合金的方法
US6001289A (en) Acid assisted cold welding and intermetallic formation
DE69822733T2 (de) Bindung für Schleifwerkzeug
DE2514672A1 (de) Prothetische gegenstaende und hierfuer geeigneter werkstoff
US4634383A (en) Process and apparatus for the production of fillings in teeth
JPH07278603A (ja) 装飾品のための貴金属を含有する材料およびその製造方法
US4236922A (en) Dental alloy of bismuth-tin with additions of Ag, Sb and Cu
US4664855A (en) Method for producing amalgamable alloy
CN108468001A (zh) 纯铜增韧生物医用钛基非晶基复合材料及其制备方法
EP0033628A2 (en) A product to be used in dental amalgams
NO771852L (no) Tannlegering.
JPS59100233A (ja) 歯科用アマルガム調製用の片状母合金の製造方法
CA1066924A (en) Dental alloy and amalgam
AU691530B2 (en) Acid assisted cold welding and intermetallic formation and dental applications thereof
OHNO et al. Adhesion of adhesive resin to dental precious metal alloys Part I New precious metal alloys with base metals for resin bonding
Dariel et al. A new technology for direct restorative alloys
Dariel et al. A silver-tin alternative to dental amalgams
CN1040890C (zh) 一种牙科汞齐合金粉及制备方法
US3141761A (en) Pulverized silver alloys for use in producing dental amalgams
US5242305A (en) Method and composition for removing mercury vapor from dental restorations
DE128449C (zh)
JPS59500220A (ja) 混合歯科用合金およびアマルガム
Galindo The development and testing of retention pins which metallurgically bond with dental amalgam
JPS62228441A (ja) セレン含有歯科用アマルガム用合金粉末の製造方法
FR2772265A1 (fr) Amalgame dentaire a taux reduit en mercure et procede de fabrication d'un tel amalgame

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication