CN108468001A - 纯铜增韧生物医用钛基非晶基复合材料及其制备方法 - Google Patents

纯铜增韧生物医用钛基非晶基复合材料及其制备方法 Download PDF

Info

Publication number
CN108468001A
CN108468001A CN201810280621.8A CN201810280621A CN108468001A CN 108468001 A CN108468001 A CN 108468001A CN 201810280621 A CN201810280621 A CN 201810280621A CN 108468001 A CN108468001 A CN 108468001A
Authority
CN
China
Prior art keywords
solution
powder
fine copper
toughening
bio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810280621.8A
Other languages
English (en)
Other versions
CN108468001B (zh
Inventor
陈梦华
林建国
龚伦军
肖清瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201810280621.8A priority Critical patent/CN108468001B/zh
Publication of CN108468001A publication Critical patent/CN108468001A/zh
Application granted granted Critical
Publication of CN108468001B publication Critical patent/CN108468001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种纯铜增韧生物医用钛基非晶基复合材料的制备方法,是一种低模量,高硬度,高耐蚀性的生物医用钛合金,由摩尔百分比浓度为90%‑95%的非晶基体加上10%‑5%Cu组成。先运用高能球磨制备出球形纳米Ti60Zr10Ta15Si15非晶粉;再运用化学镀在球形纳米级Ti60Zr10Ta15Si15非晶粉末表层镀覆上一层厚度在纳米级别的均匀铜膜;最后采用放电等离子体烧结(SPS)技术将这些复合粉末烧结成想要的形状,得到一种纯铜三维网状骨架中填充Ti基非晶基结构的复合材料。本发明的钛合金兼具非晶材料高强度、高耐蚀性、低弹性模量的优点,同时也具有纯铜优良的塑性,适用于骨骼植入等医学领域。

Description

纯铜增韧生物医用钛基非晶基复合材料及其制备方法
技术领域
本发明涉及医学、化学领域,涉及一种金属材料的制备技术,具体来说是一种纯铜增韧生物医用钛基非晶基复合材料及其制备方法。
背景技术
块体非晶合金是近年来兴起的新型材料,由于非晶合金中原子排列长程无序,没有晶界、位错等缺陷,与对应的晶态合金相比,非晶合金具有极高的强度、较低的弹性模量、良好的耐蚀性能和耐磨性能。比如,在同等腐蚀条件下,Fe-Ni-P-Ca非晶耐腐蚀要比不锈钢好。近年来,钛基非晶态合金由于其优越的性能和潜在的应用价值而成为非晶态合金研究领域的热点之一,但目前制备的钛基非晶合金的合金体系存在很大的局限性。其一,迄今为止,具有较强非晶形成能力的钛基非晶钛合金绝大多数是以Ti-Cu-Ni或Ti-Ni为主,在此基础上加入不同数量和种类的合金元素而成的。随着植入时间的加长,金属Ni、Al等会对人体产生一系列的有害影响,例如,长期的植入,金属Ni会对人体产生细胞毒性和神经毒性,Al则有可能会引发老年痴呆等症状;其二,由于钛基非晶合金非晶形成能力的限制,采用熔炼吸铸的方法得到的块体钛基非晶合金的尺寸都很小,难于满足实际应用的要求;其三,非晶合金的室温变形机理为绝热剪切变形,室温变形表现出高度局部化,导致非晶合金的在室温下几乎没有塑性;其四,粉末冶金是制备较大尺寸的块体非晶合金的有效途径,但对于非晶合金粉末烧结成致密块体非晶却存在较大的困难,温度太高会导致非晶合金粉末发生晶化,而太低则会导致合金难于烧实。针对这些问题,本发明,选用具有良好生物相容性的Zr、Ta、Si作为合金化元素,设计了Ti60Zr10Ta15Si15非晶合金,采用高能球磨方法制备出Ti60Zr10Ta15Si15非晶合金粉末,通过纯铜包覆非晶粉末这一新结构的引入,将非晶外包覆的纯铜作为非晶合金的在烧结过程中的粘结剂,解决了非晶合金粉末难于烧结问题,同时塑性优良的纯铜也可作为非晶合金增韧相。使得制备出的纯铜增韧钛基非晶复合材料不仅传承了非晶材料的高强度,低弹性模量的优点,而且还有效的改善了非晶室温脆性这一缺陷。从而获得具有高强、高塑、高耐磨、低弹性模量的大块钛基非晶基复合材料,该复合材料作为医用生物材料具有较大的应用前景。
发明内容
本发明的目的:提供一种纯铜增韧生物医用钛基非晶基复合材料及其制备方法,能解决生物钛基非晶合金粉末冶金制备过程中难于烧结、强度较低、塑性较差等的技术问题。
为了实现上述目的,本发明的技术方案是:
一种纯铜增韧生物医用钛基非晶基复合材料的制备方法,包括如下步骤:
步骤1:将纯度为99.9999%Ti、Ta、Si、Zr通过高速球磨技术磨成Ti60Zr10-Ta15Si15纳米非晶球形粉末。
步骤2:将Ti60Zr10Ta15Si15纳米非晶球形粉末表面镀覆一层均匀的纳米Cu膜。
步骤3:将镀完Cu膜的复合粉末采用放电等离子体烧结技术烧结成型。
上述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其中,在所述的步骤1中,研磨罐中通入高纯氩气;在粉末中加入0.4%的硬脂酸作为润滑剂;研磨球大小球的质量比为1:2,大小球直径分别为8.731mm、4.86mm;球料比为20:1;转速设定为300rpm;有效研磨时间为20h。
上述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其中,在所述的步骤2中,还包括如下分步骤:
步骤2.1:配置钯溶液;
步骤2.2:粉末预处理;
步骤2.3:配置镀液;
步骤2.4:镀膜。
上述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其中,在所述的步骤2.1中,还包括如下分步骤:
步骤2.1.1:称取0.08gPdCl2溶解在10mL50%的盐酸溶液中,将烧杯放到磁力搅拌器上搅拌让其完全溶解得到溶液A;
步骤2.1.2:将8克SnCl2·2H2O加入到20mL50%的盐酸溶液中,等到晶体完全溶解,然后往溶液中加的去离子水得到溶液B;
步骤2.1.3:把溶液A和B混合升温加热到60℃搅拌使其溶解,再持续搅摔20min使其混合,搅拌混合后得到溶液C;
步骤2.1.4:称取75克NaCl溶解在470mL去离子水中,在水浴锅中加热到60℃,并搅拌使其溶解得到溶液D;
步骤2.1.5:将溶液D缓慢搅拌下加入到溶液C中,搅拌均匀后溶液呈墨绿色,再继续揽拌反应30min后放入水浴锅中60℃保温2-8h。
上述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其中,在所述的步骤2.2中,还包括如下分步骤:
步骤2.2.1:将步骤2.1制作好的非晶粉(5克)置于酒精溶液中清洗,超声波清洗仪30分钟;静置沉淀,过滤掉酒精;然后放入真空干燥箱中,温度60℃、时间5小时。
步骤2.2.2:取出干燥完毕的粉末倒入胶体钯溶液,放在磁力搅拌器下搅拌30分钟,静置沉淀将上层干净的钯溶液重新倒入瓶中储存;然后用去离子水洗粉至中性,放入真空干燥箱中,温度60℃、时间10小时。
步骤2.2.3:以上的粉末置于30g/L的NaH2PO2·H2O中,在磁力搅拌器下搅拌30分钟,然后静置沉淀去离子水洗粉至中性,放入真空干燥箱中,温度60℃、时间5小时。
上述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其中,在所述的步骤2.3中,还包括如下分步骤:
步骤2.3.1:主盐30g/L的CuSO4·5H2O、还原剂28ml/L的HCHO、20g/L的络合剂C10H14N4Na2O8·2H2O和8g/L的KNaC4O6H4·4H2O稳定剂8mg/L的CH4N2S全部混合得到镀液A。
步骤2.3.2:将镀液A中加入NaOH调节PH到12得到镀液B。
步骤2.3.3:将镀液B置于70℃的水浴锅中加热,得到镀液C。
上述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其中,在所述的步骤2.4中,还包括如下分步骤:
步骤2.4.1:将预处理完毕的粉末倒入镀液C中,取10mL甲醛,慢慢加入镀液C中,观察有无气泡产生,并测溶液PH,如果出现小气泡且PH开始下降,则反应开始了。
步骤2.4.2:慢慢滴加NaOH使PH维持在12.5。
步骤2.4.3:待反应结束后,洗粉至中性,然后置于真空干燥箱中,温度60℃、时间15小时。
上述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其中,在所述的步骤3中,还包括如下分步骤:
步骤3.1:将镀完Cu膜的复合粉末20.5克装入模具中,采用单缸压片机预压,预压压力为20MPa,保压10min以保证合金粉体在预压成型后不会从模具中脱落。
步骤3.2:将预压好的非晶复合粉末块体装入硬质合金模具中,模具内径为20mm,外径为40mm,在粉末和冲压块之间用锡箔纸隔开,这样可以减小粉末与模冲块的摩擦,利于烧结完成后块体的脱模。烧结气氛设置为真空环境(依据烧结真空度要求,将烧结腔气压设定为4-6MPa),升温速率设定为40℃/min,烧结压力设定为500MPa,烧结温度设定为520℃,保温时间为10min。
一种用纯铜增韧生物医用钛基非晶基复合材料的制备方法制得的非晶复合材料,用纯铜包覆非晶颗粒,以纯铜作为粘结剂,将样品烧结起来,获得各种综合性能极佳的大尺寸非晶复合材料。
本发明制备出的生物医用材料具有高强度、高韧性,低弹性氏模量,耐磨性与生物相容性好,适用于骨骼植入等医学领域。
附图说明
图1是本发明步骤1制备出的Ti60Zr10Ta15Si15非晶粉末的DSC曲线。
图2是本发明步骤2制备出的Ti60Zr10Ta15Si15铜膜包覆复合粉末的扫描电镜图。
图3是本发明步骤3制备纯铜增韧生物医用钛基非晶基复合材料的工艺曲线。
图4是本发明步骤3制备出的纯铜增韧生物医用钛基非晶基复合材料样品的XRD。
图5是本发明步骤3制备出的纯铜增韧生物医用钛基非晶基复合材料样品的扫描电镜图。
图6是本发明步骤3制备出的纯铜增韧生物医用钛基非晶基复合材料样品的室温压缩曲线。
具体实施方式
以下结合附图进一步说明本发明的实施例。
请参见附图1所示,一种纯铜增韧生物医用钛基非晶基复合材料的制备方法,选用对人体无毒害的Ti、Ta、Si、Zr这几种元素高纯(99.9999%)粉作为基础,用高能球磨的方法制作成Ti60Zr10Ta15Si15纳米非晶球形粉末,包括如下步骤:
步骤1:分别将纯度为99.9999%Ti、Ta、Si、Zr按照Ti60Zr10Ta15Si15(at.%)名义组分,通过高速球磨技术磨成Ti60Zr10-Ta15Si15纳米非晶球形粉末;研磨球按照大小球的质量比为1:2,大小球直径分别为8.731mm、4.86mm,球料比为20:1配好,将其置入250mL不锈钢球磨罐中,不锈钢球磨罐通入高纯氩气保护。转速设定为300rpm,有效研磨时间为20h。进行研磨前的操作步骤都在真空手套箱内进行。
步骤2:将Ti60Zr10Ta15Si15纳米非晶球形粉末表层镀覆一层均匀的纳米Cu膜。胶体钯溶液配制好以后一定要加上盖子密封,置于通风阴凉处保存,防止Sn2+被氧化成Sn4+。粉末预处理中一定要把酒精过滤掉,否则直接放入真空干燥箱内,在抽真空时会爆出。每次粉末和镀液的重量比为1:50。镀膜步骤中要随时检测PH值,保证反应持续进行,滴加NaOH要缓慢。超声波清洗仪中的水温要维持在70℃。在镀膜过程中镀液要持续快速搅拌,使得粉末悬浮于镀液中;另一个方面,溶液底部有超声波持续震动,其频率为40KHZ,保证粉末分散,使得镀覆均匀。
步骤3:将以上复合粉末用放电等离子体烧结技术烧结成型。
在所述的步骤1中,在粉末中加入0.4%的硬脂酸作为润滑剂,避免粉末严重粘连在球罐底部或球罐壁上。
在所述的步骤2中,还包括如下分步骤:
步骤2.1:配置钯溶液。
步骤2.2:粉末预处理。
步骤2.3:配置镀液。
步骤2.4:镀膜。
在所述的步骤2.1中,还包括如下分步骤:
步骤2.1.1:称取0.08gPdCl2溶解在10mL50%的盐酸溶液中,将烧杯放到磁力搅拌器上搅拌让其完全溶解得到溶液A。
步骤2.1.2:将8克SnCl2·2H2O加入到20mL50%的盐酸溶液中,等到晶体完全溶解,然后往溶液中加的去离子水得到溶液B。
步骤2.1.3:把溶液A和B混合升温加热到60℃搅拌使其溶解,再持续搅摔20min使其混合。搅拌混合后得到溶液C。
步骤2.1.4:称取75克NaCl溶解在470mL去离子水中,在水浴锅中加热到60℃,并搅拌使其溶解得到溶液D。
步骤2.1.5:将溶液D缓慢搅拌下加入到溶液C中,搅拌均匀后溶液呈墨绿色,再继续揽拌反应30min后放入水浴锅中60℃保温2-8h。
在所述的步骤2.2中,还包括如下分步骤:
步骤2.2.1:将步骤2.1制作好的非晶粉(5g)置于酒精溶液中清洗,超声波清洗仪30min;静置沉淀,过滤掉酒精;然后放入真空干燥箱中,温度60℃、时间5h。(酒精洗可以除去球磨中的硬脂酸,还作为分散剂,把粉末分散开。)
步骤2.2.2:取出干燥完毕的粉末倒入胶体钯溶液,放在磁力搅拌器下搅拌30min,然后静置沉淀(盖上保鲜膜)将上层干净的钯溶液重新倒入瓶中储存;然后开始用去离子水洗粉至中性,放入真空干燥箱中,温度60℃、时间10h。
步骤2.2.3:以上的粉末置于解胶液(30g/L的NaH2PO2·H2O)中,在磁力搅拌器下搅拌30min,然后静置沉淀(盖上保鲜膜)去离子水洗粉至中性,放入真空干燥箱中,温度60℃、时间5h。
在所述的步骤2.3中,还包括如下分步骤:
步骤2.3.1:其中主盐CuSO4·5H2O(30g/L)、还原剂HCHO(28ml/L)、络合剂C10H14N4Na2O8·2H2O(20g/L)和KNaC4O6H4·4H2O(8g/L)稳定剂CH4N2S(8mg/L),将以上溶液全部混合得到镀液A。
步骤2.3.2:将镀液A中加入NaOH(20%)调节PH到12得到镀液B。
步骤2.3.3:将镀液B置于70℃的水浴锅中加热,得到镀液C。
在所述的步骤2.4中,还包括如下分步骤:
步骤2.4.1:将以上预处理完毕的粉末倒入镀液C中,取10mL甲醛,慢慢加入镀液C中,然后等5分钟左右观察有无气泡产生,并测溶液PH,如果出现很多小气泡,并且PH开始下降,则反应开始了。
步骤2.4.2:慢慢滴加NaOH使PH维持在12.5左右。
步骤2.4.3:待反应结束后,洗粉至中性,然后置于真空干燥箱中,温度60℃、时间15h。
在所述的步骤3中,还包括如下分步骤:
步骤3.1:将镀完Cu膜的复合粉末20.5g装入模具中,采用单缸压片机预压,预压压力为20MPa,保压10min以保证合金粉体在预压成型后不会从模具中脱落。
步骤3.2:将预压好的非晶复合粉末块体装入硬质合金模具中,模具内径为20mm,外径为40mm,在粉末和冲压块之间用锡箔纸隔开,这样可以减小粉末与模冲块的摩擦,利于烧结完成后块体的脱模。烧结气氛设置为真空环境(依据烧结真空度要求,将烧结腔气压设定为4-6MPa),升温速率设定为40℃/min,烧结压力设定为450MPa,烧结温度设定为520℃,保温时间为10min。
一种纯铜增韧生物医用钛基非晶基复合材料,用纯铜包覆非晶颗粒,以纯铜作为粘结剂,将样品烧结起来,获得各种综合性能极佳的大尺寸非晶复合材料。
本发明能够制备出的非晶基复合材料,其断裂强度达到1390MPa弹性模量15GPa左右,弹性模量与骨骼非常接近。硬度达到967.1HV,耐磨效果极佳。
综上所述,本发明具有强度高、韧性好、弹性氏模量低,耐磨性与生物相容性好,适用于骨骼植入等医学领域。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构变换,或直接或间接运用附属在其他相关产品的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种纯铜增韧生物医用钛基非晶基复合材料,其特征在于:用纯铜包覆非晶颗粒,以纯铜作为粘结剂,将样品烧结起来,获得非晶复合材料。
2.一种权利要求1所述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其特征在于:包括如下步骤:
步骤1:将纯度为99.9999%Ti、Ta、Si、Zr通过高速球磨技术磨成Ti60Zr10Ta15Si15纳米非晶球形粉末;
步骤2:将Ti60Zr10Ta15Si15纳米非晶球形粉末表面镀覆一层均匀的纳米Cu膜;
步骤3:将镀完Cu膜的复合粉末采用放电等离子体烧结技术烧结成型。
3.根据权利要求2所述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其特征在于:在所述的步骤1中,研磨罐中通入高纯氩气;粉末中需加入0.4%的硬脂酸作为润滑剂;研磨球大小球的质量比为1:2,大小球直径分别为8.731mm、4.86mm;球料比为20:1;转速设定为300rpm;有效研磨时间为20h。
4.根据权利要求2所述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其特征在于:在所述的步骤2中,还包括如下分步骤:
步骤2.1:配制钯溶液;
步骤2.2:粉末预处理;
步骤2.3:配制镀液;
步骤2.4:镀Cu膜。
5.根据权利要求4所述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其特征在于:在所述的步骤2.1中,还包括如下分步骤:
步骤2.1.1:称取0.08gPdCl2溶解在10mL50%的盐酸溶液中,将烧杯放到磁力搅拌器上搅拌让其完全溶解得到溶液A;
步骤2.1.2:将8克SnCl2·2H2O加入到20mL50%的盐酸溶液中,等到晶体完全溶解,然后往溶液中加的去离子水得到溶液B;
步骤2.1.3:把溶液A和B混合升温加热到60℃搅拌使其溶解,再持续搅摔20min使其混合,搅拌混合后得到溶液C;
步骤2.1.4:称取75克NaCl溶解在470mL去离子水中,在水浴锅中加热到60℃,并搅拌使其溶解得到溶液D;
步骤2.1.5:将溶液D缓慢搅拌下加入到溶液C中,搅拌均匀后溶液呈墨绿色,再继续揽拌反应30min后放入水浴锅中60℃保温2-8h。
6.根据权利要求4所述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其特征在于:在所述的步骤2.2中,还包括如下分步骤:
步骤2.2.1:将步骤2.1制作好的5克非晶粉置于酒精溶液中清洗,超声波清洗仪30min;静置沉淀,过滤掉酒精;然后放入真空干燥箱中,温度60℃、时间5h;
步骤2.2.2:取出干燥完毕的粉末倒入胶体钯溶液,放在磁力搅拌器下搅拌30分钟,然后静置沉淀将上层干净的钯溶液重新倒入瓶中储存;然后开始用去离子水洗粉至中性,放入真空干燥箱中,温度60℃、时间10h;
步骤2.2.3:将以上的粉末置于30g/L的NaH2PO2·H2O中,在磁力搅拌器下搅拌30min,然后静置沉淀去离子水洗粉至中性,放入真空干燥箱中,温度60℃、时间5h。
7.根据权利要求4所述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其特征在于:在所述的步骤2.3中,还包括如下分步骤:
步骤2.3.1:主盐30g/L的CuSO4·5H2O、还原剂28ml/L的HCHO、20g/L的络合剂C10H14N4Na2O8·2H2O和8g/L的KNaC4O6H4·4H2O稳定剂8mg/L的CH4N2S全部混合得到镀液A;
步骤2.3.2:将镀液A中加入NaOH调节PH到12得到镀液B;
步骤2.3.3:将镀液B置于70℃的水浴锅中加热,得到镀液C。
8.根据权利要求7所述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其特征在于:在所述的步骤2.4中,还包括如下分步骤:
步骤2.4.1:将预处理完毕的粉末倒入镀液C中,取10mL甲醛,慢慢加入镀液C中,观察有无气泡产生,并测溶液PH,如果出现小气泡且PH开始下降,则反应开始了;
步骤2.4.2:慢慢滴加NaOH使PH维持在12.5;
步骤2.4.3:待溶液颜色变为无色澄清,则反应结束,洗粉至中性,然后置于真空干燥箱中,温度60℃、时间15h。
9.根据权利要求2所述的纯铜增韧生物医用钛基非晶基复合材料的制备方法,其特征在于:在所述的步骤3中,还包括如下分步骤:
步骤3.1:将镀完Cu膜的复合粉末20.5g装入模具中,采用单缸压片机预压,预压压力为20MPa,保压10min以保证合金粉体在预压成型后不会从模具中脱落;
步骤3.2:将预压好的非晶复合粉末块体装入硬质合金模具中,模具内径为20mm,外径为40mm,在粉末和冲压块之间用锡箔纸隔开,烧结气氛设置为真空环境,依据烧结真空度要求,将烧结腔气压设定为4-6MPa,升温速率设定为40℃/min,烧结压力设定为500MPa,烧结温度设定为520℃,保温时间为10min。
CN201810280621.8A 2018-04-02 2018-04-02 纯铜增韧生物医用钛基非晶基复合材料及其制备方法 Active CN108468001B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810280621.8A CN108468001B (zh) 2018-04-02 2018-04-02 纯铜增韧生物医用钛基非晶基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810280621.8A CN108468001B (zh) 2018-04-02 2018-04-02 纯铜增韧生物医用钛基非晶基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108468001A true CN108468001A (zh) 2018-08-31
CN108468001B CN108468001B (zh) 2020-02-11

Family

ID=63262349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810280621.8A Active CN108468001B (zh) 2018-04-02 2018-04-02 纯铜增韧生物医用钛基非晶基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108468001B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699676A (zh) * 2019-11-20 2020-01-17 哈尔滨工业大学(深圳) 一种高强度高电导率的金属玻璃复合材料及其制备方法
CN112846172A (zh) * 2021-01-08 2021-05-28 江西理工大学 一种生物医用钛-铜微球集合型微球粉体、生物医用钛-铜合金及制备工艺
CN113862586A (zh) * 2021-10-26 2021-12-31 哈尔滨工业大学(深圳) 一种Ti-Zr-Si块体金属玻璃合金及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228532A (ja) * 1990-05-29 1992-08-18 Mitsui Eng & Shipbuild Co Ltd アモルファス合金コーティング布
JPH08131460A (ja) * 1994-11-10 1996-05-28 Takeshi Masumoto 歯科用人工歯根とその製造方法
CA2068046C (en) * 1991-05-15 1996-12-24 Ykk Corporation High corrosion-resistant amorphous alloys
KR20040070448A (ko) * 2004-04-06 2004-08-09 김강형 내연기관용 슬라이딩 부품
CN102277543A (zh) * 2011-08-09 2011-12-14 北京科技大学 一种含高钯低铜的钛基块体非晶合金及制备方法
CN103469119A (zh) * 2013-08-15 2013-12-25 华南理工大学 一种非晶复合材料及其制备方法和应用
US9609874B1 (en) * 2016-07-21 2017-04-04 Kuwait Institute For Scientific Research Metallic glassy alloy powders for antibacterial coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228532A (ja) * 1990-05-29 1992-08-18 Mitsui Eng & Shipbuild Co Ltd アモルファス合金コーティング布
CA2068046C (en) * 1991-05-15 1996-12-24 Ykk Corporation High corrosion-resistant amorphous alloys
JPH08131460A (ja) * 1994-11-10 1996-05-28 Takeshi Masumoto 歯科用人工歯根とその製造方法
KR20040070448A (ko) * 2004-04-06 2004-08-09 김강형 내연기관용 슬라이딩 부품
CN102277543A (zh) * 2011-08-09 2011-12-14 北京科技大学 一种含高钯低铜的钛基块体非晶合金及制备方法
CN103469119A (zh) * 2013-08-15 2013-12-25 华南理工大学 一种非晶复合材料及其制备方法和应用
US9609874B1 (en) * 2016-07-21 2017-04-04 Kuwait Institute For Scientific Research Metallic glassy alloy powders for antibacterial coating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
X.Q.WU等: "Effect of Sn content on thermal stability and mechanical properties of the Ti60Zr10Ta15Si15 amorphous alloy for biomedical use", 《MATERIALS AND DESIGN》 *
吴学庆等: "晶化对Ti60Zr10Ta15Si15非晶合金生物腐蚀行为的影响", 《现代应用物理》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699676A (zh) * 2019-11-20 2020-01-17 哈尔滨工业大学(深圳) 一种高强度高电导率的金属玻璃复合材料及其制备方法
CN112846172A (zh) * 2021-01-08 2021-05-28 江西理工大学 一种生物医用钛-铜微球集合型微球粉体、生物医用钛-铜合金及制备工艺
CN112846172B (zh) * 2021-01-08 2022-10-25 江西理工大学 一种生物医用钛-铜微球集合型微球粉体、生物医用钛-铜合金及制备工艺
CN113862586A (zh) * 2021-10-26 2021-12-31 哈尔滨工业大学(深圳) 一种Ti-Zr-Si块体金属玻璃合金及其制备方法

Also Published As

Publication number Publication date
CN108468001B (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
CN105039771B (zh) 一种三维连通多孔镁基材料的制备方法及其用途
Jana et al. Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy
CN108468001A (zh) 纯铜增韧生物医用钛基非晶基复合材料及其制备方法
Shang et al. Effects of scanning speed on in vitro biocompatibility of 316L stainless steel parts elaborated by selective laser melting
Zhang et al. Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity
Li et al. Microstructure, mechanical and biological properties of laser cladding derived CaO-SiO2-MgO system ceramic coatings on titanium alloys
Yehia et al. Effect of zirconia content and sintering temperature on the density, microstructure, corrosion, and biocompatibility of the Ti–12Mo matrix for dental applications
Du et al. Porous Ti-based bulk metallic glass orthopedic biomaterial with high strength and low Young's modulus produced by one step SPS
Kumar et al. Statistical modelling of mechanical properties and bio-corrosion behaviour of Mg3Zn1Ca15Nb fabricated using microwave sintering
CN110938816A (zh) 一种激光熔覆SiC纳米颗粒增强Ti(C,N)陶瓷涂层及其应用
CN108478859B (zh) 一种3d冷打印制备羟基磷灰石-生物医用合金植入体的方法
Wu et al. Characterization and biocompatibility of insoluble corrosion products of AZ91 Mg alloys
Li et al. Current developments of biomedical porous Ti–Mo alloys
Zhang et al. Designing a novel functional-structural NiTi/hydroxyapatite composite with enhanced mechanical properties and high bioactivity
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
CN113275593B (zh) 一种选区激光熔化制备多孔Ta/Ti-6Al-4V整合件的方法
CN107385429B (zh) 一种医用钛合金表面多孔钛涂层及其制备方法
CN108619565A (zh) 一种左旋聚乳酸/氧化镁复合涂层及其制备方法与应用
CN105256174A (zh) 一种生物骨复合材料及其制备方法
Wan Effects of alkali and heat treatment on strength of porous Ti35Nb
Xu et al. Additive manufacturing of anti-bacterial and low-cost Ti–Mo (–Ag) alloys using elemental powders through in situ laser alloying
Prashar et al. Deposition and fabrication of biomaterials using cold spray technique: A review on the application of biomedical-implants
CN110735093A (zh) 一种多孔钛基金属玻璃生物医用材料及其制备方法
Xu et al. Microstructure, degradation properties and cytocompatibility of micro-arc oxidation coatings on the microwave sintered Ti-15Mg metal-metal composite
Motavallian et al. The microstructure and mechanical and corrosion properties of Mg matrix composites reinforced with bioactive glass: The combined effect of bioactive glass content and extrusion speed

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Lin Jianguo

Inventor after: Chen Menghua

Inventor after: Gong Lunjun

Inventor after: Xiao Qingrui

Inventor before: Chen Menghua

Inventor before: Lin Jianguo

Inventor before: Gong Lunjun

Inventor before: Xiao Qingrui

GR01 Patent grant
GR01 Patent grant