CN107636781B - 气密端子、铝电解电容器以及铝电解电容器的制造方法 - Google Patents
气密端子、铝电解电容器以及铝电解电容器的制造方法 Download PDFInfo
- Publication number
- CN107636781B CN107636781B CN201680031455.7A CN201680031455A CN107636781B CN 107636781 B CN107636781 B CN 107636781B CN 201680031455 A CN201680031455 A CN 201680031455A CN 107636781 B CN107636781 B CN 107636781B
- Authority
- CN
- China
- Prior art keywords
- base
- aluminum
- lead
- electrolytic capacitor
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 225
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 225
- 239000003990 capacitor Substances 0.000 title claims abstract description 145
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 238000000034 method Methods 0.000 title claims description 20
- 239000011521 glass Substances 0.000 claims abstract description 83
- 239000003792 electrolyte Substances 0.000 claims abstract description 42
- 239000007769 metal material Substances 0.000 claims abstract description 39
- 238000005260 corrosion Methods 0.000 claims abstract description 20
- 230000007797 corrosion Effects 0.000 claims abstract description 20
- 238000007789 sealing Methods 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 85
- 239000000463 material Substances 0.000 claims description 84
- 230000002093 peripheral effect Effects 0.000 claims description 59
- 239000011888 foil Substances 0.000 claims description 48
- 229910052742 iron Inorganic materials 0.000 claims description 42
- 239000008151 electrolyte solution Substances 0.000 claims description 38
- 238000002844 melting Methods 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 238000003466 welding Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 18
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 3
- 238000005304 joining Methods 0.000 claims description 2
- 238000007747 plating Methods 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000001035 drying Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910000833 kovar Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
- H01G9/045—Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/008—Terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/035—Liquid electrolytes, e.g. impregnating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/06—Mounting in containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
- H01G9/10—Sealing, e.g. of lead-in wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
根据基于本发明的气密端子,该气密端子(10)与铝电解电容器(20)气密固接,具备:具有通孔、且由安装于铝电解电容器(20)的壳体(16)并具有导电性的复合材料构成的底座(11);插入在底座(11)的通孔中且由具有导电性的复合材料构成的至少一个引脚(12);以及对底座(11)和引脚(12)之间进行气密密封的绝缘玻璃(13)。底座(11)以及引脚(12)的、与壳体(16)内部的电解液接触的部分的表面由对于电解液具有耐蚀性的金属材料构成。
Description
技术领域
本发明涉及铝电解电容器中使用的气密端子、使用该气密端子的铝电解电容器以及铝电解电容器的制造方法。
背景技术
晶体振荡器等所使用的一般的气密端子包括:由可伐(Kovar)材料(铁:54%、镍:28%、钴:18%的合金)构成的底座、同样由可伐材料构成的引脚、将底座与引脚密封的绝缘玻璃、以及用于压入并固定底座的铁质的盖部。底座上形成有一对通孔,引脚贯通该通孔。引脚与底座的间隙被绝缘玻璃气密密封。利用绝缘玻璃来使引脚和底座电绝缘。
这种现有的气密端子中,为了确保安装印刷基板时的外引脚的可焊性,对气密端子的整个表面实施镀焊料合金、镀锡、镀镍、镀金等电解镀敷。
作为电解镀敷的方法,采用滚镀法。滚镀法中,将多个气密端子收纳在具有液体透过性的滚筒内,按照各个滚筒浸渍在电镀浴内。使浸渍后的滚筒旋转,来一次性对多个气密端子实施镀敷。
此外,作为对底座和引脚选择性地进行镀焊料合金、镀镍、镀金、镀银、镀铑等的方法,例如有专利文献1所记载的方法。
这里,构成电子电路的无源元器件中存在铝电解电容器。铝电解电容器由阳极用高纯度铝箔、阴极用铝箔、电解液以及电容器纸构成。阳极用高纯度铝箔具有形成于表面的作为电介质的氧化覆膜。
铝电解电容器具有使阳极箔和阴极箔相对、在两极之间插入电容器纸并卷绕成圆筒状而得到的电容器元件。然而,该状态下的静电电容很小。通过在电容器纸上浸渍电解液来形成电解纸,来使阳极箔表面与阴极箔表面电连接,能获得将阳极箔表面的氧化铝覆膜作为电介质的具有大静电电容的电容器元件(参照非专利文献1)。
该电解液起到真正的阴极的作用,若电解液干涸,则铝电解电容器的寿命终结。一般而言,铝电解电容器属于构成电子电路的元器件中寿命最短的一类,近年来正在摸索如何延长其寿命。
最近的电子电路中,电子元器件大多安装在狭小的间隙内。在铝电解电容器中,除了以往的圆筒壳式铝电解电容器以外,形成为高度较低的平板型的铝电解电容器等非圆筒形状的铝电解电容器也正在增加。在这些非圆筒型形状的铝电解电容器中,壳体底部的形状为方形或椭圆形。以往的圆筒壳式铝电解电容器中,将圆板状的橡胶填料插入圆筒壳体,并均匀地对壳体端部实施敛缝加工来进行密封。在壳体底部的形状为方形或椭圆形的情况下,难以均匀地实施敛缝加工来进行密封。
为了延长铝电解电容器的寿命,若能在对收纳电容器元件的壳体进行密封时利用上述气密端子,则更为优选。通过使用气密端子,从而能提高气密性,防止电解液的干涸。而且,由于能在对气密端子和壳体进行密封时使用压入、电阻熔接,因此能在不影响壳体形状的情况下确保气密性。
然而,以往的气密端子是对铁或铁基合金的基材实施镀焊料、镀锡、镀镍、镀金等软金属的电镀镀敷后得到的。若使这些以往的镀膜与电解液长时间接触,则镀敷金属或构成基材的金属会逐渐溶解到电解液中从而污染电解液。电解液的污染会对电容器的特性造成不良影响,因此,无法将以往的气密端子用于铝电解电容器。
另一方面,也考虑利用铝构成气密端子的底座和引脚,但出于没有热膨胀系数与铝相适合的玻璃材料、在气密端子的玻璃密封工序中需要加热到大约1000℃从而铝材会溶解等理由而无法实现。
现有技术文献
专利文献
专利文献1:日本专利特开2004-342649号公报
非专利文献
非专利文献1:「アルミニウム電解コンデンサテクニカルノート(铝电解电容器技术说明)CAT.1101G」,ニチコン株式会社(尼吉康株式会社),2014年,p.1
发明内容
发明所要解决的技术问题
本发明为了解决上述课题而完成,其目的在于提供一种气密端子、铝电解电容器以及铝电解电容器的制造方法,即使长时间与铝电解电容器的电解液接触,构成引脚和底座的金属也不会污染电解液。
解决技术问题的技术方案
根据基于本发明的气密端子,该气密端子与铝电解电容器气密固接,包括:底座,该底座具有通孔,且由安装于所述铝电解电容器的壳体并具有导电性的复合材料构成;至少一个引脚,该至少一个引脚插入到所述底座的所述通孔中,并由具有导电性的复合材料构成;以及绝缘玻璃,该绝缘玻璃对所述底座与所述引脚之间进行气密密封。所述底座以及所述引脚的、与所述壳体内部的电解液接触的部分的表面由相对于电解液具有耐蚀性的金属材料构成。
所述气密端子中,所述底座可以具有由铁基金属材料制成的基材、以及覆盖所述基材的至少一个表面且由铝制成的表面材料。
所述气密端子中,所述引脚可以具有由铁基金属材料制成的外引脚、以及与所述外引脚的一端抵接接合且由铝制成的内引脚。
所述气密端子中,所述绝缘玻璃可以是熔点比铝的熔点要低的低熔点玻璃。
根据基于本发明的铝电解电容器,包括:所述气密端子;阳极用铝箔,该阳极用铝箔的表面具有氧化覆膜;电解纸,该电解纸浸渍有电解液;阴极用铝箔;以及铝制的壳体,该铝制的壳体将所述阳极用铝箔、所述电解纸以及所述阴极用铝箔收纳在内部,并气密密封有所述气密端子。所述阳极用铝箔以及所述阴极用铝箔的至少任一方与所述内引脚电连接。
所述铝电解电容器中,所述阳极用铝箔以及所述阴极用铝箔的其中一方可以与所述内引脚电连接,所述阳极用铝箔以及所述阴极用铝箔的另一方与所述底座电连接。
所述铝电解电容器中,所述至少一个引脚可以具备两个引脚。所述两个引脚的其中一个可以与所述阳极用铝箔连接。所述两个引脚的其中另一个可以与所述阴极用铝箔连接。
所述铝电解电容器中,所述底座与所述壳体可以被压接。
所述铝电解电容器中,所述底座与所述壳体可以通过熔接接合。
根据基于本发明的铝电解电容器的制造方法,包括:对用铝覆盖由铁基金属材料制成的基材的表面而得到的金属板进行冲压成形来制造具有通孔的底座的工序;使由铝制成的内引脚与由铁基金属材料制成的外引脚的一端抵接接合来制造引脚的工序;将所述引脚插入所述底座的所述通孔、并在所述引脚与所述底座的间隙之间设置由熔点低于铝的低熔点玻璃制成的绝缘玻璃的压片的工序;使通过所述设置得到的所述底座、所述引脚以及所述压片通过温度被调节到铝的熔点以下的加热炉、从而利用所述绝缘玻璃将所述引脚和所述底座密封来制造气密端子的工序;使由表面具有氧化覆膜的阳极用铝箔、浸渍有电解液的电解纸、以及阴极用铝箔构成的电容器元件与所述气密端子电连接的工序;以及将所述电容器元件插入具有开口部的铝制的壳体并对所述底座的外周面和所述壳体的所述开口部的内周面进行固定的工序。
所述铝电解电容器的制造方法中,优选对所述底座的所述外周面和所述壳体的所述开口部的所述内周面进行固定的工序包含通过将所述底座压入所述壳体的所述开口部来将所述底座压接到所述壳体的工序。
所述铝电解电容器的制造方法中,优选对所述底座的所述外周面和所述壳体的所述开口部的所述内周面进行固定的工序包含将所述底座的所述外周面无间隙地电阻熔接或激光熔接至所述壳体的所述开口部的所述内周面的工序。
发明效果
根据本发明,能提供一种气密端子、铝电解电容器以及铝电解电容器的制造方法,即使长时间与铝电解电容器的电解液接触,构成引脚和底座的金属也不会污染电解液。
附图说明
图1A是表示基于本发明的实施方式1的气密端子的俯视图。
图1B是表示基于本发明的实施方式1的气密端子的、图1A中的IB-IB向视剖面图。
图1C是表示基于本发明的实施方式1的气密端子的仰视图。
图2A是表示基于本发明的实施方式1的铝电解电容器的俯视图。
图2B是表示基于本发明的实施方式1的铝电解电容器的、图2A中的IIB-IIB向视剖面图。
图2C是表示基于本发明的实施方式1的铝电解电容器的仰视图。
图3A是表示基于本发明的实施方式2的气密端子的俯视图。
图3B是表示基于本发明的实施方式2的气密端子的、图3A中的IIIB-IIIB向视剖面图。
图3C是表示基于本发明的实施方式2的气密端子的仰视图。
图4A是表示基于本发明的实施方式2的铝电解电容器的俯视图。
图4B是表示基于本发明的实施方式2的铝电解电容器的、图4A中的IVB-IVB向视剖面图。
图4C是表示基于本发明的实施方式2的铝电解电容器的仰视图。
图5A是表示基于本发明的实施方式3的气密端子的俯视图。
图5B是表示基于本发明的实施方式3的气密端子的、图5A中的VB-VB向视剖面图。
图6A是表示基于本发明的实施方式的铝电解电容器的制造方法的流程图。
图6B是表示基于本发明的实施方式的铝电解电容器的制造方法的流程图。
图7A是表示基于本发明的实施方式4的气密端子的俯视图。
图7B是表示基于本发明的实施方式4的气密端子的、图7A中的VIIB-VIIB向视剖面图。
图8是表示基于本发明的实施方式5的气密端子的分解立体图。
图9A是表示基于本发明的实施方式6的气密端子的俯视图。
图9B是表示基于本发明的实施方式6的气密端子的、图9A中的IXB-IXB向视剖面图。
图10A是表示基于本发明的实施方式7的气密端子的俯视图。
图10B是表示基于本发明的实施方式7的气密端子的、图10A中的XB-XB向视剖面图。
具体实施方式
以下,参照附图,对基于本发明的各实施方式的气密端子、使用气密端子的铝电解电容器以及铝电解电容器的制造方法进行说明。另外,各实施方式中,对相同或相当的部位有时不进行重复说明。
(实施方式1)
下面参照图1A至图2C对本发明的实施方式1进行说明。
如图1A至图1C所示,本实施方式的气密端子10包括底座11、引脚12以及绝缘玻璃13。本实施方式以及后续的实施方式的说明中,以气密端子被用于铝电解电容器的状态为基准,将图1B中的上侧称为内部侧,将图1B中的下侧称为外部侧。
底座11由覆层材料构成,该覆层材料通过利用铝制的表面材料11b覆盖由铁基金属材料制成的基材11a的两个表面而得到。底座11具有圆盘状的主体部、从主体部的外周弯折成直角并向外部侧延伸的圆筒状部。主体部上设有夹着其中心部的一对通孔。设有以包围通孔的方式弯曲成直角并向外部侧延伸的圆筒状部。底座11通过对覆层材料进行冲压成形来制造得到。
在构成底座11的覆层材料的端面上有基材11a露出。通过使主体部的外周部以及通孔的外周部向外部侧弯曲成直角,使得底座11的面向内部侧的表面全部被由铝制成的表面材料11b覆盖,基材11a不露出。
铝对于铝电解电容器的电解液具有耐蚀性。虽然由铁基金属材料构成的基材11a对于电解液不具有耐蚀性,但由于铝电解电容器的内部侧没有底座11的基材11a露出,因此基材11a不会溶解到铝电解电容器的电解液中。
两个通孔分别供引脚12贯通。引脚12由铁基金属材料制成的外引脚12b以及铝制的内引脚12a构成。外引脚12b的一个端部与内引脚12a的一个端部抵接并接合。
外引脚12b与内引脚12a的接合部位于通孔内部并且靠近内部侧的位置。换言之,在贯通通孔的引脚12的长度方向上,外引脚12b占据大部分,仅内部侧的一小部分由内引脚12a构成。
外引脚12b为圆柱状。内引脚12a的主体部为矩形的平板状。内引脚12a的与外引脚12b接合的一侧形成为宽度逐渐变小。内引脚12a的与外引脚12b的抵接部是具有与外引脚12b相同直径的圆柱状。内引脚12a的形状能根据所接合的电容器元件的形状而变更为各种形状。
构成底座11的基材11a以及引脚12的外引脚12b的铁基金属材料是指从钢、不锈钢、低碳钢、可伐合金以及铁镍合金的组中选择的材料。此外,铁基金属材料与铝相比在焊接性方面较为优异。通过将铁基金属材料用于外引脚,从而能确保良好的焊接性。
作为构成基材11a以及外引脚12b的材料,优选为满足上述条件的材料。只要是满足上述条件的材料,则也可以使用铁基金属材料以外的材料。
利用绝缘玻璃13对引脚12和底座11进行气密密封。具体而言,底座11的通孔的内周面与引脚12的与通孔内周面相对的部分之间的间隙被绝缘玻璃13填埋。
引脚12的内引脚12a与外引脚12b之间的接合部被绝缘玻璃13覆盖。由于内引脚12a与外引脚12b的接合部被绝缘玻璃13覆盖,因此外引脚12b不会在内部侧露出。由此,由铁基金属材料构成的外引脚12b不会与电解液接触。引脚12中,仅对于电解液具有耐蚀性的铝制的内引脚12a与电解液接触,因此不会有金属溶解并污染电解液。
若对构成底座11的基材11a以及引脚12的外引脚12b的铁基金属材料的热膨胀率与铝的热膨胀率进行比较,则铁基金属材料的热膨胀率更接近玻璃的热膨胀率。底座11的体积中,大部分是由铁基金属材料构成的基材11a。此外,引脚12中,与绝缘玻璃13接触的大部分是由铁基金属材料构成的外引脚12b。通过这些结构,从而不容易受到温度变化时的热膨胀差异带来的不良影响。
绝缘玻璃13例如是含铋玻璃等低熔点玻璃。通过使用低熔点玻璃,从而在炉内使绝缘玻璃13熔融来对底座11和引脚12之间进行气密密封的工序中能防止铝发生熔融。
作为低熔点玻璃的具体例,有日本电气硝子公司制造的产品名BG-0800。同材料的软化点为510℃,比铝的熔点低。在发明人已进行的实验中,同材料在玻璃耐水性评价、玻璃耐酸性评价、对铝板的浸润性评价、热循环试验、高温高湿实验中均获得良好评价。
另外,该实验中,使用铝和SUS304的覆层材料作为底座,并使用对Fe和铝进行弧焊得到的构件作为引脚。在热循环试验中,反复进行125℃的加热和-55℃的冷却,并在一定循环后对He的渗漏进行检查。在高温高湿试验中,放置在气温85℃、湿度85%的环境中,并在一定时间后检查渗漏。
接着,参照图2A至图2C对使用了气密端子10的铝电解电容器20进行说明。铝电解电容器20如图2B所示,包括气密端子10、电容器元件15以及底座16。
电容器元件15通过将表面形成有氧化覆膜的阳极用铝箔、浸渍有电解液的电解纸、以及阴极用铝箔卷绕成圆筒状而得到。电容器元件15的阳极用铝箔和阴极用铝箔分别连接有内引脚12a。
壳体16是具有内部空间和开口部的圆筒状。壳体16由铝形成。壳体16的内部收纳有电容器元件15。壳体16的开口部上气密压接有气密端子10。壳体16的气密压接通过下述方式来进行,即:将气密端子10的底座11压入壳体16的开口部。
由于壳体16与气密端子10气密压接,因此能确保壳体16与气密端子10之间的气密性。此外,气密端子10的底座11与引脚12之间也通过绝缘玻璃13气密密封,从而确保了更高的气密性。由此,能防止壳体16内的电解液干涸,能实现铝电解电容器的长寿命化。
(实施方式2)
下面参照图3A至图4C对本发明的实施方式2进行说明。
如图3A至图3C所示,本实施方式的气密端子30包括底座31、引脚32以及绝缘玻璃33。
底座31由覆层材料构成,该覆层材料通过利用铝制的表面材料31b覆盖由铁基金属材料制成的基材31a的两个表面而得到。底座31形成为圆盘状。底座31上设有夹着其中心部的一对通孔。构成底座31的覆层材料的端面上有基材31a露出,而底座31的面向内部侧的表面全部被由铝制成的表面材料31b覆盖,基材31a不露出。
铝对于铝电解电容器的电解液具有耐蚀性。虽然由铁基金属材料构成的基材31a对于电解液不具有耐蚀性,但由于铝电解电容器的内部侧没有底座31的基材31a露出,因此基材31a不会溶解到铝电解电容器的电解液中。
两个通孔分别供引脚32贯通。引脚32由铁基金属材料制成的外引脚32b以及铝制的内引脚32a构成。外引脚32b的一个端部与内引脚32a的一个端部抵接并接合。
外引脚32b与内引脚32a的接合部位于通孔内部并且靠近内部侧的位置。换言之,在贯通通孔的引脚32的长度方向上,外引脚32b占据大部分,仅内部侧的一小部分由内引脚32a构成。
外引脚32b为圆柱状。内引脚32a的主体部为矩形的平板状。内引脚32a的与外引脚32b接合的一侧形成为宽度逐渐变小。内引脚32的与外引脚32b的抵接部是具有与外引脚32b相同直径的圆柱状。内引脚32a的形状能根据所接合的电容器元件的形状而变更为各种形状。
利用绝缘玻璃33对引脚32和底座31进行气密密封。具体而言,底座31的通孔的内周面与引脚32的与通孔内周面相对的部分之间的间隙被绝缘玻璃33填埋。
引脚32的内引脚32a与外引脚32b之间的接合部被绝缘玻璃33覆盖。由于内引脚32a与外引脚32b的接合部被绝缘玻璃33覆盖,因此外引脚32b不会在内部侧露出。由此,外引脚32b不会与电解液接触。引脚32中,仅对于电解液具有耐蚀性的铝制的内引脚32a与电解液接触,因此不会有金属溶解并污染电解液。
接着,参照图3A至图4C对使用了气密端子30的铝电解电容器40进行说明。铝电解电容器40如图4B所示,包括气密端子30、电容器元件35以及壳体36。
电容器元件35通过将表面形成有氧化覆膜的阳极用铝箔、浸渍有电解液的电解纸、以及阴极用铝箔卷绕成圆筒状而得到。电容器元件35的阳极用铝箔和阴极用铝箔分别连接有内引脚32a。
壳体36是具有内部空间和开口部的圆筒状。壳体36由铝形成。壳体36的内部收纳有电容器元件35。壳体36的开口部上气密密封有气密端子30。壳体36的气密密封通过下述方式来进行,即:在整个一周无间隙地对壳体36的端部内周面和底座31的外周面进行熔接。更具体而言,对壳体36的端部内周面和底座31的内部侧的表面材料31b的外周面进行熔接。熔接工序中能使用电阻熔接或激光熔接。
由于壳体36与气密端子30气密密封,因此能确保壳体36与气密端子30之间的气密性。此外,气密端子30的底座31与引脚32之间也通过绝缘玻璃33气密密封,从而确保了更高的气密性。由此,能防止壳体36内的电解液干涸,能实现铝电解电容器的长寿命化。
(实施方式3)
下面参照图5A和图5B对本发明的实施方式3进行说明。
如图5A和图5B所示,本实施方式的气密端子50包括底座51、引脚52以及绝缘玻璃53。
底座51由覆层材料构成,该覆层材料通过利用铝制的表面材料51b覆盖由铁基金属材料制成的基材51a的一个表面而得到。底座51形成为圆盘状。底座51上设有一对通孔。底座51的外周面上设有扩径部51s。扩径部51s与铝电解电容器的壳体的开口部侧的端部相抵接。基材51a与表面材料51b的界面位于扩径部51s的厚度内。
构成底座51的覆层材料的端面上有基材51a露出,而底座51的面向扩径部51s内周侧的内部侧的表面全部被由铝制成的表面材料51b覆盖,基材51a不露出。扩径部51s的内部侧的表面以及底座51的比扩径部51s更靠内部侧的表面全部被铝覆盖。
铝对于铝电解电容器的电解液具有耐蚀性。虽然由铁基金属材料构成的基材51a对于电解液不具有耐蚀性,但由于铝电解电容器的内部侧没有底座51的基材51a露出,因此底座51不会溶解到铝电解电容器的电解液中。
两个通孔分别供引脚52贯通。引脚52由铁基金属材料制成的外引脚52b以及铝制的内引脚52a构成。外引脚52b的一个端部与内引脚52a的一个端部抵接并接合。
外引脚52b与内引脚52a的接合部位于通孔内部并且靠近内部侧的位置。换言之,在贯通通孔的引脚52的长度方向上,外引脚52b占据大部分,仅内部侧的一小部分由内引脚52a构成。
外引脚52b和内引脚52a为圆柱状。内引脚52a的形状能根据所接合的电容器元件的形状而变更为各种形状。
利用绝缘玻璃53对引脚52和底座51进行气密密封。具体而言,底座51的通孔的内周面与引脚52的与通孔内周面相对的部分之间的间隙被绝缘玻璃53填埋。
引脚52的内引脚52a与外引脚52b之间的接合部被绝缘玻璃53覆盖。由于内引脚52a与外引脚52b的接合部被绝缘玻璃53覆盖,因此外引脚52b不会在内部侧露出。由此,外引脚52b不会与电解液接触。引脚52中,仅对于电解液具有耐蚀性的铝制的内引脚52a与电解液接触,因此不会有金属溶解并污染电解液。
气密端子50上安装有未图示的壳体以及电容器元件,从而构成铝电解电容器。气密端子50被气密密封于壳体的开口部。壳体的气密密封通过下述方式来进行,即:在整个一周无间隙地对壳体的端部内周面与底座51的比扩径部51s更靠内部侧的外周面进行电阻熔接或激光熔接。
由于壳体与气密端子50气密密封,因此能确保壳体与气密端子50之间的气密性。此外,气密端子50的底座51与引脚52之间也通过绝缘玻璃33气密密封,从而确保了更高的气密性。由此,能防止壳体内的电解液干涸,能实现铝电解电容器的长寿命化。
(制造方法)
利用图6A及图6B对实施方式1和2的气密端子以及铝电解电容器的制造方法进行说明。
在图6A所示的实施方式1的气密端子10的制造方法中,首先,对下述金属板进行冲压成形来制造具有通孔的底座11,该金属板通过利用铝制的表面材料11b覆盖铁基金属制的基材11a的表面而得到。
接着,使铝制的内引脚12a与铁基金属制的外引脚12b的一端相抵接接合来制造引脚12。
接着,将引脚12插入到底座11的通孔中,在引脚12与底座11的间隙内设置由熔点低于铝的低熔点玻璃制成的绝缘玻璃13的压片。
接着,使所设置的底座11、引脚12以及绝缘玻璃13的压片通过温度被调节到铝的熔点以下的加热炉,从而利用绝缘玻璃13对引脚12和底座11进行密封,由此完成气密端子。
在使用图6A所示的气密端子10的铝电解电容器20的制造方法中,使由表面具有氧化覆膜的阳极用铝箔、浸渍有电解液的电解纸、以及阴极用铝箔构成的电容器元件15与气密端子10电连接。
接着,将电容器元件15插入具有开口部的铝制的壳体16,并对底座11的外周面和壳体16的开口部的内周面进行固定。该固定中,通过将底座11压入壳体16来进行压接。
在图6B所示的实施方式2的气密端子30的制造方法中,首先,对下述金属板进行冲压成形来制造具有通孔的底座,该金属板通过利用铝制的表面材料31b覆盖铁基金属制的基材31a的表面而得到。
接着,使由铝制成的内引脚32a与由铁基金属材料制成的外引脚32b的一端相抵接接合来制造引脚32。
接着,将引脚32插入到底座31的通孔中,在引脚32与底座31的间隙内设置由熔点低于铝的低熔点玻璃制成的绝缘玻璃33的压片。
接着,使所设置的底座31、引脚32以及绝缘玻璃33的压片通过温度被调节到铝的熔点以下的加热炉,从而利用绝缘玻璃33对引脚32和底座31进行密封,来制造气密端子。
在使用图6B所示的气密端子30的铝电解电容器40的制造方法中,使由表面具有氧化覆膜的阳极用铝箔、浸渍有电解液的电解纸、以及阴极用铝箔构成的电容器元件35与气密端子30电连接。
接着,将电容器元件35插入具有开口部的铝制的壳体36,并对底座31的外周面和壳体36的开口部的内周面进行固定。在该固定工序中,将底座31的外周面无间隙地电阻熔接或激光熔接至壳体36的开口部的内周面。
(实施方式4)
下面参照图7A和图7B对本发明的实施方式4进行说明。
如图7A和图7B所示,本实施方式的气密端子70包括底座71、引脚72以及绝缘玻璃73。
底座71由覆层材料构成,该覆层材料通过利用铝制的表面材料71b覆盖由铁基金属材料制成的基材71a的一个表面而得到。底座71形成为具有平行的一对侧面以及将该侧面连接起来的圆弧的椭圆形。底座71上设有一对通孔。
构成底座71的覆层材料的端面上有基材71a露出,而底座71的面向内部侧的表面全部被由铝制成的表面材料71b覆盖,基材71a不露出。
铝对于铝电解电容器的电解液具有耐蚀性。由于铝电解电容器的内部侧没有底座71的基材71a露出,因此底座71不会溶解到铝电解电容器的电解液中。
两个通孔分别供引脚72贯通。引脚72由铁基金属材料制成的外引脚72b以及由铝制成的内引脚72a构成。外引脚72b的一个端部与内引脚72a的一个端部抵接并接合。
外引脚72b与内引脚72a的接合部位于通孔内部并且靠近内部侧的位置。换言之,在贯通通孔的引脚72的长度方向上,外引脚72b占据大部分,仅内部侧的一小部分由内引脚72a构成。
外引脚72b和内引脚72a为圆柱状。内引脚72a的形状能根据所接合的电容器元件的形状而变更为各种形状。
利用绝缘玻璃73对引脚72和底座71进行气密密封。具体而言,底座71的通孔的内周面与引脚72的与通孔内周面相对的部分之间的间隙被绝缘玻璃73填埋。
引脚72的内引脚72a与外引脚72b之间的接合部被绝缘玻璃73覆盖。由于内引脚72a与外引脚72b的接合部被绝缘玻璃73覆盖,因此外引脚72b不会在内部侧露出。由此,外引脚72b不会与电解液接触。引脚72中,仅对于电解液具有耐蚀性的铝制的内引脚72a与电解液接触,因此不会有金属溶解并污染电解液。
气密端子70上安装有未图示的壳体以及电容器元件,从而构成铝电解电容器。壳体的平面形状为与图7A所示的底座71的平面形状相对应的细长形状。气密端子70被气密密封到壳体的开口部。壳体的气密密封通过下述方式来进行,即:在整个一周无间隙地对壳体的端部内周面和底座71的外周面进行电阻熔接。更具体而言,对壳体的端部内周面和底座71的表面材料71b的外周面进行熔接。熔接工序中能使用电阻熔接或激光熔接。
由于壳体与气密端子70气密密封,因此能确保壳体与气密端子70之间的气密性。尤其是,在本实施方式中,壳体为非圆筒形状,但即使是具有这种壳体的铝电解电容器,也能确保高气密性。此外,气密端子70的底座71与引脚72之间也通过绝缘玻璃73气密密封,从而确保了更高的气密性。由此,能防止壳体内的电解液干涸,能实现铝电解电容器的长寿命化。
(实施方式5)
下面参照图8对本发明的实施方式5进行说明。如图8所示,本实施方式的气密端子80包括底座81、引脚82以及绝缘玻璃83。
底座81由覆层材料构成,该覆层材料通过利用铝制的表面材料81b覆盖由铁基金属材料制成的基材81a的一个表面、并在基材81a与表面材料81b之间插入镍的薄板作为中间层81c而得到。底座81形成为具有平行的一对侧面以及将该侧面连接起来的圆弧的大致矩形。这里,使用SUS304作为铁基金属材料。底座81上设有一对通孔。
表面材料81b具有向外侧扩展的扩大部81s。构成底座81的覆层材料的端面上有基材81a以及中间层81c露出,而底座81的面向扩径部81s内周侧的内部侧的表面全部被由铝制成的表面材料81b覆盖,基材81a以及中间层81c不露出。
铝对于铝电解电容器的电解液具有耐蚀性。由于铝电解电容器的内部侧没有底座81的基材81a以及中间层81c露出,因此基材81a不会溶解到铝电解电容器的电解液中。
两个通孔分别供引脚82贯通。引脚82由铁基金属材料制成的外引脚82b以及由铝制成的内引脚82a构成。外引脚82b的一个端部与内引脚82a的一个端部抵接并接合。
外引脚82b与内引脚82a的接合部位于通孔内部并且靠近内部侧的位置。换言之,在贯通通孔的引脚82的长度方向上,外引脚82b占据大部分,仅内部侧的一小部分由内引脚82a构成。
外引脚82b和内引脚82a为圆柱状。内引脚82a的直径大于外引脚82b。内引脚82a的形状能根据所接合的电容器元件的形状而变更为各种形状。
利用绝缘玻璃83对引脚82和底座81进行气密密封。具体而言,底座81的通孔的内周面与引脚82的与通孔内周面相对的部分之间的间隙被绝缘玻璃83填埋。
引脚82的内引脚82a与外引脚82b之间的接合部被绝缘玻璃83覆盖。由于内引脚82a与外引脚82b的接合部被绝缘玻璃83覆盖,因此外引脚82b不会在内部侧露出。由此,外引脚82b不会与电解液接触。引脚82中,仅对于电解液具有耐蚀性的铝制的内引脚82a与电解液接触,因此不会有金属溶解并污染电解液。
接着,在气密端子80上安装未图示的壳体以及电容器元件,从而构成铝电解电容器。壳体的平面形状为与图8A所示的底座81的平面形状相对应的细长形状。气密端子80被气密密封于壳体的开口部。对壳体进行气密密封时,在整个一周无间隙地对壳体的端部内周面与底座81的比扩大部81s更靠内部侧的外周面进行电阻熔接或激光熔接。
由于壳体与气密端子80气密密封,因此能确保壳体与气密端子80之间的气密性。尤其是,在本实施方式中,壳体为非圆筒形状,但即使是具有这种壳体的铝电解电容器,也能确保高气密性。此外,气密端子80的底座81与引脚82之间也通过绝缘玻璃83气密密封,从而确保了更高的气密性。由此,能防止壳体内的电解液干涸,能实现铝电解电容器的长寿命化。
(实施方式6)
下面参照图9A和图9B对本发明的实施方式6进行说明。
如图9A和图9B所示,本实施方式的气密端子90包括底座91、引脚92以及绝缘玻璃93。
底座91由覆层材料构成,该覆层材料通过利用铝制的表面材料91b覆盖由铁基金属材料制成的基材91a的一个表面而得到。底座91形成为俯视时呈长方形。底座91上等间隔地设有三个通孔。
构成底座91的覆层材料的端面上有基材91a露出,而底座91的面向内部侧的表面全部被由铝制成的表面材料91b覆盖,基材91a不露出。
铝对于铝电解电容器的电解液具有耐蚀性。由于铝电解电容器的内部侧没有底座91的基材91a露出,因此基材91a不会溶解到铝电解电容器的电解液中。
三个通孔中相邻的两个通孔分别被引脚92贯通。引脚92由铁基金属材料制成的外引脚92b以及铝制的内引脚92a构成。外引脚92b的一个端部与内引脚92a的一个端部抵接并接合。
外引脚92b与内引脚92a的接合部位于通孔内部并且靠近内部侧的位置。换言之,在贯通通孔的引脚92的长度方向上,外引脚92b占据大部分,仅内部侧的一小部分由内引脚92a构成。
外引脚92b和内引脚92a为圆柱状。内引脚92a的形状能根据所接合的电容器元件的形状而变更为各种形状。
利用绝缘玻璃93对引脚92和底座91进行气密密封。具体而言,底座91的通孔的内周面与引脚92的与通孔内周面相对的部分之间的间隙被绝缘玻璃93填埋。
引脚92的内引脚92a与外引脚92b之间的接合部被绝缘玻璃93覆盖。由于内引脚92a与外引脚92b的接合部被绝缘玻璃93覆盖,因此外引脚92b不会在内部侧露出。由此,外引脚92b不会与电解液接触。引脚92中,仅对于电解液具有耐蚀性的铝制的内引脚92a与电解液接触,因此不会有金属溶解并污染电解液。
第三个通孔91h是为了在内压过剩时供电解液介质的蒸汽逸出而设置的。该通孔91h中安装有阀或在外部侧开孔的盖体或塞等。
气密端子90上安装有未图示的壳体以及电容器元件,从而构成铝电解电容器。壳体的平面形状为与图9A所示的底座91的平面形状相对应的长方形。气密端子90被气密密封于壳体的开口部。壳体的气密密封通过下述方式来进行,即:在整个一周无间隙地对壳体的端部内周面和底座91的外周面进行熔接。更具体而言,对壳体的端部内周面和底座91的表面材料91b的外周面进行熔接。熔接工序中能使用电阻熔接或激光熔接。
由于壳体与气密端子90气密密封,因此能确保壳体与气密端子90之间的气密性。尤其是,在本实施方式中,壳体为非圆筒形状,但即使是具有这种壳体的铝电解电容器,也能确保高气密性。此外,气密端子90的底座91与引脚92之间也通过绝缘玻璃93气密密封,来确保高气密性。由此,能防止壳体内的电解液干涸,能实现铝电解电容器的长寿命化。
(实施方式7)
下面参照图10A和图10B对本发明的实施方式7进行说明。
如图10A和图10B所示,本实施方式的气密端子100包括底座101、引脚102以及绝缘玻璃103。
底座101由覆层材料构成,该覆层材料通过利用铝制的表面材料101b覆盖由铁基金属材料制成的基材101a的一个表面而得到。底座101形成为圆盘状。底座101上设有一个通孔。
构成底座101的覆层材料的端面上有基材101a露出,而底座101的面向内部侧的表面全部被由铝制成的表面材料101b覆盖,基材101a不露出。
铝对于铝电解电容器的电解液具有耐蚀性。由于铝电解电容器的内部侧没有底座101的基材101a露出,因此基材101a不会溶解到铝电解电容器的电解液中。
底座101的外部侧的表面上设有突出部101g。突出部101g构成为圆柱状。底座101直接或经由壳体与电容器元件的接地侧电连接。
底座101的通孔供引脚102贯通。引脚102由铁基金属材料制成的外引脚102b以及铝制的内引脚102a构成。外引脚102b的一个端部与内引脚102a的一个端部抵接并接合。
外引脚102b和内引脚102a为圆柱状。内引脚102a的内部侧与电容器元件电连接。内引脚的形状能根据所接合的电容器元件的形状而变更为各种形状。
利用绝缘玻璃103对引脚102和底座101进行气密密封。具体而言,底座101的通孔的内周面与引脚102的与通孔内周面相对的部分之间的一部分间隙被绝缘玻璃103填埋。如图10B所示,被绝缘玻璃103填埋的是通孔的长度方向上的一部分。绝缘玻璃103也可以遍及通孔的长度方向的整个长度。
引脚102的内引脚102a与外引脚102b之间的接合部被绝缘玻璃103覆盖。由于内引脚102a与外引脚102b的接合部被绝缘玻璃103覆盖,因此外引脚102b不会在内部侧露出。由此,外引脚102b不会与电解液接触。引脚102中,仅对于电解液具有耐蚀性的铝制的内引脚102a与电解液接触,因此不会有金属溶解并污染电解液。
气密端子100上安装有未图示的壳体以及电容器元件,从而构成铝电解电容器。气密端子100被气密密封于壳体的开口部。壳体的气密密封通过下述方式来进行,即:在整个一周无间隙地对壳体的端部内周面和底座101的外周面进行熔接。更具体而言,对壳体的端部内周面和底座101的表面材料101b的外周面进行熔接。熔接工序中能使用电阻熔接或激光熔接。
由于壳体与气密端子100气密密封,因此能确保壳体与气密端子100之间的气密性。此外,气密端子100的底座101与引脚102之间也通过绝缘玻璃103气密密封,从而确保了更高的气密性。由此,能防止壳体内的电解液干涸,能实现铝电解电容器的长寿命化。
本次公开的实施方式的所有内容应当被认为是用于例示而非用于限制。本发明的范围由权利要求书的范围来表示,而并非由上述说明来表示,本发明的范围还包括与权利要求书的范围等同的意思及范围内的所有变更。
工业上的实用性
能提供气密端子、铝电解电容器以及铝电解电容器的制造方法。
标号说明
10,30,50,70,80,90,100 气密端子
11,31,51,71,81,91,101 底座
11a,31a,51a,71a,81a,91a,101a 基材
11b,31b,51b,71b,81b,91b,101b 表面材料
12,32,52,72,82,92,102 引脚
12a,32a,52a,72a,82a,92a,102a 内引脚
12b,32b,52b,72b,82b,92b,102b 外引脚
13,33,53,73,83,93,103 绝缘玻璃
15,35 电容器元件
16,36 壳体
20,40 铝电解电容器
51s 扩径部
81c 中间层
81s 扩大部
91h 通孔
101g 突出部
Claims (10)
1.一种气密端子,与铝电解电容器气密固接,其特征在于,包括:
底座,该底座具有通孔,安装于所述铝电解电容器的壳体,并且由具有导电性的复合材料构成;
至少一个引脚,该至少一个引脚插入到所述底座的所述通孔中,并由具有导电性的复合材料构成;以及
绝缘玻璃,该绝缘玻璃对所述底座与所述引脚之间进行气密密封,
所述底座以及所述引脚的、与所述壳体内部的电解液接触的部分的表面由对于电解液具有耐蚀性的金属材料构成,
所述底座具有由铁基金属材料制成的基材、以及覆盖所述基材的至少一个表面且由铝制成的表面材料,
所述引脚具有由铁基金属材料制成的外引脚、以及与所述外引脚的一端抵接接合且由铝制成的内引脚,
所述外引脚与所述内引脚的接合部位于所述通孔内部并且靠近所述壳体的内部侧的位置,
在贯通所述通孔的所述引脚的长度方向上,所述绝缘玻璃中所述外引脚占据的部分多于所述内引脚占据的部分。
2.如权利要求1所述的气密端子,其特征在于,
所述绝缘玻璃由熔点比铝的熔点要低的低熔点玻璃形成。
3.一种铝电解电容器,其特征在于,包括:
权利要求1所述的气密端子;
阳极用铝箔,该阳极用铝箔的表面具有氧化覆膜;
电解纸,该电解纸浸渍有电解液;
阴极用铝箔;以及
铝制的壳体,该铝制的壳体将所述阳极用铝箔、所述电解纸以及所述阴极用铝箔收纳在内部,并气密密封有所述气密端子,
所述阳极用铝箔以及所述阴极用铝箔的至少任一方与所述引脚电连接。
4.如权利要求3所述的铝电解电容器,其特征在于,
所述阳极用铝箔以及所述阴极用铝箔的其中一方与所述引脚电连接,所述阳极用铝箔以及所述阴极用铝箔的另一方与所述底座电连接。
5.如权利要求3所述的铝电解电容器,其特征在于,
所述至少一个引脚具备两个引脚,
所述两个引脚的其中一个与所述阳极用铝箔连接,所述两个引脚的另一个与所述阴极用铝箔连接。
6.如权利要求3所述的铝电解电容器,其特征在于,
所述底座与所述壳体被压接。
7.如权利要求3所述的铝电解电容器,其特征在于,
所述底座与所述壳体熔接接合。
8.一种铝电解电容器的制造方法,其特征在于,包括:
对利用铝覆盖由铁基金属材料制成的基材的表面而得到的金属板进行冲压成形来制造具有通孔的底座的工序;
使由铝制成的内引脚与由铁基金属材料制成的外引脚的一端抵接接合来制造引脚的工序;
将所述引脚插入所述底座的所述通孔、并在所述引脚与所述底座的间隙中设置由熔点低于铝的低熔点玻璃制成的绝缘玻璃的压片的工序;
使通过所述设置得到的所述底座、所述引脚以及所述压片通过温度被调节到铝的熔点以下的加热炉从而利用所述绝缘玻璃将所述引脚和所述底座密封来制造气密端子的工序;
使由表面具有氧化覆膜的阳极用铝箔、浸渍有电解液的电解纸、以及阴极用铝箔构成的电容器元件与所述气密端子电连接的工序;以及
将所述电容器元件插入具有开口部的铝制的壳体、并对所述底座的外周面和所述壳体的所述开口部的内周面进行固定的工序。
9.如权利要求8所述的铝电解电容器的制造方法,其特征在于,
对所述底座的所述外周面和所述壳体的所述开口部的所述内周面进行固定的工序包含通过将所述底座压入所述壳体的所述开口部来将所述底座压接到所述壳体的工序。
10.如权利要求8所述的铝电解电容器的制造方法,其特征在于,
对所述底座的所述外周面和所述壳体的所述开口部的所述内周面进行固定的工序包含将所述底座的所述外周面无间隙地电阻熔接或激光熔接至所述壳体的所述开口部的所述内周面的工序。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015112734 | 2015-06-03 | ||
JP2015-112734 | 2015-06-03 | ||
PCT/JP2016/066438 WO2016195027A1 (ja) | 2015-06-03 | 2016-06-02 | 気密端子、アルミ電解コンデンサおよびアルミ電解コンデンサの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107636781A CN107636781A (zh) | 2018-01-26 |
CN107636781B true CN107636781B (zh) | 2020-01-17 |
Family
ID=57440514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680031455.7A Active CN107636781B (zh) | 2015-06-03 | 2016-06-02 | 气密端子、铝电解电容器以及铝电解电容器的制造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10249443B2 (zh) |
EP (1) | EP3306632B1 (zh) |
JP (1) | JP6760934B2 (zh) |
KR (1) | KR102373601B1 (zh) |
CN (1) | CN107636781B (zh) |
WO (1) | WO2016195027A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6853099B2 (ja) * | 2017-04-17 | 2021-03-31 | ショット日本株式会社 | 気密端子 |
JP6767316B2 (ja) * | 2017-06-29 | 2020-10-14 | ニチコン株式会社 | 電子部品およびその製造方法 |
JP2020021827A (ja) | 2018-08-01 | 2020-02-06 | ショット日本株式会社 | 気密端子 |
JP7170214B2 (ja) * | 2020-03-18 | 2022-11-14 | ショット日本株式会社 | 気密端子およびその気密端子を用いた接点装置 |
TWI804854B (zh) * | 2021-04-28 | 2023-06-11 | 至美電器股份有限公司 | 電解電容器 |
CN113555213A (zh) * | 2021-08-23 | 2021-10-26 | 姜健偉 | 一种电容封装结构 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3600017A (en) * | 1968-02-26 | 1971-08-17 | Isotronics Inc | Hermetic metal-to-glass seals |
US4476517A (en) * | 1983-10-07 | 1984-10-09 | Sprague Electric Company | Aluminum electrolytic capacitor |
JPH01315126A (ja) * | 1988-06-15 | 1989-12-20 | Nippon Chemicon Corp | アルミニウム電解コンデンサ |
JPH08162188A (ja) * | 1994-12-08 | 1996-06-21 | Fuji Denka:Kk | 気密端子 |
EP1014400A2 (en) * | 1998-12-21 | 2000-06-28 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor |
JP2010114132A (ja) * | 2008-11-04 | 2010-05-20 | Nec Schott Components Corp | 気密端子のめっき方法 |
JP2012084626A (ja) * | 2010-10-08 | 2012-04-26 | Sanyo Electric Co Ltd | 電解コンデンサの製造方法および電解コンデンサ |
CN104465109A (zh) * | 2013-09-16 | 2015-03-25 | Avx公司 | 包含复合涂层的湿式电解电容器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02158066A (ja) | 1988-12-09 | 1990-06-18 | Matsushita Electric Ind Co Ltd | 密封端子及び密封電気化学素子 |
US6716554B2 (en) * | 1999-04-08 | 2004-04-06 | Quallion Llc | Battery case, cover, and feedthrough |
JP2004342649A (ja) | 2003-05-13 | 2004-12-02 | Matsushita Electric Ind Co Ltd | 気密端子および気密端子のめっき方法 |
IL287733B2 (en) * | 2011-07-08 | 2023-04-01 | Fastcap Systems Corp | A device for storing energy at high temperatures |
US8932750B2 (en) * | 2011-07-27 | 2015-01-13 | Fastcap Systems Corporation | Aluminum housing with a hermetic seal |
-
2016
- 2016-06-02 WO PCT/JP2016/066438 patent/WO2016195027A1/ja active Application Filing
- 2016-06-02 US US15/578,444 patent/US10249443B2/en active Active
- 2016-06-02 CN CN201680031455.7A patent/CN107636781B/zh active Active
- 2016-06-02 KR KR1020177036837A patent/KR102373601B1/ko active IP Right Grant
- 2016-06-02 JP JP2017522253A patent/JP6760934B2/ja active Active
- 2016-06-02 EP EP16803461.9A patent/EP3306632B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3600017A (en) * | 1968-02-26 | 1971-08-17 | Isotronics Inc | Hermetic metal-to-glass seals |
US4476517A (en) * | 1983-10-07 | 1984-10-09 | Sprague Electric Company | Aluminum electrolytic capacitor |
JPH01315126A (ja) * | 1988-06-15 | 1989-12-20 | Nippon Chemicon Corp | アルミニウム電解コンデンサ |
JPH08162188A (ja) * | 1994-12-08 | 1996-06-21 | Fuji Denka:Kk | 気密端子 |
EP1014400A2 (en) * | 1998-12-21 | 2000-06-28 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor |
JP2010114132A (ja) * | 2008-11-04 | 2010-05-20 | Nec Schott Components Corp | 気密端子のめっき方法 |
JP2012084626A (ja) * | 2010-10-08 | 2012-04-26 | Sanyo Electric Co Ltd | 電解コンデンサの製造方法および電解コンデンサ |
CN104465109A (zh) * | 2013-09-16 | 2015-03-25 | Avx公司 | 包含复合涂层的湿式电解电容器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016195027A1 (ja) | 2018-04-05 |
KR20180015664A (ko) | 2018-02-13 |
CN107636781A (zh) | 2018-01-26 |
KR102373601B1 (ko) | 2022-03-14 |
JP6760934B2 (ja) | 2020-09-23 |
EP3306632A4 (en) | 2019-01-16 |
US10249443B2 (en) | 2019-04-02 |
EP3306632B1 (en) | 2021-04-07 |
WO2016195027A1 (ja) | 2016-12-08 |
EP3306632A1 (en) | 2018-04-11 |
US20180151300A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107636781B (zh) | 气密端子、铝电解电容器以及铝电解电容器的制造方法 | |
TWI278882B (en) | Surface-mount capacitor and method of producing the same | |
US8163997B2 (en) | Electronic component, lead-wire and their production methods | |
JP2000077269A (ja) | チップ形固体電解コンデンサおよびその製造方法 | |
WO2008029694A1 (fr) | Fil de sortie de condensateur, son procédé de fabrication, et condensateur utilisant un tel fil | |
US8896984B2 (en) | Solid electrolytic capacitor | |
JP7113285B2 (ja) | 電解コンデンサ | |
US6676440B1 (en) | Coin type electric element and printed circuit board with a coin type electric element | |
JP2018537868A (ja) | 充填ポートおよび表面実装用終端部をもつ、体積効率を改良した湿式電解コンデンサー | |
KR20150016699A (ko) | 탄탈륨 캐패시터 및 그 제조 방법 | |
KR102176281B1 (ko) | 탄탈륨 캐패시터 및 그 제조 방법 | |
US7352561B2 (en) | Surface-mount solid electrolytic capacitor and process for manufacturing the same | |
JP4887973B2 (ja) | 面実装型電流ヒューズの製造方法 | |
JP2009259970A (ja) | 電気化学セル及び表面実装型電気化学セル | |
JP2008147541A (ja) | コンデンサ | |
KR20150049918A (ko) | 탄탈륨 캐패시터 및 그 제조 방법 | |
JP7548897B2 (ja) | 薄型湿式電解タンタルコンデンサー | |
TWI419185B (zh) | Electronic parts and their wires, and the manufacturing methods thereof | |
KR20150053425A (ko) | 탄탈륨 캐패시터 및 그 제조 방법 | |
JP4858984B2 (ja) | 端子板付き電池 | |
JP2000268934A (ja) | チップ型サージ吸収素子及びその製造方法 | |
JP2005051051A (ja) | 固体電解コンデンサ及びその製造方法 | |
KR20230133470A (ko) | 탄탈 커패시터 | |
JP4076089B2 (ja) | 磁気回転子、及び、これを用いた非可逆回路素子 | |
JP3473217B2 (ja) | リレー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB02 | Change of applicant information |
Address after: Shiga Applicant after: Schott (Japan) Corporation Address before: Shiga Applicant before: NEC Schott Components Corp. |
|
CB02 | Change of applicant information | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |