CN107565545B - 一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法 - Google Patents

一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法 Download PDF

Info

Publication number
CN107565545B
CN107565545B CN201710630238.6A CN201710630238A CN107565545B CN 107565545 B CN107565545 B CN 107565545B CN 201710630238 A CN201710630238 A CN 201710630238A CN 107565545 B CN107565545 B CN 107565545B
Authority
CN
China
Prior art keywords
matrix
impedance
contrast matrix
equivalent
impedance contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710630238.6A
Other languages
English (en)
Other versions
CN107565545A (zh
Inventor
葛兴来
江坷滕
冯晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201710630238.6A priority Critical patent/CN107565545B/zh
Publication of CN107565545A publication Critical patent/CN107565545A/zh
Application granted granted Critical
Publication of CN107565545B publication Critical patent/CN107565545B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种基于阻抗回比矩阵的牵引车‑网耦合系统稳定性判据计算方法,以高铁车网级联系统为代表的MIMO级联系统,包括推导计算系统的等效前级输出阻抗,推导计算系统的等效后级输入导纳,计算系统整体传递函数并获得回比矩阵及其转置,估计回比矩阵特征值及其回比矩阵的转置矩阵的特征值,并限制其分布区域,特征值分布区域设置禁区,获得进一步降低保守性的MIMO系统稳定性判据。本发明判据可简单有效地分析MIMO级联系统稳定性,并且保守性相较于现有的奇异值判据、范数判据等都更小。

Description

一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计 算方法
技术领域
本发明涉及电力牵引交流传动技术领域,具体为电力牵引交流传动系统网侧变流器的基于阻抗回比矩阵的多输入多输出(MIMO)级联控制系统稳定性判据计算方法。
背景技术
实际生产应用中存在各种类型的自动控制系统,但其只有在满足稳定性条件下才能正常工作,因此系统稳定性分析是自控控制领域一个至关重要的问题。
经典控制理论中的方法,如NyquiSt判据、Bode图分析等,可对单输入单输出(SISO)系统稳定性进行分析。Middlebrook对于级联SISO系统提出了基于阻抗回比函数的稳定性判据,随后不少学者基于禁区的概念对Middlebrook阻抗判据进行了推广,减小了判据的保守性。而实际生产应用中的系统大多为多输入多输出(MIMO)系统,MIMO系统稳定性分析往往通过线性系统理论的方法,需要对系统状态空间模型进行精确建模。
Belkhayat等人将SISO级联系统阻抗稳定性分析方法推广于MIMO级联系统,提出奇异值判据、范数判据等方法,相较于线性系统理论的方法更为简单,但是运类判据保守性较大。刘方诚等人基于G-sum范数提出了一种改进型G-sum范数改进型判据,进一步降低了系统保守性。廖一橙等人结合Middlebrook和Belkhayat等人的观点针对MIMO级联系统提出了基于阻抗回比矩阵的稳定性分析方法,进一步降低了系统保守性。即便如此,现有技术方法的准确性和系统保守性仍需进一步提升。
发明内容
本发明所要解决的技术问题是提供一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法,缩小现有判据的禁区范围,该判据可简单有效地分析MIMO级联系统稳定性,并且保守性相较于现有的奇异值判据、范数判据等都更小。
为解决上述技术问题,本发明采用的技术方案是:
一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法,包括以下步骤:
步骤1:简化系统模型;忽略拉普拉斯变换中的高阶项,将LC滤波器中的电容C2与支撑电容Cd等效为一个电容Cs
Figure GDA0002075098600000011
其中,udc、idc分别为直流侧输出电压和电流,id为负载电流,L2为与LC滤波器的电感,s为拉普拉斯变换中引入的一个复变量;
步骤2:计算前级系统的等效输出阻抗:在两相旋转坐标下,MIMO级联系统的前级系统复频域下输出阻抗矩阵:
Figure GDA0002075098600000021
其中,Rs、Ls分别为牵引网折算到变压器二次侧的等效电阻和电感,w为基波角频率;
步骤3:计算后级系统的等效输入导纳:针对动车组牵引变流器的多级输入输出系统,通过基尔霍夫电压定律、基尔霍夫电流定律以及控制回路的关系式获取后级系统在两相旋转坐标下的等效输入导纳:
YLdq=2maYin=nYin
其中,Yin代表变流器的输入导纳矩阵,m为动车台数,a为每列机车的牵引动力单元个数;
步骤4:计算系统整体传递函数并获得回比矩阵及其转置:
Figure GDA0002075098600000022
其中,Ldq为系统阻抗回比矩阵,包含的元素分别为Ldd、Ldq、Lqd和Lqp;Ldq1为系统阻抗回比矩阵,包含的元素分别为Ldd1、Ldq1、Lqd1和Lqp1;Zsdq为前级系统等效输出阻抗,其元素分别为Zdd、Zdq、Zqd和Zqq;YLdq为后级系统等效输入导纳,其元素分别为Ydd、Ydq、Yqd和Yqq
步骤5:估计阻抗回比矩阵特征值并限制其分布区域:利用盖尔圆定理限制特征值的分布区域,特征值满足以下条件
Figure GDA0002075098600000023
其中,λi、λi1分别为系统阻抗回比矩阵Ldq、Ldq1的第i个特征值;Ldd、Ldq、Lqd和Lqp分别为Ldq的元素;Ldd1、Ldq1、Lqd1和Lqp1分别为Ldq1的元素;
步骤6:特征值分布区域设置禁区,获得低保守性的MIMO级联系统稳定性判据:
Figure GDA0002075098600000024
相应的八个子判据为:
Re{Ldd}-|Ldq|+1>0、Re{Lqq}-|Lqd|+1>0、Re{Ldd}-|Lqd|+1>0、Re{Lqq}-|Ldq|+1>0、
Re{Ldd1}-|Ldq1|+1>0、Re{Lqq1}-|Lqd1|+1>0、Re{Ldd1}-|Lqd1|+1>0、Re{Lqq1}-|Ldq1|+1>0;
式中,Ldd、Ldq、Lqd和Lqp分别为系统阻抗回比矩阵Ldq的四个元素,Ldd1、Ldq1、Lqd1和Lqp1分别为系统阻抗回比矩阵Ldq1的四个元素,Re表示元素的实部。
与现有技术相比,本发明的有益效果是:1、本发明考虑并联滤波电路的影响,适用范围更广。2、本发明将既有的MIMO系统稳定性判断方法做出改进,进一步缩小判据的禁区,相对于现有的用于MIMO系统的奇异值判据、范数判据等方法,保守性更低,可靠性更强,使系统的稳定性判断更加精确。
附图说明
图1为本发明的全并联复线AT牵引网等效电路。
图2为本发明的CRH系列动车组单个牵引动力单元示意图。
图3为本发明的等效电路图。
图4为本发明的CRH系列动车组牵引变流器dq电流控制框图。
图5为本发明的车网级联系统拓扑图。
图6为本发明的简化的小信号框图
图7为本发明的基于禁区的MIMO稳定性判据示意图。
图8为本发明6台车接入牵引网的稳定性分析幅频图。
图9为本发明7台车接入牵引网的稳定性分析幅频图。
图10为本发明的6车接入牵引网低频振荡的仿真再现图。
图11为本发明的7车接入牵引网低频振荡的仿真再现图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。作为本发明方法的具体实施方法,设定编程环境为MATLAB/Simulink,编程语言为MATLAB/Simulink自身的C语言。
以高速铁路中CRH系列两电平动车组接入的车网级联系统为例,包括前级牵引网侧系统等效源阻抗的简化和计算,后级动车组侧系统等效负荷导纳的简化和计算,车网级联系统的传递函数的计算并得出回比矩阵,估计回比矩阵特征值并限制其分布区域,设置禁区并获得低保守性的系统稳定性分析结果。
本发明中的MIMO级联系统稳定性分析由以下各步骤组成:
1)、计算前级系统的等效输出阻抗
前级系统的等效输出阻抗通过推导牵引网等效阻抗获得,此处对中国高铁较常用的全并联复线AT供电系统进行建模和计算。图1为全并联复线AT牵引网等效电路,其中T代表上行接触网,R代表钢轨,F代表下行接触网。基于广义对称分量法,将前级系统输出阻抗Zs分解到两相旋转坐标系(dq系)下,得到MIMO级联系统的前级系统复频域下输出阻抗矩阵:
Figure GDA0002075098600000041
其中,Rs、Ls分别为牵引网折算到变压器二次侧的等效电阻和电感,w为基波角频率。
2)、简化系统模型
根据基尔霍夫电流定律和基尔霍夫电压定律得到系统状态方程,经过拉普拉斯变换后,忽略高阶项,将LC滤波器中的电容C2与支撑电容Cd等效为一个电容Cs
Figure GDA0002075098600000042
其中,udc、idc分别为直流侧输出电压和电流,id为负载电流。
3)、计算后级系统的等效输入导纳
后级系统的输入导纳可以通过推导列车的数学模型获得,CRH系列动车组单个牵引动力单元如图2所示。逆变器和电机部分对稳定性分析影响微弱,故可等效为一个电阻简化建模,且由于两重化整流器结构一致,对单个变流器的直流侧等效电容和负荷分别为原来的1/2和2倍,因此简化后CRH系列动车组牵引变流器等效电路如图3所示。
假设Sa和Sb分别表示a桥和b桥的开关状态,定义如下
Figure GDA0002075098600000043
则整流器输入端电压uac和输出电压udc的关系可以表示为
uac=(Sa-Sb)udc
因为采用了dq解耦控制,输入电压Un和输入电流in经dq解耦后得到Ud,Uq和id,iq。Un和in被视为d分量,通过如下坐标变换法则
x=xd coswt-xq sinwt
将电压电流分解到dq系下
Figure GDA0002075098600000044
将上式推广到一般级联系统可以得到整流器模块的特征方程为:
Figure GDA0002075098600000051
其中,
Figure GDA0002075098600000052
分别为网侧电压小信号分量;
Figure GDA0002075098600000053
分别为整流器输入电流小信号分量;Z0为整流器模块的闭环输出阻抗;Td和Tq分别为整流器的闭环增益;Gid、Giq分别为整流器模块负载电流到输入电流的闭环增益;Ydd、Ydq、Yqd、Yqq为整流器模块的闭环输入导纳。
同理,滤波器模块的特征方程表述为:
Figure GDA0002075098600000054
其中;
Figure GDA0002075098600000055
分别为滤波器输入电流小信号分量;Tvd和Tvq分别为滤波器模块的电压增益;Zdd、Zdq、Zqd、Zqq为滤波器模块的输出导纳。将上述两式的参数用矩阵形式来表示得到如图6所示的简化小信号框图,使系统级闭合回路的表示更清晰。
在静态工作点,上式进一步表示为
Figure GDA0002075098600000056
由于Eq和Iq均为零,Id,Dd和Dq稳态值表示为:
Figure GDA0002075098600000057
其中,
Figure GDA0002075098600000058
为推导整流器的小信号模型,对每个变量的稳态值加上一个小信号值
Figure GDA0002075098600000059
为了方便计算描述,将上述微分方程改写为矩阵形式进行进一步计算。
Figure GDA0002075098600000061
首先建立状态变量矩阵、开关变量矩阵和输入变量矩阵如下:
Figure GDA0002075098600000062
通过拉普拉斯变换求解可得
X=(sI3-A)-1BY+(sI3-A)-1CZ
其中,I3为3阶单位矩阵。
CRH系列动车组整流器控制策略采用的是dq坐标系下电流电压双环控制策略。整流器控制器主要由锁相环(PLL)、电压控制器(DVC)、电流控制器(ACC)、二阶带通滤波器和脉宽整流器触发信号生成模块(SPWM)组成,连接示意图如图4所示,得到下式
Figure GDA0002075098600000063
其中,iq*=0,Kpi、Kii分别为电流环PI控制器的比例参数和积分参数,Kpv、Kiv分别为电压环PI控制器的比例参数和积分参数。
图4的SPWM能够映射到dq结构下,假设载波幅值为1V,则[Sd,Sq]T和[ud,uq]T关系为
Figure GDA0002075098600000064
则PWM变流器的开关信号矩阵被表示为
Figure GDA0002075098600000065
Y=DX+EZ
结合系统状态矩阵X得
Figure GDA0002075098600000071
其中,Giu-e表示由输入信号Z到输出信号X之间的传递矩阵,Gi-e为2*2阶矩阵,表示输入电压到电流之间的传递矩阵,表达式为:
Figure GDA0002075098600000072
动车组在dq坐标下的导纳矩阵表示为
YL=2maYin=nYin=nGi-e
其中,m为动车组台数,a为单台动车组牵引动力单元个数。
3)、计算系统整体传递函数并获得回比矩阵
车网系统可以被考虑为一个级联系统,整个系统的传递函数能够通过网侧输出阻抗和车侧输入导纳推导得到。根据图5由KVL电压定律得
Figure GDA0002075098600000073
通过Laplace变换得到车网级联系统的传递函数矩阵,即牵引网网侧电压es与网侧电流iL简单闭环传递传递方程为:
Gcl=YLdq(I2+ZSdq YLdq)-1=YLdq(I2+Ldq)-1
则回比矩阵定义为:
Ldq=ZSdq YLdq
而根据如图6所示的简化的小信号框图,级联系统回比矩阵还可以表示为:
Ldq1=YLdq ZSdq
4)、估计阻抗回比矩阵特征值并限制其分布区域
利用盖尔圆定理限制特征值的分布区域,特征值位于以对角元素为圆心,以同一行的非对角元素和为半径的区域,因此Ldq(S)的特征值、位于图6所示的盖尔圆G1或者G2区域中,满足式子:
i-Ldd|<|Ldq|or|λi-Lqq|<|Lqd|
由于Ldq的所有特征值在Ldq T的n个盖尔圆内,即Ldq的列盖尔圆,因此特征值同样满足式子:
i-Ldd|<|Lqd|or|λi-Lqq|<|Ldq|
根据基本的矩阵理论,矩阵的乘法并不满足乘法交换律。理论上讲,除非ZSdq(s)和YLdq(s)完全相同,否则两个系统回比矩阵Ldq(s)和Ldq1(s)互不相同,而根据Ldq(s)和Ldq1(s)所得到的盖尔圆也各不相同。然而,即使这两个回比矩阵形式不同,但特征值仍然相同。根据这个性质可知,特征值λ1和λ2会位于根据两个回比矩阵Ldq(s)和Ldq1(s)所得到的盖尔圆的相交部分。于是,可通过利用两个特征值相同但是形式不同的系统回比矩阵来提高对于特征值位置估计的准确性,减小稳定性判据的保守性。因此Ldq1(S)的特征值满足式子:
i1-Ldd1|<|Ldq1|or|λi1-Lqq1|<|Lqd1|
由于Ldq1的所有特征值在Ldq1 T的n个盖尔圆内,即Ldq1的列盖尔圆,因此特征值同样满足式子:
i1-Ldd1|<|Lqd1|or|λi1-Lqq1|<|Ldq1|
5)、特征值分布区域设置禁区,获得低保守性的MIMO级联系统稳定性判据
为了降低保守性,一个基于禁区的判据被推广到MIMO系统,通过限制Ldq(S)和Ldq1(S)的特征值在(-1+j0)右侧,使得绕过(-1+j0)的Nyquist围线仍旧为0,保持系统稳定,如图6所示。
对于Ldq和Ldq1盖尔圆对特征值的限制,可以得到低保守性的MIMO级联系统稳定性判据为
Figure GDA0002075098600000081
由此,得到相应的八个子判据为:
f(1):Re{Ldd}-|Ldq|+1>0
f(2):Re{Lqq}-|Lqd|+1>0
f(3):Re{Ldd}-|Lqd|+1>0
f(4):Re{Lqq}-|Ldq|+1>0
f(5):Re{Ldd1}-|Ldq1|+1>0
f(6):Re{Lqq1}-|Lqd1|+1>0
f(7):Re{Ldd1}-|Lqd1|+1>0
f(8):Re{Lqq1}-|Ldq1|+1>0
计算参数和车网系统参数如表1所示。
表1计算参数和车网系统参数
Figure GDA0002075098600000091
提出的判据用幅频图表示,八条曲线分别表示八个子判据,当同一种线型的黑线和灰线均大于零时系统定,由图8和图9可得,6台车接入牵引网时系统临界稳定,当接入7台时系统不稳定,结合图10和图11低频振荡现象,判据能够准确确定车网级联系统的稳定性情况。

Claims (1)

1.一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法,其特征在于,包括以下步骤:
步骤1:简化系统模型:由于拉普拉斯变换中高阶项的系数的数量级远低于常数项,因此可以等效忽略高阶项,将LC滤波器中的电容C2与支撑电容Cd等效为一个电容Cs
Figure FDF0000010284890000011
其中,udc、idc分别为直流侧输出电压和电流,id为负载电流,L2为与LC滤波器的电感,s为拉普拉斯变换中引入的一个复变量;
步骤2:计算前级系统的等效输出阻抗:在两相旋转坐标下,MIMO级联系统的前级系统复频域下输出阻抗矩阵:
Figure FDF0000010284890000012
其中,Rs、Ls分别为牵引网折算到变压器二次侧的等效电阻和电感,w为基波角频率;
步骤3:计算后级系统的等效输入导纳:针对动车组牵引变流器的多级输入输出系统,通过基尔霍夫电压定律、基尔霍夫电流定律以及控制回路的关系式获取后级系统在两相旋转坐标下的等效输入导纳:
YLdq=2maYin=nYin
其中,Yin代表变流器的输入导纳矩阵,m为动车台数,a为每列机车的牵引动力单元个数;
步骤4:基于控制系统的闭环特征方程及其推导过程,得到系统整体传递函数的2种形式,因此可获得如下所示的2种形式的系统回比矩阵:
Figure FDF0000010284890000013
其中,Ldq为系统阻抗回比矩阵,包含的元素分别为Ldd、Ldq、Lqd和Lqp;Ldq1为系统阻抗回比矩阵,包含的元素分别为Ldd1、Ldq1、Lqd1和Lqp1;Zsdq为前级系统等效输出阻抗,其元素分别为Zdd、Zdq、Zqd和Zqq;YLdq为后级系统等效输入导纳,其元素分别为Ydd、Ydq、Yqd和Yqq
步骤5:估计阻抗回比矩阵特征值并限制其分布区域:利用盖尔圆定理限制特征值的分布区域,特征值满足以下条件
Figure FDF0000010284890000021
其中,λi、λi1分别为系统阻抗回比矩阵Ldq、Ldq1的第i个特征值;Ldd、Ldq、Lqd和Lqp分别为Ldq的元素;Ldd1、Ldq1、Lqd1和Lqp1分别为Ldq1的元素;
步骤6:特征值分布区域设置禁区,获得低保守性的MIMO级联系统稳定性判据:
Figure FDF0000010284890000022
Figure FDF0000010284890000023
相应的八个子判据为:
Re{Ldd}-|Ldq|+1>0、Re{Lqq}-|Lqd|+1>0、Re{Ldd}-|Lqd|+1>0、Re{Lqq}-|Ldq|+1>0、
Re{Ldd1}-|Ldq1|+1>0、Re{Lqq1}-|Lqd1|+1>0、Re{Ldd1}-|Lqd1|+1>0、Re{Lqq1}-|Ldq1|+1>0;
式中,Ldd、Ldq、Lqd和Lqp分别为系统阻抗回比矩阵Ldq的四个元素,Ldd1、Ldq1、Lqd1和Lqp1分别为系统阻抗回比矩阵Ldq1的四个元素,Re表示元素的实部。
CN201710630238.6A 2017-07-28 2017-07-28 一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法 Active CN107565545B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710630238.6A CN107565545B (zh) 2017-07-28 2017-07-28 一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710630238.6A CN107565545B (zh) 2017-07-28 2017-07-28 一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法

Publications (2)

Publication Number Publication Date
CN107565545A CN107565545A (zh) 2018-01-09
CN107565545B true CN107565545B (zh) 2021-03-16

Family

ID=60974696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710630238.6A Active CN107565545B (zh) 2017-07-28 2017-07-28 一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法

Country Status (1)

Country Link
CN (1) CN107565545B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983635B (zh) * 2018-06-19 2022-05-13 兰州交通大学 一种crh5型动车组投入多车网电气耦合系统稳定性分析方法
CN108847670B (zh) * 2018-07-30 2021-04-09 西南交通大学 一种双馈风机网侧变换器的谐波不稳定分析方法
CN109450284B (zh) * 2018-11-23 2020-06-30 广东雅达电子股份有限公司 一种考虑阻抗耦合的三相逆变器稳定性分析方法
CN110780118A (zh) * 2019-10-15 2020-02-11 西南交通大学 一种应用于车网系统的多频率dq阻抗测量的计算方法
CN110866338B (zh) * 2019-11-13 2021-08-17 清华大学 基于耦合阻抗模型求取视在阻抗模型的方法及装置
CN111241782B (zh) * 2020-01-07 2023-07-25 深圳英嘉通半导体有限公司 基于集成电路的供电噪声分析方法
CN112636380B (zh) * 2020-12-21 2022-11-18 中国科学院电工研究所 一种基于盖尔圆理论的交直流配用电系统特征值分析方法
CN115102191B (zh) * 2022-07-05 2024-04-02 兰州交通大学 一种光伏接入牵引供电系统稳定性分析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813884B2 (en) * 2008-01-14 2010-10-12 Chang Gung University Method of calculating power flow solution of a power grid that includes generalized power flow controllers
DE102013007881A1 (de) * 2013-05-08 2014-11-13 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zur Abbremsung einer Zugfahrzeug-Anhängerkombination mit reduzierter Anhängerbremskraft abhängig vom Ansprechen des Zugfahrzeug-ABS
CN106125715B (zh) * 2016-06-21 2018-06-19 西南交通大学 一种基于阻抗回比矩阵的mimo级联系统稳定性分析方法
CN106532685B (zh) * 2016-10-26 2019-02-01 浙江大学 用于并网逆变器稳定分析的广义阻抗判据计算方法及应用

Also Published As

Publication number Publication date
CN107565545A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
CN107565545B (zh) 一种基于阻抗回比矩阵的牵引车-网耦合系统稳定性判据计算方法
CN110556871B (zh) 基于结构保持方法的大规模光伏发电系统聚合等值方法
CN109167361A (zh) 一种lcl型三相并联有源电力滤波器的新型控制方法
CN106787910A (zh) 应用于并网逆变器电流控制的改进重复控制器设计方法
CN103296905B (zh) 三相电压型功率因数校正变换器的自适应控制方法
CN107294527A (zh) 同步旋转坐标系锁相环及其测试方法、装置
CN107394780B (zh) Lcl型并网逆变器无电容电流传感器的谐振电流抑制法
CN110829421A (zh) 一种vsc级联llc的系统阻抗建模方法
CN110601196B (zh) 一种配电网中有源滤波器的最优安装点选取方法
Luhtala et al. Adaptive control of grid-connected inverters based on real-time measurements of grid impedance: DQ-domain approach
CN113258607B (zh) 基于不同渗透下的光伏发电系统动态离散等值模型建立方法
CN105406741B (zh) 一种三相电网电压不平衡时pwm整流器模糊滑模变结构控制方法
CN106786738A (zh) 基于svpwm和模糊pi的z源逆变器并网控制方法
CN106125715B (zh) 一种基于阻抗回比矩阵的mimo级联系统稳定性分析方法
CN106130043A (zh) 基于情感智能及无源性理论的三相四桥臂的双闭环控制方法
Zhu et al. Stability assessment of modular multilevel converters based on linear time-periodic theory: Time-domain vs. frequency-domain
CN113419588A (zh) 一种基于阻抗特性的两级级联变换器系统稳定性分析方法
Baker et al. Resilient Model based Predictive Control Scheme Inspired by Artificial intelligence methods for grid-interactive inverters
CN112003271B (zh) 基于分散式阻抗判据的换流器接入交流微电网稳定性分析方法
Sebasthirani et al. Design of shunt active power filter with fuzzy logic control for mitigating harmonics
CN107093909B (zh) 一种提高弱电网下并网逆变器稳定性的虚拟导纳方法
Luhtala et al. Adaptive method for control tuning of grid-connected inverter based on grid measurements during start-up
Wang et al. Neural network-based model predictive control approach for modular multilevel converters
Thirumoorthi et al. Artificial neural network controlled shunt active power filter for minimization of current harmonics in industrial drives
CN103344823B (zh) 应用于兆瓦级变流器的小波网络电流瞬时值检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant