CN107533339B - 用于对传感器操作进行热调节的系统和方法 - Google Patents

用于对传感器操作进行热调节的系统和方法 Download PDF

Info

Publication number
CN107533339B
CN107533339B CN201580078906.8A CN201580078906A CN107533339B CN 107533339 B CN107533339 B CN 107533339B CN 201580078906 A CN201580078906 A CN 201580078906A CN 107533339 B CN107533339 B CN 107533339B
Authority
CN
China
Prior art keywords
temperature
sensor
predetermined
filler
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580078906.8A
Other languages
English (en)
Other versions
CN107533339A (zh
Inventor
潘国秀
石仁利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Zhuoyu Technology Co ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Priority to CN202010337549.5A priority Critical patent/CN111506132B/zh
Priority to CN202010342764.4A priority patent/CN111459211B/zh
Publication of CN107533339A publication Critical patent/CN107533339A/zh
Application granted granted Critical
Publication of CN107533339B publication Critical patent/CN107533339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0083Temperature control
    • B81B7/0087On-device systems and sensors for controlling, regulating or monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/003Characterising MEMS devices, e.g. measuring and identifying electrical or mechanical constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/008Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00 with calibration coefficients stored in memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/036Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Control Of Temperature (AREA)
  • Gyroscopes (AREA)

Abstract

提供了用于校准和调节传感器(101)的温度的系统和方法。可以提供一个或多个温度调节装置(102)来调节传感器(101)的温度。可以提供温度调节装置(102)中的一个或多个来执行校准以确定传感器偏压与传感器温度之间的关系。一个或多个温度调节装置(102)可以内置到传感器(101)中。

Description

用于对传感器操作进行热调节的系统和方法
背景技术
传感器测量值可能随传感器操作温度的变化而产生不同零偏。在一些情况下,可以进行校准来确定传感器零偏与传感器操作温度之间的关系,以使得可以通过对传感器的操作温度的变化进行补偿来使传感器测量值更为准确。所述校准可能随时间推移而发生偏移。用户可能需要将传感器返给制造商来重新校准所述传感器。在一些情况下,在其内校准传感器的温度范围可能限于较窄的温度范围。
发明内容
本发明提供了用于校准和调节传感器的温度的系统和方法。可以提供一个或多个温度调节装置来调节所述传感器的温度。可以提供所述温度调节装置中的一个或多个来执行校准以确定传感器零偏与传感器温度之间的关系。所述一个或多个温度调节装置可以内置到所述传感器中。
本公开的一方面提供了一种用于维持传感器的稳定操作的热调节系统,所述系统包括:传感器;一个或多个温度调节装置,其(1)与所述传感器热连通,(2)被配置用于在所述传感器的操作之前(a)将所述传感器的温度从初始温度调节至预定温度并且(b)记录在(i)所述初始温度、(ii)所述预定温度以及(iii)所述初始温度与所述预定温度之间的一个或多个中间温度下的传感器零偏,并且(3)被配置用于将所述传感器的温度从起始温度调节至操作温度;以及与所述传感器和所述一个或多个温度调节装置通信的一个或多个处理器,所述一个或多个处理器被编程用于基于在所记录的(1)所述起始温度与所述预定温度之间的一个或多个中间温度以及(2)所述预定温度下的传感器零偏来校正所述传感器的传感器测量值。
本公开的另一方面提供了一种调节传感器单元的温度的方法,所述方法包括:通过从一个或多个温度调节装置提供热刺激来校准所述传感器,所述一个或多个温度调节装置(1)与所述传感器热连通并且(2)被配置用于在所述传感器的操作之前(a)将所述传感器的温度从初始温度调节至预定温度并且(b)记录在(i)所述初始温度、(ii)所述预定温度以及(iii)所述初始温度与所述预定温度之间的一个或多个中间温度下的传感器零偏;利用温度传感器来感测所述传感器的温度;从一个或多个温度调节装置提供热刺激,所述一个或多个温度调节装置(1)与所述传感器热连通并且(2)被配置用于将所述传感器的所述温度从起始温度调节至操作温度;以及基于所记录的在(1)所述起始温度与所述预定温度之间的一个或多个中间温度以及(2)所述预定温度下的传感器零偏来校正所述传感器的传感器测量值。
在一些实施方式中,所述一个或多个温度调节装置可以按预定温度变化率将所述传感器的温度从初始温度调节至预定温度。所述一个或多个温度调节装置可以按操作温度变化率将所述传感器的温度从起始温度调节至操作温度。在一些情况下,所述一个或多个温度调节装置和所述传感器可以安装在共用基底或共用芯片上。可以在所述初始温度与所述预定温度之间的一个或多个中间整数温度下记录所述传感器零偏。在一些情况下,通过在所述传感器的操作之前记录所述传感器零偏时所处的第一值与第二值之间进行插值来校正处于所述传感器的操作之前可以记录传感器零偏时所处的值之外的温度值。例如,所述插值可以是线性插值。
在一些实施方式中,所述一个或多个温度调节装置中的至少一个可以是加热器。或者,所述一个或多个温度调节装置中的至少一个可以是冷却装置。在一些实施方式中,所述传感器可以是惯性测量单元(IMU)。例如,所述IMU可以包括微机电系统(MEMS)传感器。或者,所述传感器可以是陀螺仪。任选地,所述传感器可以是传感器阵列。在一些情况下,所述共用基底可以是印刷电路板(PCB)。
在一些实施方式中,多个温度调节装置可以均匀地分布在所述传感器周围的三维空间或二维空间中。在一些情况下,所述传感器与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约10mm。任选地,所述传感器与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约10mm。任选地,所述传感器与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约1mm。任选地,所述传感器与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约0.1mm。在一些情况下,所述预定温度变化率为约1℃/s、约0.1℃/s、约0.01℃/s或约0.001℃/s。
在一些实施方式中,可以在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。在一些情况下,所述填充物具有至少约为空气热导率的2倍、5倍、10倍或100倍的热导率。在一些实施方式中,所述填充物可以是热塑料、硅或环氧树脂,并且可以将所述传感器与碎屑隔离。
在一些实施方式中,用户可以通过指导所述热调节系统在所述传感器的操作之前在(i)所述初始温度、(ii)所述预定温度以及(iii)所述初始温度与所述预定温度之间的一个或多个中间温度下记录传感器零偏来发起校准。在一些情况下,所述用户可以在所述校准期间将所述传感器放置在水平表面上。在一些情况下,所述校准可以由用户通过在提供于所述传感器上的用户接口上输入命令来发起。例如,所述用户接口可以包括按钮。
在一些实施方式中,所述操作温度变化率可以等于所述预定温度变化率。或者,所述操作温度变化率可以大于所述预定温度变化率。例如,所述操作温度变化率可以至少约为所述预定温度变化率的2倍、10倍、50倍、100倍。任选地,所述操作温度变化率可以小于所述预定温度变化率。在一些情况下,当所述传感器处于使用中时,所述温度调节装置可以是关闭的。
本公开的另一方面提供了一种用于维持传感器的稳定操作的热调节系统,所述系统包括:传感器;以及一个或多个温度调节装置,其(1)与所述传感器热连通,并且(2)被配置用于以满足或超过阈值的温度变化率将所述传感器的温度从初始温度调节至预定温度,填充物被提供在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中。
在一些实施方式中,所述传感器和所述一个或多个温度调节装置可以安装在共用基底或共用芯片上。在一些情况下,在一些实施方式中,所述传感器可以是惯性测量单元(IMU)。例如,所述IMU可以包括微机电系统(MEMS)传感器。或者,所述传感器可以是陀螺仪。任选地,所述传感器可以是传感器阵列。在一些情况下,所述共用基底可以是印刷电路板(PCB)。在一些实施方式中,所述一个或多个温度调节装置中的至少一个可以是加热器或冷却装置。
在一些实施方式中,多个所述温度调节装置可以均匀地分布在所述传感器周围的三维空间或二维空间中。在一些情况下,所述传感器与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约10mm。任选地,所述传感器与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约10mm。任选地,所述传感器与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约1mm。任选地,所述传感器与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约0.1mm。在一些情况下,所述预定温度变化率为约1℃/s、约0.1℃/s、约0.01℃/s或约0.001℃/s。
在一些实施方式中,可以在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。在一些情况下,所述填充物具有至少约为空气热导率的2倍、5倍、10倍或100倍的热导率。在一些实施方式中,所述填充物可以是热塑料、硅或环氧树脂,并且可以将所述传感器与碎屑隔离。
在一些实施方式中,所述传感器在所述初始温度与所述预定温度之间的过渡状态期间的零偏误差可以基于对所述传感器的所述零偏误差的已知温度响应来校正。在一些情况下,对所述传感器的所述零偏误差的所述已知温度响应可以由用户在使用所述传感器之前确定。所述传感器在(i)所述初始温度与所述预定温度之间的所述过渡状态以及(ii)所述传感器处于所述预定温度的恒温状态期间的所述零偏误差可以基于对所述零偏误差的所述已知温度响应来补偿。在一些实施方式中,在所述传感器处于所述预定温度时,所述传感器的零偏误差可以基于对处于所述预定温度的所述传感器的所述零偏误差的已知温度响应来校正。对处于所述预定温度的所述传感器的所述零偏误差的所述已知温度响应可以由用户在使用传感器之前确定。所述传感器在所述传感器处于所述预定温度的恒温状态期间的所述零偏误差可以基于对所述零偏误差的所述已知温度响应来补偿。
本公开的另一方面提供了一种调节传感器的温度的方法,所述方法包括:利用温度传感器来感测所述传感器的初始温度;从一个或多个温度调节装置提供热刺激,所述一个或多个温度调节装置(1)与所述传感器热连通,并且(2)被配置用于以满足或超过阈值的温度变化率将所述传感器的温度从所述初始温度调节至预定温度;以及确定所述传感器的初始温度何时落在预定温度范围之外,其中在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
在一些实施方式中,所述传感器在所述初始温度与所述预定温度之间的过渡状态期间的零偏误差可以基于对所述传感器的所述零偏误差的已知温度响应来校正。对所述传感器的零偏误差的所述已知温度响应可以由用户在使用所述传感器之前确定。在一些实施方式中,所述传感器在(i)所述初始温度与所述预定温度之间的所述过渡状态以及(ii)所述传感器处于所述预定温度的恒温状态期间的所述零偏误差可以基于对所述零偏误差的所述已知温度响应来补偿。在一些实施方式中,在所述传感器处于所述预定温度时,所述传感器的零偏误差可以基于对处于所述预定温度的所述传感器的所述零偏误差的已知温度响应来校正。对处于所述预定温度的所述传感器的所述零偏误差的所述已知温度响应可以由用户在使用传感器之前确定。在一些实施方式中,所述传感器在所述传感器处于所述预定温度的恒温状态期间的所述零偏误差可以基于对所述零偏误差的所述已知温度响应来补偿。
本公开的另一方面提供了一种校准传感器的温度零偏的方法,所述方法包括:将一个或多个温度调节装置提供成与传感器热连通;在包括第一预定离散温度值和第二预定温度值的一系列预定离散温度值中从第一预定离散温度值遍历至第二预定温度值;测量传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;将所述传感器在每个对应的预定离散温度值下的所述温度零偏记录在存储器储存装置中;确定所述传感器的所测量的温度零偏与每个对应的预定离散温度值之间的关系;以及基于所述传感器的所测量的温度零偏与所述传感器的已知温度之间的所确定的关系来调节由所述传感器提供的测量值以减小误差。
本公开的另一方面提供了一种用于产生对传感器的校准的热调节系统,所述系统包括:一个或多个温度调节装置,所述一个或多个温度调节装置与所述传感器热连通;控制器,其被编程用于指导所述一个或多个温度调节装置以将所述传感器的温度在包括第一预定离散温度值和第二预定温度值的一系列预定离散温度值中从第一预定离散温度值调节至第二预定温度值;热传感器,所述热传感器用于测量所述传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;存储器储存装置,其将所述传感器在每个预定离散温度值下的所述温度零偏储存在存储器储存装置中;以及一个或多个处理器,其被编程用于(1)确定所述传感器的所测量的温度零偏与每个预定离散温度值之间的关系并且将所确定的关系储存在所述存储器储存装置中,并且(2)基于所述传感器的所测量的温度零偏与所述传感器的已知温度之间的所确定的关系来调节由所述传感器提供的测量值以减小误差。
在一些实施方式中,其中在一系列预定离散温度值中从所述第一预定离散温度值遍历至所述第二预定温度值包括以预定温度变化率在一系列预定离散温度值中从所述第一预定离散温度值遍历至所述第二预定温度值。在一些实施方式中,所述传感器的所测量的温度零偏与每个预定离散温度值之间的关系可以通过多项式来描述。在一些实施方式中,当所述传感器处于使用中时,所述一个或多个温度调节装置可以不操作。
在一些实施方式中,所述系列预定离散温度值可以由用户选择。在一些实施方式中,所述系列预定离散温度值中的至少一部分预定离散温度值在校准期间可能处于所述传感器周围的周围环境的温度之外。在一些实施方式中,用于确定所述关系的指令可以由用户提供。
本公开的另一方面提供了一种在传感器芯片上制造自调节传感器单元的方法,所述方法包括:将一个或多个温度调节装置和所述传感器单元附接于共用传感器芯片上;以及在所述一个或多个温度调节装置与所述传感器单元之间提供热连通。
本公开的另一方面提供了一种位于传感器芯片上的自调节传感器单元,所述自调节传感器单元包括:一个或多个温度调节装置,所述一个或多个温度调节装置与所述传感器单元热连通;以及一个或多个温度传感器,其感测所述传感器单元的至少一部分的温度;以及一个或多个处理器,其被配置用于从所述一个或多个温度传感器接收温度测量值并且基于所述温度测量值而来向所述一个或多个温度调节装置传输操作指令。
在一些实施方式中,所述一个或多个温度调节装置可以包括通过内部电阻产生热量的至少一个仪器。例如,所述仪器可以是传感器。
本公开的另一方面提供了一种由用户来校准传感器的温度零偏的方法,所述方法包括:将一个或多个温度调节装置提供成与传感器热连通;从用户接收命令以对所述传感器执行校准;响应于来自所述用户的命令而遍历一系列预定离散温度值;测量传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;将所述传感器在每个对应的预定离散温度值下的所述温度零偏记录在存储器储存装置中;确定所述传感器的所测量的温度零偏与每个对应的预定离散温度值之间的关系;以及基于所述传感器的所测量的温度零偏与所述传感器的已知温度之间的所确定的关系来调节由所述传感器提供的测量值以减小误差。
本公开的另一方面提供了一种由用户产生对传感器的校准的热调节系统,所述系统包括:一个或多个温度调节装置,所述一个或多个温度调节装置与所述传感器热连通;控制器,其被编程用于接收指令以指导所述一个或多个温度调节装置通过一系列预定离散温度值来调节所述传感器的温度,并且测量所述传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;存储器储存装置,其储存所述传感器在每个预定离散温度值下的所述温度零偏;以及一个或多个处理器,其被编程用于(1)确定所述传感器的所测量的温度零偏与每个预定离散温度值之间的关系并且将所确定的关系储存在所述存储器储存装置中,并且(2)基于所述传感器的所测量的温度零偏与所述传感器的已知温度之间的所确定的关系来调节由所述传感器提供的测量值以减小误差。
在本公开的另一方面中,提供了一种包括机器可执行代码的非暂时性计算机可读介质,所述机器可执行代码在由一个或多个计算机处理器执行时实现一种由用户来校准传感器的温度零偏的方法,所述方法可以包括将一个或多个温度调节装置提供成与传感器热连通;在所述一个或多个计算机处理器处从所述用户接收命令以对所述传感器执行校准,其中所述用户通过与所述一个或多个计算机处理器连通的用户接口来提供所述命令;响应于来自所述用户的命令而遍历一系列预定离散温度值;测量所述传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;将所述传感器在每个对应的预定离散温度值下的温度零偏记录在与所述一个或多个计算机处理器通信的存储器储存装置中;确定所述传感器的所测量的温度零偏与每个对应的预定离散温度值之间的关系;以及从所述一个或多个计算机处理器传输命令,以基于所述传感器的所测量的温度零偏与所述传感器的已知温度之间的所确定的关系来调节由所述传感器提供的测量值以减小误差。
在一些实施方式中,所述传感器和所述一个或多个温度调节装置可以安装在共用基底或共用芯片上。在一些实施方式中,所述存储器储存装置可以与所述传感器无线通信。在一些实施方式中,所述传感器的所测量的温度零偏与每个预定离散温度值之间的关系可以通过多项式来描述。在一些实施方式中,当所述传感器处于使用中时,所述一个或多个温度调节装置可以不操作。
本公开的另一方面提供了一种传感器芯片,所述传感器芯片包括:传感器单元;一个或多个温度传感器,其感测所述传感器单元的至少一部分的温度;以及一个或多个处理器,其被配置用于从所述一个或多个温度传感器接收温度测量值。
在一些实施方式中,所述传感器芯片还可以包括与所述传感器单元热连通的一个或多个温度调节装置,以根据来自所述一个或多个处理器的指令通过一系列预定离散温度值来调节所述传感器单元的温度。或者,可以经由所述系列预定离散温度值通过从邻近所述传感器芯片的一个或多个电子部件发出的热量来调节所述传感器单元的温度。任选地,可以经由所述系列预定离散温度值通过由所述传感器单元本身产生的热量来调节所述传感器单元的温度。例如,由所述传感器单元本身产生的热量可以是通过所述传感器单元的内部电阻来产生的。
在一些实施方式中,所述一个或多个处理器可进一步被配置用于基于所述温度测量值来控制所述传感器单元的温度。在一些实施方式中,所述一个或多个处理器可进一步被配置用于在所述传感器的操作之前确定所述传感器单元在(i)初始温度、(ii)预定温度以及(iii)所述初始温度与所述预定温度之间的一个或多个中间温度下的温度零偏。在一些实施方式中,所述一个或多个处理器进一步被配置用于基于在(1)起始温度与所述预定温度之间的一个或多个中间温度以及(2)所述预定温度下确定的传感器零偏来将来自所述传感器单元的传感器测量值从所述起始温度校正为操作温度。
在一些实施方式中,多个温度调节装置可以均匀地分布在所述传感器单元周围的三维空间或二维空间中。在一些情况下,所述传感器单元与所述一个或多个温度调节装置中的每一个之间的距离可以小于或等于约10mm。任选地,所述传感器单元与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约1mm。在一些实施方式中,可以在所述传感器单元与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
根据以下详细描述,本公开的附加方面和优点对于本领域技术人员将会变得显而易见,其中仅仅示出和描述了本公开的说明性实施方式。如将会实现的,本公开能够实现其他和不同的实施方式,并且它的若干细节在都不偏离本公开的情况下能够在各个明显方面进行修改。因此,附图和描述将被认为在本质上是说明性的而非限制性的。援引并入
本说明书中所提及的所有出版物、专利和专利申请都以引用的方式并入本文,其程度犹如具体地和个别地指出要以引用的方式并入每个单一出版物、专利或专利申请那样。
附图说明
随附权利要求中具体阐述了本发明的新颖特征。通过参考阐述了其中利用了本发明的原理的说明性实施方式的以下详细描述和附图将获得对本发明的特征和优点的更好的理解,在附图中:
图1示出了具有邻近温度调节装置的传感器,以及提供在传感器与邻近温度调节装置之间的填充物。
图2示出了传感器和邻近温度调节装置在共用基底上的布置。
图3示出了校准过程的流程图。
图4示出了随温度变化的传感器零偏。
图5示出了传感器装置在第一模式、第二模式和第三模式下操作的时间-温度历程。
图6示出了制造过程的流程图。
图7图示了根据本发明的实施方式的无人飞行器。
图8图示了根据本发明的实施方式的包括载体和负载的可移动物体。
图9是根据本发明的实施方式的用于控制可移动物体的系统的方框图形式的示意图。
具体实施方式
虽然本文已经示出和描述了本发明的各种实施方式,但对于本领域技术人员将显而易见的是,这类实施方式只是以示例的方式提供。在不偏离本发明的情况下,本领域技术人员可以想到许多更改、改变和替代。应当理解,可以采用本文所描述的本发明的实施方式的各种替代方案。
由于内部电阻发热和/或传感器周围的环境温度的波动,传感器在传感器处于使用中时可能经历操作温度的变化。传感器温度的变化会影响传感器的一个或多个测量值的零偏。在一些情况下,传感器零偏对温度的响应可以取决于从第一温度到第二温度的变化率。可以在传感器操作之前确定描述了传感器零偏随温度变化的关系。在传感器操作期间,可以基于传感器零偏与传感器温度之间的预定关系来校正传感器零偏。
传感器可以位于诸如无人飞行器(UAV)的可移动物体上。传感器可以提供在可移动物体上,以用于向位于所述可移动物体上的一个或多个控制系统提供一个或多个测量值。例如,在控制可移动物体的飞行的过程中,可以使用来自传感器的数据。来自传感器的数据可以用于控制可移动物体的姿态和/或位置。来自传感器的数据可能会影响可移动物体的角位置、角速度、角加速度、平移位置、平移速度和/或平移加速度。传感器可以提供在可移动物体上,以用于向位于所述可移动物体上的一个或多个导航系统提供测量值。传感器可以提供在可移动物体上,以用于向位于所述可移动物体上的一个或多个监视系统提供测量值。传感器可以提供在可移动物体上,以用于向位于所述可移动物体上的一个或多个飞行系统提供测量值。
在一些情况下,可移动物体可以在不同环境之间移动。可移动物体可以从室内环境移动至户外环境。可移动物体可以从一个高度移动至第二高度,所述第二高度相对于第一高度可以更高或更低。在UAV操作时,UAV上的传感器可能会经历诸如温度、湿度、压力、风速、噪声、照明和/或高度等环境条件的变化。在一些情况下,UAV上的传感器周围的环境条件的变化会导致传感器温度的变化。传感器的温度的变化会导致由所述传感器收集的测量有零偏。
传感器测量值的零偏可能会导致由所述传感器获得的一个或多个测量值的准确性的降低。在一些情况下,可以确定传感器零偏与温度之间的关系。所述关系可以是线性关系。所述关系可以由多项式表示。所述关系可以由高阶多项式表示。所述关系在温度范围内可以具有一个或多个线性区域。
本文提供了用于确定描述了传感器操作温度与传感器测量零偏之间的关系的校准的系统和方法。所述关系可以用于提供对在已知温度下收集的一个或多个传感器测量值的校正(例如,补偿)。已知温度可以是由提供成与所述传感器热连通的温度传感器测得的温度。在一些情况下,可以提供一个或多个温度调节元件来进行校准,以确定传感器零偏与传感器的温度之间的关系。可以将一个或多个温度调节元件内置到传感器中。可以在制造传感器时将一个或多个温度调节元件内置到所述传感器中。一个或多个温度调节元件可以作为售后装置而内置到传感器单元中。
在一些情况下,一个或多个温度调节装置和传感器可以整合在基底上或者可以共用公共基底。基底可以由半导体材料形成。基底可由硅形成。基底可以包括硅晶片。在一些情况下,一个或多个温度调节装置和传感器可以整合在包括电路连接的基底上。一个或多个温度调节装置和传感器可以整合到单一芯片上。所述芯片可以是微芯片。所述传感器可以是芯片。传感器可以是可插入到公共基底中或从所述公共基底拔出的芯片。温度调节装置可以是或不是芯片。温度调节装置可以是或不是可插入到公共基底中或从所述公共基底拔出的芯片。传感器和温度调节装置可以是分离的芯片。或者,传感器和温度调节装置可以整合为单一芯片。所述单一芯片可能能够或不能够插入到基底(例如,PCB)中或从其中拔出。
一个或多个温度调节装置和传感器可以在直接接触或不直接接触彼此的情况下热连通。一个或多个温度调节装置和传感器可以在共用或不共用基底或其他公共支撑件或连接器的情况下热连通。一个或多个温度调节装置和传感器可以具有或不具有将所述一个或多个温度调节装置连接到所述传感器的一个或多个物理部件。在一些情况下,可以在一个或多个温度调节装置与传感器之间提供间隙。一个或多个温度调节装置和传感器可以是彼此物理分离的。一个或多个温度调节装置和传感器可以是彼此不同的单元或不同单元的一部分。一个或多个温度调节装置和传感器可以是可彼此分离的。在一些情况下,一个或多个温度调节装置和传感器可以主要通过辐射和/或对流来热连通。一个或多个温度调节装置和传感器可以在利用较少传导或不利用传导时热连通。相比于传导,通过辐射和/或对流可以发生更多的热传递。或者,一个或多个温度调节装置和传感器可以主要通过传导来热连通。
一个或多个加热元件可以将传感器的温度维持在预定温度上。一个或多个加热元件可以提供热刺激,从而以预定的温度变化率来升高和/或降低传感器的温度。可以使用一个或多个加热元件来对所述传感器进行校准,以针对给定传感器在给定操作温度范围内确定传感器操作温度与传感器测量零偏之间的关系。在一些情况下,在其内校准传感器的温度范围可以由用户提供。在一些情况下,用户可以在使用传感器之前校准所述传感器。用户能够以给定的时间间隔,例如每日、每周、每月或每年重复传感器校准。所述时间间隔可以均匀地或不均匀地间隔开。用户不需要将传感器送给制造商就可以进行校准。
计算机可读介质可以包括一个或多个处理器,所述一个或多个处理器被编程用于执行机器可读代码以进行传感器校准。用户可以通过与一个或多个处理器连通的图形用户界面来向一个或多个处理器提供命令。图形用户界面可以提供在显示装置上。显示装置可以包括计算机监控器、智能手机或平板电脑。图形用户界面可以提供在传感器上。图形用户界面可以显示在屏幕上。图形用户界面可以包括一个或多个按钮。
在校准期间,可以将传感器放置在受控环境中。受控环境可以是已知其中的期望的传感器读数的环境。在受控环境内,环境条件,诸如温度、湿度或其他条件,可能是或不是已知的。当传感器是惯性传感器时,在传感器的校准期间可以将所述传感器放置在具有已知x坐标、坐标y和/或z坐标的取向上。在示例中,可以由用户通过将传感器放置在水平表面上并且提供命令来开始校准而校准所述传感器。在另一示例中,可以由用户通过将传感器放置在垂直表面上并且提供命令来开始校准而校准所述传感器。用户可以通过用户接口来提供命令,所述用户接口诸如为提供在传感器上或者与所述传感器接触的按钮、开关或触摸屏。
传感器可以是图像传感器。例如,图像传感器可以是单目相机、立体视觉相机、雷达、声呐或红外相机。传感器可以是被配置用于确定一个或多个物体的位置的传感器,诸如全球定位系统(GPS)传感器、可用作惯性测量单元(IMU)的一部分或与其分开使用的惯性传感器(例如,加速度计、陀螺仪、磁力计)、激光雷达、超声传感器、声学传感器、WiFi传感器。传感器的各种示例可以包括但不限于位置传感器(例如,全球定位系统(GPS)传感器、实现位置三角测量的移动装置发射器)、视觉传感器(例如,能够检测可见光、红外光或紫外光的成像装置,诸如相机)、近程或范围传感器(例如,超声传感器、激光雷达、飞行时间相机或深度相机)、惯性传感器(例如,加速度计、陀螺仪、惯性测量单元(IMU))、高度传感器、姿态传感器(例如,罗盘)、压力传感器(例如,气压计)、音频传感器(例如,麦克风)或者场传感器(例如,磁力计、电磁传感器)。传感器可以是微机电系统(MEMS)传感器。
可以使用任何合适数目的传感器和传感器组合,诸如一个、两个、三个、四个、五个或更多个传感器。可以在可移动物体上提供任何数目的传感器。不同类型(例如,两种、三种、四种、五种或更多种类型)的各种传感器可以包括在传感器系统或设备中。不同类型的传感器可以测量不同类型的信号或信息(例如,位置、取向、速度、加速度、接近度、压力等)和/者利用不同类型的测量技术来获得数据。例如,传感器可以包括有源传感器(例如,从其自身能量源产生能量并测量来自其自身能量源的能量的传感器)和无源传感器(例如,检测可用能量的传感器)的任何合适的组合。作为另一个示例,一些传感器可以产生依据全局坐标系提供的绝对测量数据(例如,由GPS传感器提供的位置数据、由罗盘或磁力计提供的姿态数据),而其他传感器可以产生依据局部坐标系提供的相对测量数据(例如,由陀螺仪提供的相对角速度;由加速度计提供的相对平移加速度;由视觉传感器提供的相对姿态信息;由超声传感器、激光雷达或飞行时间相机提供的相对距离信息)。单一传感器可能能够在环境中收集完整的一组信息,或者一组传感器可以共同工作以在环境中收集完整的一组信息。传感器可以用于飞行控制、位置的绘图、位置之间的导航、障碍物的检测或者目标的检测。传感器可以用于监视感兴趣的环境或主体。可以基于传感器温度来校准传感器中的一个或多个。传感器中的一个或多个可以与一个或多个温度调节装置热连通。可以在不考虑传感器温度的情况下操作位于可移动物体上的零个、一个或多个传感器。可以不基于传感器温度来校准位于可移动物体上的零个、一个或多个传感器。
传感器可以是惯性测量单元(IMU)的一部分。传感器可以是被配置用于检测可移动物体的取向的变化的系统的一部分。传感器可以是被配置用于检测可移动物体的位置的变化的系统的一部分。传感器可以检测角取向、角速度、角加速度、平移位置、平移速度和/或平移加速度。IMU可以测量和报告可移动物体的速度、取向和重力。IMU可以使用加速度计、陀螺仪、倾斜计或磁力计的组合。传感器可以是包括提供不同测量值以供传感器融合的多个传感器在内的系统的一部分。
图1示出了传感器101以及邻近所述传感器布置的多个温度调节装置102。一个或多个温度调节装置能够相对于传感器以二维和/或三维配置布置。一个或多个温度调节装置能够相对于传感器以二维和/或三维图案布置。一个或多个温度调节装置可以平行于传感器的表面。一个或多个温度调节装置可以垂直于传感器的表面。一个或多个温度调节装置的中心轴可以与传感器的中心轴同轴。一个或多个温度调节装置可以位于包含传感器的平面中。一个或多个温度调节装置可以位于不包含传感器的平面中。一个或多个温度调节装置可以位于包含传感器并且平行于所述传感器所附接的支撑件或基底的平面中。一个或多个温度调节装置可以位于不包含传感器并且平行于所述传感器所附接的支撑件或基底的平面中。可以将至少一个温度调节装置放置在传感器之上。可以将至少一个温度调节装置放置在传感器之下。可以将至少一个温度调节装置放置在传感器的侧面。可以沿着传感器周界的至少一部分来放置一个或多个温度调节装置。一个或多个温度调节装置可以位于传感器附近。
在一些情况下,可以邻近传感器或者以与传感器热连通的方式提供至少1个、2个、3个、4个、5个、10个、15个、20个、30个、40个或50个温度调节装置。在一些实施方式中,可以邻近传感器或者以与传感器热连通的方式提供少于2个、3个、4个、5个、10个、15个、20个、30个、40个、50个、100个、200个或500个温度调节装置。
温度调节装置可以是模块化的。一个或多个温度调节装置可以由用户移除和/或安装。在一些情况下,温度调节装置可以是可重复移除的和/或可重复安装的。温度调节装置的位置可以通过将所述温度调节装置从第一位置移除并且将所述温度调节装置安装在不同于第一位置的第二位置处来改变。温度调节装置可以是可通过将第一温度调节装置从某一位置移除并且将第二温度调节装置安装在所述位置处来更换,其中第二温度调节装置不同于第一温度调节装置。
一个或多个温度调节装置可以均匀地布置在传感器周围。一个或多个温度调节装置可以不均匀地布置在传感器周围。一个或多个温度调节装置可以邻近传感器的周界布置。一个或多个温度调节装置可以对称地布置在传感器周围。一个或多个温度调节装置可以不对称地布置在传感器周围。每个温度调节装置可以邻近一个或多个传感器。温度调节装置可以与传感器热连通。温度调节装置的至少一部分可以与传感器接触。
传感器可以是单一传感器或传感器阵列。对传感器的描述可以适用于一个或多个传感器。本文对传感器的任何描述都可适用于多个传感器。一个或多个传感器可以按行、列、阵列、交错的行或列、径向地或者以任何其他配置布置。本文对传感器阵列的任何描述都可适用于以任何配置提供的一个或多个传感器。可以提供一个或多个、两个或更多个、三个或更多个、四个或更多个、五个或更多个、七个或更多个、十个或更多个、十五个或更多个、二十个或更多个、三十个或更多个、四十个或更多个、五十个或更多个或者100个或更多个传感器。任何数目的传感器都可与一组一个或多个温度调节装置通信。传感器可以彼此极为接近。在一些情况下,一个或多个传感器可以分布在小于或等于约0.01cm2、0.05cm2、0.1cm2、0.5cm2、1cm2、2cm2、3cm2、5cm2、10cm2、15cm2、20cm2、30cm2、50cm2或100cm2的面积内。传感器阵列中的一个或多个传感器可以是不同类型的传感器。在一些情况下,可以提供两个或更多个不同类型的传感器来收集不同的测量值,所述不同的测量值可以通过传感器融合来组合以产生一个测量值。
温度调节装置可以是被配置用于升高和/或降低传感器温度的装置。在一些情况下,温度调节装置可以是加热元件。温度调节装置可以是冷却装置。温度调节装置中的一个或多个可能能够对传感器进行加热。温度调节装置中的一个或多个可能能够对传感器进行冷却。温度调节装置中的一个或多个可能能够对传感器进行加热和冷却。温度调节装置可以是主动式装置(例如,电加热器、风扇、泵送流体或热交换器)。温度调节装置可以是被动式装置(例如,散热片)。在一些情况下,温度调节装置可以由电源供电。温度调节装置可以包括热交换器、电阻加热器、燃烧器、强制空气加热器、热电元件、冰箱、散热片、风扇或者被配置用于提供加热和/或冷却的任何其他装置。在一些情况下,温度调节装置可以是具有除调节温度之外的目的的仪器。
温度调节装置可以是由于仪器的操作而产生加热和/或冷却的仪器。在一些情况下,所述仪器可以是传感器。所述仪器可以在操作期间产生热量。所述仪器可以在操作期间从内部电阻产生热量。所述仪器可以是与热连通于温度调节装置的传感器相同类型的传感器。例如,传感器可以是IMU的惯性传感器,而仪器可以是IMU的另一惯性传感器。由第一惯性传感器产生的热量可能会影响第二惯性传感器的温度,反之亦然。或者,所述仪器可以是与热连通于温度调节装置的传感器不同类型的传感器。除了所述仪器之外,还可以提供零个、一个或多个附加的温度调节装置。
一个或多个温度调节装置可以单独地或共同地使传感器被主动地加热和主动地冷却。一个或多个温度调节装置可以单独地或共同地使所述传感器被主动地加热和被动地冷却。一个或多个温度调节装置可以单独地或共同使所述传感器被被动地加热和主动地冷却。一个或多个温度调节装置可以单独地或共同地使所述传感器被被动地加热和被动地冷却。
温度传感器可被提供和配置用于测量传感器的温度。温度传感器可以包括热敏电阻、热电偶、温度计和/或恒温器。温度传感器可以实时测量传感器的温度。温度传感器可以在小于约0.01秒、0.05秒、0.1秒、0.5秒、1秒、2秒、3秒、5秒、10秒、15秒、20秒、30秒或1分钟内测量传感器的温度。温度传感器可以在小于约0.01度的准确度、0.05度的准确度、0.1度的准确度、0.25度的准确度、0.5度的准确度、1度的准确度、2度的准确度、3度的准确度、5度的准确度或10度的准确度内测量传感器的温度。温度传感器可以与所述传感器热连通。温度传感器可以是或不是所述传感器的一部分,或者整合到或不整合到所述传感器中。温度传感器可以直接接触或不直接接触所述传感器。温度传感器可以与或不与所述传感器共用公共基底或连接器。可以在或不在温度传感器与对应的传感器之间提供间隙。
温度调节装置可以与温度传感器通信。温度传感器可以与或不与温度调节装置热连通。温度传感器可以向或不向温度调节装置传达温度测量值。温度传感器可以向或不向温度调节装置传达命令以改变(例如,升高或降低)或维持传感器的温度。温度传感器可以与或不与中间装置(例如,一个或多个处理器、控制器)通信,所述中间装置可以与温度调节装置通信。例如,温度传感器可以向中间装置传达温度测量值,所述中间装置可以产生由温度调节装置接收的命令以改变或维持传感器的温度。温度调节装置可以包括温度传感器。或者,温度调节装置和温度传感器可以是分离的。温度调节装置和温度传感器可以彼此直接接触或不直接接触。温度调节装置和温度传感器可以共用或不共用公共基底或连接器。可以在或不在温度调节装置与温度传感器之间提供间隙。
温度传感器可以将所测量的传感器的温度传输至处理器,当传感器的温度落在预定操作温度范围之外时,所述处理器可以指导温度调节装置来调节传感器的温度。在一些情况下,预定操作温度可以是传感器的最佳操作温度。所述操作温度可以为约0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃或100℃。操作温度可以处于小于或等于约在本文所列举的任何温度值之上加上或减去0.1度、0.5度、1度、2度、3度、4度或5度之内。操作温度可以小于0℃。操作温度可以大于100℃。操作温度可以落在所列举的任何值之间。
温度调节装置可以与传感器热连通。例如,温度调节装置中的一个或多个可以与惯性传感器热连通。温度调节装置中的一个或多个可以直接接触或不直接接触传感器。在一些情况下,一个或多个温度调节装置可以通过直接接触传感器的至少一部分而与所述传感器热连通。或者或另外,温度调节装置中的至少一个可以不与传感器直接接触。温度调节装置中的至少一个可以通过导热连接器而与传感器热连通。
温度调节装置可以任选地为传感器的一部分。温度调节装置可以内置到传感器中。温度调节装置和传感器可以是单一单元。温度调节装置和传感器可以作为一个单元而被共同移除和/或安装在基底上。温度调节装置可以位于传感器的外壳或结构之内、嵌入在其中,或者附接至所述外壳或结构。温度调节装置可以任选地可在不损坏传感器或温度调节装置的情况下不与所述传感器分离。
温度调节装置可以与传感器的表面分离,以使得在传感器与温度调节装置之间存在空间104。在一些情况下,传感器的表面与加热元件之间的距离可以至少约为0.001mm、0.01mm、0.1mm、0.5mm、1mm、5mm、10mm、20mm、30mm、40mm、50mm、60mm、70mm、80mm、90mm或100mm。传感器与温度调节装置之间的距离可以小于0.001mm或上文列举的任何其他值。传感器与温度调节装置之间的距离可以落在上文列举的任何值之间。在一些情况下,第一温度调节装置与传感器的表面之间的第一距离以及第二温度调节装置与传感器的表面之间的第二距离可以是一致的。在一些情况下,第一温度调节装置与传感器的表面之间的第一距离以及第二温度调节装置与传感器的表面之间的第二距离可以是不一致的。
温度调节装置可以通过对传感器进行热传递和/或使热传递远离所述传感器来促进传感器温度的变化(例如,温度升高和/或温度降低)。温度调节装置可以主动地促进传感器温度的变化。例如,温度调节装置可以从关闭状态转变为开启状态或者反之亦然,以强制实现传感器温度的指定温度变化。温度调节装置可以提供能量,所述能量的水平可以是可调节的。温度调节装置可以按脉冲方式提供能量,所述能量的脉冲的频率和/或持续时间可以是可调节的。温度调节装置可以被动地促进传感器温度的变化。例如,温度调节装置可以提供被动热刺激以产生传感器温度的变化。被动热刺激的大小可能是不可控制的。被动式温度调节装置可以是散热片。被动式温度调节装置可以是在常规操作期间产生废热的装置,所述废热可以被传递至传感器。温度调节装置可以通过传导、对流和/或辐射来促进热传递。温度调节装置可以作为散热器和/或热源来操作。
在一些情况下,可以在一个或多个温度调节装置与一个或多个传感器之间提供填充物103。可以在传感器与一个或多个温度调节装置之间的空间104中提供填充物。填充物可以完全填充温度调节装置与传感器的表面之间的间隙。填充物可以部分填充温度调节装置与传感器的表面之间的间隙。填充物可以接触温度调节装置和传感器的表面。填充物可以在温度调节装置与传感器的至少一个表面之间提供热接触。填充物可以促进传感器与温度调节装置之间的热传递。相对于所述空间中未提供填充物的情况下的热传递率,填充物可以增大从传感器至温度调节装置或从温度调节装置至传感器的热传递率。
填充物可以具有增大温度调节装置与传感器之间的热传递率的性质。填充物可以具有高热导率。填充物的热导率可以比在标准温度和压力下测得的空气的热导率大至少约2倍、5倍、10倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍或200倍。在一些情况下,填充物可以是密封剂、环氧树脂、硅酮或非硅酮型热塑料。填充物可以使传感器与周围环境隔离。在一些情况下,填充物可以防止周围的污物、灰尘、碎屑和/或液体接触传感器。可以沿着传感器的整个表面提供填充物,以使得传感器与周围环境完全隔离。传感器可以由填充物封装。温度调节装置可以由或不由填充物封装。温度调节装置也可以与周围环境隔离。填充物可以封装一个或多个温度调节装置和传感器以形成一个单元。
传感器和一个或多个温度调节装置可以安装在公共基底上。图2布置A示出了安装在公共(例如,共用)基底201上的传感器101和多个温度调节装置102。传感器和一个或多个温度调节装置可以直接接触公共基底。公共基底可以承受传感器和一个或多个温度调节装置的重量。公共基底可以是半导体。公共基底可以是印刷电路板(PCB)。公共基底可以是芯片。公共基底可以是微芯片。公共基底可以是包括一个或多个嵌入式电触点的表面。公共基底可以由金属(例如,铜、铁、铝或钢)形成。公共基底可以由陶瓷材料(例如,硅或金属氧化物)形成。公共基底可以由复合材料(例如,碳纤维)形成。公共基底可以由塑料材料形成。公共基底可以是硅晶片。公共基底可以是导电基底。公共基底可以是导热基底。
图2布置B示出了在共用基底上均匀地布置在传感器周围的温度调节装置的布置。在一些实施方式中,温度调节装置可以按三维配置布置在传感器周围。在一些实施方式中,温度调节装置可以按二维配置布置在传感器周围。图2布置C示出了在共用基底上不均匀地布置在传感器周围的温度调节装置的布置。
在一些情况下,可以在制造传感器时将一个或多个温度调节元件和传感器构建到共用基底上。共用基底可以是芯片。共用基底可以是PCB。共用基底可以是微芯片。在一些情况下,一个或多个温度调节元件和传感器可以作为售后装置而构建到共用基底上。
传感器可以永久地或不永久地固定至基底。传感器可以是或不是可从基底移除的。传感器在基底上可以是可重复移除的和可重复安装的。传感器可以插入基底中并从所述基底拔出。一个或多个温度调节装置可以永久地或不永久地固定至基底。一个或多个温度调节装置可以是或不是可从基底移除的。一个或多个温度调节装置在基底上可以是可重复移除的和可重复安装的。一个或多个温度调节装置可以插入基底中并从所述基底拔出。
传感器和/或温度调节装置可以与或不与基底的一个或多个电触点电连通。基底可以是上面具有一个或多个电触点的PCB。传感器可以电连接至一个或多个电触点。传感器可以直接接触或不直接接触一个或多个电触点。可以经由或不经由一个或多个电触点来向传感器提供电力。一个或多个温度调节装置可以电连接至一个或多个电触点。一个或多个温度调节装置可以直接接触或不直接接触一个或多个电触点。可以经由或不经由一个或多个电触点来向温度调节装置提供电力或从所述温度调节装置提供电力。
包括传感器和一个或多个温度调节装置的共用基底可以具有至多约0.001mm3、0.005mm3、0.01mm3、0.05mm3、0.1mm3、0.5mm3、1mm3、5mm3、10mm3、20mm3、30mm3、40mm3、50mm3、60mm3、70mm3、80mm3、90mm3、100mm3、500mm3或1000mm3的总体积。共用基底可以具有小于0.001mm3或本文列举的任何其他值的总体积。共用基底可以具有大于1000mm3或本文列举的任何其他值的总体积。共用基底可以具有介于所列举的任何体积之间的体积。
包括传感器和一个或多个温度调节装置的共用基底可以整合到包括其他电路的电路板中。共用基底可以布置在一个或多个其他共用基底附近、顶部和/或下方。共用基底可以布置在一个或多个其他传感器附近、顶部和/或下方。
一个或多个温度调节装置可以被配置用于以预定温度变化率将传感器的温度从初始温度调节至预定温度。预定温度变化率可以至少约为0.001℃/s、0.005℃/s、0.01℃/s、0.05℃/s、0.1℃/s、0.5℃/s、1℃/s、2℃/s、3℃/s、5℃/s、7℃/s、10℃/s、15℃/s、20℃/s、25℃/s、30℃/s、35℃/s、40℃/s、45℃/s或50℃/s。在一些情况下,温度变化率可以落在本文列举的任何值之间。温度变化率在给定时间段内可以是恒定的。温度变化率在给定时间段内可以改变。在一些情况下,温度变化率在一个或多个温度调节装置的整个操作时间内可以是恒定的。温度变化率可以是工厂预设值。温度变化率可能会受限于一个或多个温度调节装置的能力。温度变化率可由用户选择。
初始温度和/或预定温度可以由用户选择、由制造商在制造传感器时预设和/或由除了用户之外的个人来选择。可以借助于一个或多个处理器来选择初始温度和/或预定温度。在一些情况下,选择初始温度和/或预定温度不需要人工干预或输入。在一些情况下,初始温度和/或预定温度可以由用户或除用户之外的个人来改变。任选地,可以借助于一个或多个处理器来改变初始温度和/或预定温度。可以在传感器处于使用中时改变初始温度和/或预定温度。可以选择初始温度和/或预定温度,以使得传感器的期望操作温度或操作温度范围落在由初始温度和预定温度括起来的范围内。初始温度可以是传感器周围的环境的环境温度。初始温度可以高于或低于传感器周围的环境的环境温度。
初始温度与预定温度可以相隔一个宽范围。在一些情况下,初始温度和预定温度的范围可以为约-100℃至约500℃。在一些情况下,初始温度和预定温度的范围可以为约-80℃至约300℃。在一些情况下,初始温度和预定温度的范围可以为约-60℃至约200℃。在一些情况下,初始温度和预定温度的范围可以为约-50℃至约150℃。在一些情况下,初始温度和预定温度的范围可以为约-45℃至约100℃。在一些情况下,初始温度和预定温度的范围可以为约-40℃至约125℃。初始温度和预定温度可以具有比所列举的任何范围更宽的范围。初始温度和预定温度可以在所列举的任何范围内或任何其他温度范围内变化。
温度调节装置可被配置用于记录传感器的传感器零偏校准。传感器零偏校准可以在传感器操作之前执行。传感器零偏校准可以由传感器的用户和/或由非用户的个人来执行。温度调节装置可以包括被配置用于测量邻近一个或多个温度调节装置的传感器的传感器零偏的仪器。被配置用于测量邻近一个或多个温度调节装置的传感器的传感器零偏的所述仪器可以与被配置用于接收和分析由温度调节装置的仪器传输的传感器零偏的测量值的一个或多个处理器通信。
传感器零偏可被记录在存储器储存装置中。存储器储存装置可以安装在共用基底上。存储器储存装置可以位于共用基底之外。存储器储存装置可以是服务器或云储存系统的一部分。
可以在初始温度下记录传感器零偏。传感器零偏可以由一个或多个处理器确定。传感器零偏可以基于期望的传感器测量值与实际传感器测量值的比较来确定。在校准期间,可以将传感器放置在已知其中环境的期望传感器测量值的环境中。在示例中,当传感器是惯性测量单元(IMU)或IMU的一部分时,在执行校准时可以将所述传感器放置在水平表面上。当IMU位于水平表面上时,IMU应当读取期望的x值和y值0,而期望的z值应当为-g(例如,重力)。传感器零偏可以通过相对于这些期望值的随温度变化的零偏来确定。在另一示例中,当传感器是陀螺仪时,在执行校准时可以将所述传感器放置在水平表面上。当陀螺仪位于水平表面上时,陀螺仪应当读取期望的x值、y值和z值0。传感器零偏可以通过相对于这些期望值的随温度变化的零偏来确定。
可以在预定温度下记录传感器零偏。可以在初始温度与预定温度之间的一个或多个中间温度下记录传感器零偏。可以在初始温度与预定温度之间的一个、两个或更多个离散温度值下记录传感器零偏。离散温度值可以是整数值。离散温度值可以是非整数值。离散温度值可以均匀地或不均匀地间隔开。中间温度可以按小于或约每0.01摄氏度、0.05摄氏度、0.1摄氏度、0.25摄氏度、0.5摄氏度、0.75摄氏度、1摄氏度、1.5摄氏度、2摄氏度、3摄氏度、5摄氏度、7摄氏度、10摄氏度、15摄氏度或20摄氏度提供。
可以在初始温度与预定温度之间的连续温度下记录传感器零偏。因此,可以针对初始温度与预定温度之间的所有值连续地记录零偏。
可以在实现传感器的操作之前记录初始温度、预定温度以及初始温度与预定温度之间的一个或多个中间温度下的传感器零偏。可以由一个或多个处理器来记录和分析初始温度、预定温度以及初始温度与预定温度之间的一个或多个中间温度下的传感器零偏,以确定传感器零偏与传感器温度之间的关系。
传感器零偏与传感器温度之间的关系可以是数学上连续的关系。传感器零偏与传感器温度之间的关系可以是数学上不连续的关系。传感器零偏与传感器温度之间的关系可以是线性关系。传感器零偏与传感器温度之间的关系可以是非线性关系。传感器零偏与传感器温度之间的关系可以是二阶关系。传感器零偏与传感器温度之间的关系可以是三阶关系。传感器零偏与传感器温度之间的关系可以由多项式表示。所述多项式可以为任何阶(例如,一阶、二阶、三阶、四阶、五阶、六阶、七阶、八阶、九阶或更多阶)。传感器零偏与传感器温度之间的关系可以是指数关系。传感器零偏与传感器温度之间的关系可以是对数关系。传感器零偏与传感器温度之间的关系可以是比例关系。传感器零偏与传感器温度之间的关系可以是正比关系。传感器零偏与传感器温度之间的关系可以是反比关系。在一些实施方式中,数学关系可以提供为传感器零偏与传感器温度之间的实际关系的近似。可以基于一个或多个数据点来创建最佳拟合线。所述线或关系可能能够或不能够与每个数据点相交。
图3示出了可被执行来产生对传感器的温度零偏的校准的方法的流程图。所述方法可以由用户执行。用户可以是传感器的终端用户。在第一步骤301中,可以将一个或多个温度调节装置提供成与传感器热接触。一个或多个温度调节装置可以直接接触或不直接接触传感器。在第二步骤302中,可以使传感器的温度遍历一系列预定离散温度值。所述系列预定离散温度值可以包括第一预定离散温度值和第二预定温度值。可以使传感器的温度从第一预定离散温度值遍历至第二预定温度值。在第三步骤303中,可以在所述系列的预定离散温度值的每个预定离散温度值下测量传感器的温度零偏。在第四步骤304中,可以将传感器在每个对应的预定离散温度值下的温度零偏记录在存储器储存装置中。在第五步骤305中,可以确定传感器的所测量的温度零偏与每个对应的预定离散温度值之间的关系。在第六步骤306中,可以基于传感器的所测量的温度零偏与传感器的已知温度之间的所确定的关系来调节传感器的测量值以减小误差。本文提供的步骤可以按任何顺序执行。可以省略所述步骤中的一个或多个步骤。可以添加附加步骤。
图4示出了可利用一个或多个温度调节装置来收集并且被分析来确定在传感器的操作期间传感器零偏与传感器温度之间的关系的数据的图形表示。一个或多个温度装置可以将传感器的温度调节至初始温度T1。传感器的温度可以由与所述一个或多个温度传感器和/或所述一个或多个处理器中的任一种或两者通信的温度传感器(例如,热敏电阻、热电偶或恒温器)来测量。可以在反馈回路中控制一个或多个温度调节装置的操作,直到传感器稳定在初始温度为止。当传感器稳定在初始温度T1上时,可以测量和记录初始温度T1下的传感器零偏B1。在记录传感器零偏之后,温度装置可以使传感器的温度递增至第二温度T2,并且类似地测量和记录第二温度T2下的第二传感器零偏B2。可以重复使传感器温度递增并且测量和记录传感器零偏的过程,直到记录了在预定温度TP下的最终传感器零偏测量值BP为止。
可以在初始温度与预定温度之间的多个中间点401处测量和记录传感器零偏。可以在一系列预定离散温度值中的多个点处测量和记录传感器零偏。可以为每个中间点选择处于自变量的整数值处的自变量(例如,温度)。自变量的值可以均匀地间隔开。在一些情况下,自变量的值可以不均匀地间隔开。可以取得接近于传感器的期望操作温度的一组传感器零偏测量值,以使得与远离传感器的期望操作温度的自变量值的间距相比,传感器的期望操作温度周围的自变量值的区间间距更小。
传感器温度的时间变化率可以是固定的或可变的。温度调节装置能够以预定的变化率来调节传感器的温度。在一些情况下,在传感器零偏校准期间和传感器操作期间,变化率可以是相同的。或者,在零偏校准期间和传感器操作期间,温度变化率可以是不同的。
当传感器正在操作时,一个或多个温度调节装置可以调节所述传感器的温度。或者,当传感器正在操作时,可以不使用一个或多个温度调节装置。一个或多个温度调节装置可以将传感器的温度调节至期望的或预定的操作温度。预定操作温度可以由用户选择。预定操作温度可以借助于一个或多个处理器来选择。针对一个或多个处理器的操作,可以提供或不提供用户输入。可以选择预定操作温度以便于使传感器零偏最小化或减小。可以将预定操作温度选择为传感器零偏已知的温度或者已经进行预校准的温度。可以选择预定操作温度以便于使对温度调节装置的使用最小化或减少。可以在随温度变化的传感器零偏的已知的线性范围或平坦范围中选择预定操作温度。
预定操作温度可以是用于传感器操作的目标温度。目标温度可以随时间推移而保持不变。目标温度可以改变。目标温度可以由用户或者借助于一个或多个处理器来改变。目标温度可以响应于一个或多个检测到的事件或环境条件而改变。目标温度可以响应于可移动物体的功率电平而改变。在支撑传感器的可移动物体的操作期间,目标温度可以保持不变。当可移动物体处于运动中(例如,处于飞行中)时,目标温度可以保持不变。目标温度在可移动物体的操作期间可以改变。当可移动物体处于运动中时,目标温度可以改变。在可移动物体的不同操作会话之间,目标温度可以改变。当可移动物体关闭并继而再次开启时,目标温度可以改变。
可以指导一个或多个温度调节装置来使传感器的温度维持在预定温度操作范围之内。一个或多个温度调节装置可以实时地使传感器维持在操作温度上。所述传感器可被维持在预定操作温度的至少约±0.001%、±0.005%、±0.01%、±0.05%、±0.1%、±0.5%、±1%、±5%、±10%或±20%之内。传感器温度可以偏离预定温度操作范围。在一些情况下,由于传感器的内部电阻产生废热、传感器周围的环境的环境温度出现波动和/或发生造成对传感器进行热传递或使热传递远离所述传感器的其他事件,传感器温度可能偏离预定温度操作范围。当传感器正在操作时,温度传感器可以连续地或不连续地感测所述传感器的温度。
当温度传感器检测到传感器温度已落在预定温度操作范围之外时,一个或多个温度调节装置可以提供热刺激以将传感器的温度从起始温度(例如,检测到落在预定温度操作范围之外的温度)调节至预定温度操作范围内的操作温度。热刺激可以对传感器进行加热或冷却。温度调节装置能够以与校准传感器时所采用的变化率相等的操作温度变化率来改变传感器温度。在一些情况下,温度调节装置能够以比校准传感器时所采用的变化率更大的操作温度变化率来改变传感器温度。在一些情况下,温度调节装置能够以比校准传感器时所采用的变化率更小的操作温度变化率来改变传感器温度。
可以针对随温度变化的传感器零偏,使用在本文讨论的校准中确定的传感器零偏与温度之间的已知关系来校正由传感器取得的一个或多个测量值。一个或多个处理器可以执行所述校正。所述校正可以包括通过加上或减去一个常数值来调节传感器测量值。所述校正可以包括通过将传感器测量值乘以一个比例因子来调节所述传感器测量值。所述比例因子可以小于1或大于1。可以使用插值技术来对在其中执行校准的范围之外的温度进行校正。所述插值可以由一个或多个处理器执行。插值技术可以是线性插值技术。在一些情况下,当传感器正在恒定的或近似恒定的操作温度下操作时,可以对测量值进行校正。近似恒定的操作温度可以是在给定时间段内相对于平均温度值波动至多约0.1%的温度。近似恒定的操作温度可以是在给定时间段内相对于平均温度值波动至多约1%的温度。近似恒定的操作温度可以是在给定时间段内相对于平均温度值波动至多约5%的温度。近似恒定的操作温度可以是在给定时间段内相对于平均温度值波动至多约10%的温度。在一些情况下,当传感器温度正在从起始温度转变为操作温度时,可以对测量值进行校正。
在一些实施方式中,一个或多个温度调节装置可以调节传感器的温度。或者,不主动地调节传感器的温度,并且可以对或不对传感器零偏进行一次校正。在一些实施方式中,既可能对传感器进行主动温度调节又可能对传感器零偏进行校正。
在第一操作模式下,当传感器正在恒定的或近似恒定的操作温度下操作时,只对测量值进行校正。在第一操作模式下,一个或多个温度调节装置可以促进传感器的温度以比传感器校准期间使用的预定温度变化率更快的速率从起始温度改变为操作温度。在第二操作模式下,当传感器正在恒定的或近似恒定的操作温度下操作时并且当传感器温度正在从起始温度转变为操作温度时,可以对测量值进行校正。在第二操作模式下,一个或多个温度调节装置可以促进传感器的温度以约等于传感器校准期间使用的预定温度变化率的速率从起始温度改变为操作温度。在一些情况下,从起始温度变为操作温度的温度变化率在第一模式中比在第二模式中更快。在第三操作模式下,当传感器正在操作时,温度调节装置可能不在操作。在第三操作模式下,由于传感器周围的环境存在热刺激和/或传感器附近的其他仪器存在热刺激,传感器的温度可能会发生波动。在第三操作模式下,传感器的温度从起始温度到操作温度的改变能够以快于、慢于或约等于传感器校准期间使用的预定温度变化率的速率发生。
图5场景A示出了对应于第一操作模式中的传感器操作的图形化时间-温度历程。在时间501处的第一情况下,温度传感器可以检测到传感器的温度已落在预定温度操作范围502之外。响应于所检测到的落在预定温度操作范围之外的温度,温度调节装置中的一个或多个可以提供热刺激(例如,加热或冷却)以使传感器的温度发生变化,从而使传感器温度移回到预定温度操作范围中。
在第一操作模式下,一个或多个温度调节装置可被配置用于以高于阈值的温度变化率来将传感器的温度从初始温度调节至操作温度。线段503是在第一操作模式期间可能出现的时间-温度历程的示例。第一操作模式期间的温度变化率可以是线性的、非线性的、对数的或指数的。第一操作模式期间的温度变化率可以是连续的或不连续的。
线段504是传感器在传感器校准期间可能会经历的温度变化率的时间-温度历程的示例。校准期间的温度变化率可以是线性的、非线性的、对数的或指数的。校准期间的温度变化率可以是连续的或不连续的。校准期间的温度变化率可以通过或不通过与第一操作模式期间的温度变化率相同的关系来近似。
第一操作模式期间的温度变化率可以是可由一个或多个温度调节装置实现的最大温度变化率。在第一操作模式中实现的温度变化率可以是足够快的,以使得不对从起始温度转变为预定温度操作范围内的温度的过程中收集到的传感器测量值进行校正只会产生较小的测量误差。例如,测量误差可以至多约为±0.001%、±0.005%、±0.01%、±0.05%、±0.1%、±0.5%、±1%、±5%或±10%。在第一模式中实现的温度变化率可以比在传感器操作之前的校准中使用的预定温度变化率快至少约2倍、5倍、10倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍、150倍、200倍、250倍、300倍、350倍、400倍、450倍或500倍。
在第一操作模式下,可以针对随温度变化的传感器零偏,使用在校准中确定的传感器零偏与温度之间的已知关系来校正传感器的测量值。校准可以是描述了传感器零偏与传感器温度之间的数学关系的高阶曲线。在第一操作模式下,可以仅在传感器正在预定温度操作范围内操作时,例如,在点505处时进行校正。在第一操作模式下,在传感器正在从起始温度转变为预定温度操作范围内的温度时,例如,在点506处时,可以不进行校正。
图5场景B示出了对应于第二操作模式中的传感器操作的图形化时间-温度历程。在第二操作模式下,一个或多个温度调节装置可被配置用于以与在传感器操作之前的校准中使用的预定温度变化率近似相等的温度变化率来将传感器的温度从起始温度调节至操作温度。在第二操作模式中使用的温度变化率可以至少处于在传感器操作之前的校准中使用的预定温度变化率的约±0.001%、±0.005%、±0.01%、±0.05%、±0.1%、±0.5%、±1%、±5%或±10%以内。
曲线507可以是传感器在第二操作模式下操作的代表性时间-温度历程。第二操作模式期间的温度变化率可以是线性的、非线性的、对数的或指数的。第二操作模式期间的温度变化率可以是连续的或不连续的。第二操作模式期间的温度变化率与传感器校准期间的温度变化率可以通过同一类型的数学运算来近似。
曲线504可以表示传感器校准期间的温度变化率的时间-温度历程。在第二操作模式下,一个或多个温度调节装置可被配置用于以与在传感器操作之前的校准中使用的预定温度变化率近似相等的温度变化率来将传感器的温度从起始温度调节至操作温度。在第二操作模式下,可表示传感器在第二操作模式下操作的时间-温度历程的曲线507与曲线504可以基本重叠。
在第二操作模式下,可以针对随温度变化的传感器零偏,使用在校准中确定的传感器零偏与温度之间的已知关系来校正传感器的测量值。校准可以是描述了传感器零偏与传感器温度之间的数学关系的高阶曲线。在第二操作模式下,可以在传感器正在预定温度操作范围内操作时,例如,在点508处时进行校正。在第二操作模式下,还可以在传感器正在从起始温度转变为预定温度操作范围内的温度时,例如,在点509处时进行校正。
在第三操作模式下,一个或多个温度调节装置可被配置用于将传感器的温度从初始温度调节至操作温度,以仅用于执行如本文其他各处所描述的校准。在第三操作模式下,当传感器正在操作时,温度调节装置不操作。在第三操作模式下,当传感器正在操作时,温度调节装置不主动调节传感器的温度。在第三操作模式下,还可以使用在校准中确定的传感器零偏与温度之间的已知关系来对传感器测量值进行校正。所述关系可以是高阶多项式关系。在一些情况下,可以通过线性插值来进行校正。
图5场景C示出了对应于第三操作模式中的传感器操作的图形化时间-温度历程。在时间501处的第一情况下,传感器的温度可以落在预定温度操作范围502之外。随时间的推移,传感器的温度可以返回到预定操作范围中的温度。传感器温度可以响应于提供在传感器周围的环境中的热刺激而从时间501处的第一情况下的第一温度转变为预定温度操作范围502中的温度。传感器温度可以在不操作一个或多个温度调节装置的情况下从时间501处的第一情况下的第一温度转变为预定温度操作范围502中的温度。在一些情况下,当传感器在第三操作模式下操作时,传感器的温度可以不处于包括预定操作温度的温度范围内。传感器在第三操作模式中的温度可以是基本上恒定的。
线段510是在第三操作模式期间可能出现的时间-温度历程的示例。第三操作模式期间的温度变化率可以是线性的、非线性的、对数的或指数的。第三操作模式期间的温度变化率可以是连续的或不连续的。第三操作模式期间的温度变化率可能接近零。在一些情况下,第三操作模式期间的温度变化率可能非常低,例如,时间-温度历程可以由线段513表示。
线段504是传感器在传感器校准期间可能会经历的温度变化率的时间-温度历程的示例。校准期间的温度变化率可以是线性的、非线性的、对数的或指数的。校准期间的温度变化率可以是连续的或不连续的。校准期间的温度变化率可以通过或不通过与第三操作模式期间的温度变化率相同的关系来近似。在一些情况下,传感器在第三操作模式期间的温度变化率可以小于、大于或等于校准期间的温度变化率。图5场景C示出了第三操作模式期间的温度变化率510的示例,所述温度变化率510比校准期间出现的温度变化率504更慢(例如,更小)。
在第三操作模式下,可以针对随温度变化的传感器零偏,使用在校准中确定的传感器零偏与温度之间的已知关系来校正传感器的测量值。校准可以是描述了传感器零偏与传感器温度之间的数学关系的高阶曲线。在第三操作模式下,可以在传感器正在预定温度操作范围内操作时,例如,在点511处时进行校正。在第三操作模式下,还可以在传感器从起始温度转变为预定温度操作范围内的温度时,例如,在点512处时进行校正。
在一些实施方式中,传感器芯片可以包括传感器单元;一个或多个温度传感器,其感测所述传感器单元的至少一部分的温度;以及一个或多个处理器,其被配置用于从所述一个或多个温度传感器接收温度测量值。传感器芯片可以与电源电连通,所述电源可以向传感器、一个或多个处理器和/或一个或多个温度调节装置提供电力。在一些情况下,一个或多个处理器可以进一步被配置用于基于温度测量值来控制传感器单元的温度。在一些情况下,所述一个或多个处理器可以进一步被配置用于在所述传感器的操作之前确定所述传感器单元在(i)初始温度、(ii)预定温度以及(iii)所述初始温度与所述预定温度之间的一个或多个中间温度下的温度零偏。在一些情况下,所述一个或多个处理器可以进一步被配置用于基于在(1)所述起始温度与所述预定温度之间的一个或多个中间温度以及(2)所述预定温度下确定的传感器零偏来将所述传感器单元的传感器测量值从起始温度校正为操作温度。
在一些实施方式中,用于改变传感器单元的温度的热刺激可以由安装在传感器芯片中的一个或多个温度调节装置提供。所述一个或多个温度调节装置可以与传感器单元热连通,以根据来自所述一个或多个处理器的指令通过一系列预定离散温度值来调节所述传感器单元的温度。或者,用于改变传感器单元的温度的热量可以由邻近传感器芯片的一个或多个其他电子部件提供。例如,传感器芯片的传感器单元可以由邻近所述传感器芯片设置的一个或多个其他芯片来加热。任选地,用于改变传感器单元的温度的热量可以由传感器单元本身产生。例如,传感器单元可以在其处于操作中时通过内部电阻来产生热量。
传感器和温度调节装置中的一个或多个可以制造在芯片上。图6示出了描述在传感器芯片上制造自调节传感器单元的过程的步骤的过程流程图。在制造方法的第一步骤601中,可以将一个或多个温度调节装置和传感器单元附接于共用传感器芯片上。在第二步骤602中,可以在一个或多个温度调节装置与传感器单元之间提供热连通。在一些情况下,这些步骤能够以相反的顺序执行。在所述制造过程中可以包括附加步骤。
在一些情况下,传感器可以安装在可移动物体之上。一个或多个传感器可以位于可移动物体之上。一个或多个传感器可以位于可移动物体的外壳之内。外壳可以封闭一个或多个传感器。外壳可以封闭一个或多个温度调节装置。传感器和/或温度调节装置可以位于外壳之外。传感器和/或温度调节装置可以是外壳的一部分或嵌入在外壳内。传感器和/或温度调节装置可能被或不被部分或完全保护免于受到周围环境的影响。传感器和/或温度调节装置可以被保护免于受到风、雨、灰尘或其他环境条件的影响。传感器和/或温度调节装置可以与或不与环境温度稍微热绝缘。例如,热绝缘可以提供在外壳中,这可以减少环境温度对传感器和/或温度调节装置的影响。热绝缘可以使环境温度的影响减少至少1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%。热绝缘可以包括任何材料,包括但不限于泡沫、塑料、软木、真空密封空间、流体、纤维材料或任何其他材料。或者,可以提供少许热绝缘或不提供热绝缘。传感器可以直接感受到环境温度的影响。例如,如果环境温度从70度降低到50度,则传感器可以暴露在相同的温度下。
一个或多个传感器可以包括在可移动物体的控制系统中,或者可以向控制系统提供数据。可移动物体可以移动通过具有不同温度的各种环境,以至于将传感器维持在预定操作温度范围内和/或利用准确的校准关系来补偿传感器零偏可能是重要的。例如,可移动物体可以从有阳光的区域移动到阴暗的区域或者反之亦然,这可能会导致环境温度的快速变化。在另一示例中,可移动物体可以快速地改变高度,这可能会导致环境温度的变化。可移动物体可能经历不同级别的可能会导致环境温度改变的风。可移动物体本身可以使用或多或少的能量,这可能会导致可移动物体本身在正常操作期间产生不同量的热量。温度调节装置可以作出反应以相应地调节或维持传感器的温度,或者可以计算对传感器零偏的校正并且将其用在读取传感器数据中。
本文所描述的系统、装置和方法可以应用于各种各样可移动物体上的传感器。可移动物体可以是无人飞行器(UAV)。本文对飞行器(诸如UAV)的任何描述都可适用于和用于任何可移动物体。本文对飞行器的任何描述都可具体适用于UAV。本发明的可移动物体可被配置用于在任何合适的环境内移动,诸如在空中(例如,固定翼飞行器、旋翼飞行器或者既不具有固定翼也不具有旋翼的飞行器)、在水中(例如,船舶或潜艇)、在地面上(例如,机动车,诸如轿车、卡车、公交车、厢式货车、摩托车、自行车;可移动结构或框架,诸如棒状物、钓鱼竿;或者火车)、在地下(例如,地铁)、在太空(例如,航天飞机、卫星或探测器),或者这些环境的任何组合。可移动物体可以是载运工具,诸如本文其他各处所描述的载运工具。在一些实施方式中,可移动物体可以由诸如人或动物等活体携带,或者从活体飞出去。合适的动物可以包括禽类、犬类、猫类、马类、牛类、羊类、猪类、海豚、啮齿类或昆虫。
可移动物体可能能够在所述环境内相对于六个自由度(例如,三个平移自由度和三个旋转自由度)自由移动。或者,可移动物体的移动可能在一个或多个自由度上受到约束,诸如在预定路径、轨迹或取向上受约束。所述移动可以由诸如发动机或电机等任何合适的致动机构来致动。可移动物体的致动机构可以由任何合适的能源提供动力,诸如电能、磁能、太阳能、风能、引力能、化学能、核能或者其任何合适的组合。可移动物体可以如本文其他各处所描述经由推进系统来自推进。所述推进系统可以任选地依靠能源运行,诸如电能、磁能、太阳能、风能、引力能、化学能、核能或者其任何合适的组合。或者,可移动物体可以由生物所携带。
在一些情况下,可移动物体可以是飞行器。例如,飞行器可以是固定翼飞行器(例如,飞机、滑翔机)、旋翼飞行器(例如,直升机、旋翼飞机)、既具有固定翼又具有旋翼的飞行器或者既无固定翼又无旋翼的飞行器(例如,飞艇、热气球)。飞行器可以是自推进的,诸如在空中自推进。自推进式飞行器可以利用推进系统,诸如包括一个或多个发动机、电机、轮子、轮轴、磁体、旋翼、螺旋桨、桨叶、喷嘴或者其任何合适组合的推进系统。在一些情况下,推进系统可以用于使可移动物体能够从地面起飞、降落到地面上、维持其当前位置和/或取向(例如,悬停)、改变取向和/或改变位置。
可移动物体可以由用户遥控或者由可移动物体之内或之上的乘员在本地控制。可移动物体可以经由单独的载运工具内的乘员来遥控。在一些实施方式中,可移动物体是无人的可移动物体,诸如UAV。无人的可移动物体,诸如UAV,可能没有乘员搭乘所述可移动物体。可移动物体可以由人或自主控制系统(例如,计算机控制系统)或者其任何合适的组合来控制。可移动物体可以是自主式或半自主式机器人,诸如配置有人工智能的机器人。
可移动物体可以具有任何合适的大小和/或尺寸。在一些实施方式中,可移动物体可以具有能使人乘员身处载运工具之内或之上的大小和/或尺寸。或者,可移动物体可以具有比能够使人乘员身处载运工具之内或之上的大小和/或尺寸更小的大小/或尺寸。可移动物体可以具有适合于由人提升或携带的大小和/或尺寸。或者,可移动物体可以大于适合于由人提升或携带的大小和/或尺寸。在一些情况下,可移动物体可以具有的最大尺寸(例如,长度、宽度、高度、直径、对角线)小于或等于约:2cm、5cm、10cm、50cm、1m、2m、5m或10m。所述最大尺寸可以大于或等于约:2cm、5cm、10cm、50cm、1m、2m、5m或10m。例如,可移动物体的相对的旋翼的轴之间的距离可以小于或等于约:2cm、5cm、10cm、50cm、1m、2m、5m或10m。或者,相对的旋翼的轴之间的距离可以大于或等于约:2cm、5cm、10cm、50cm、1m、2m、5m或10m。
在一些实施方式中,可移动物体可以具有小于100cm x 100cm x 100cm、小于50cmx 50cm x 30cm或小于5cm x 5cm x 3cm的体积。可移动物体的总体积可以小于或等于约:1cm3、2cm3、5cm3、10cm3、20cm3、30cm3、40cm3、50cm3、60cm3、70cm3、80cm3、90cm3、100cm3、150cm3、200cm3、300cm3、500cm3、750cm3、1000cm3、5000cm3、10,000cm3、100,000cm3、1m3或10m3。相反地,可移动物体的总体积可以大于或等于约:1cm3、2cm3、5cm3、10cm3、20cm3、30cm3、40cm3、50cm3、60cm3、70cm3、80cm3、90cm3、100cm3、150cm3、200cm3、300cm3、500cm3、750cm3、1000cm3、5000cm3、10,000cm3、100,000cm3、1m3或10m3
在一些实施方式中,可移动物体可以具有的占地面积(这可以指代由所述可移动物体所包围的横截面面积)小于或等于约:32,000cm2、20,000cm2、10,000cm2、1,000cm2、500cm2、100cm2、50cm2、10cm2或5cm2。相反地,所述占地面积可以大于或等于约:32,000cm2、20,000cm2、10,000cm2、1,000cm2、500cm2、100cm2、50cm2、10cm2或5cm2
在一些情况下,可移动物体的重量可能不超过1000kg。可移动物体的重量可以小于或等于约:1000kg、750kg、500kg、200kg、150kg、100kg、80kg、70kg、60kg、50kg、45kg、40kg、35kg、30kg、25kg、20kg、15kg、12kg、10kg、9kg、8kg、7kg、6kg、5kg、4kg、3kg、2kg、1kg、0.5kg、0.1kg、0.05kg或0.01kg。相反地,所述重量可以大于或等于约:1000kg、750kg、500kg、200kg、150kg、100kg、80kg、70kg、60kg、50kg、45kg、40kg、35kg、30kg、25kg、20kg、15kg、12kg、10kg、9kg、8kg、7kg、6kg、5kg、4kg、3kg、2kg、1kg、0.5kg、0.1kg、0.05kg或0.01kg。
在一些实施方式中,可移动物体相对于所述可移动物体所携带的负载而言可能是小的。如本文其他各处进一步详述,所述负载可以包括有效负载和/或载体。在一些示例中,可移动物体重量与负载重量之比可以大于、小于或等于约1:1。在一些情况下,可移动物体重量与负载重量之比可以大于、小于或等于约1:1。任选地,载体重量与负载重量之比可以大于、小于或等于约1:1。当需要时,可移动物体重量与负载重量之比可以小于或等于:1:2、1:3、1:4、1:5、1:10或者甚至更小。相反地,可移动物体重量与负载重量之比还可以大于或等于:2:1、3:1、4:1、5:1、10:1或者甚至更大。
在一些实施方式中,可移动物体可以具有低能耗。例如,可移动物体可以使用小于约:5W/h、4W/h、3W/h、2W/h、1W/h或更小。在一些情况下,可移动物体的载体可以具有低能耗。例如,所述载体可以使用小于约:5W/h、4W/h、3W/h、2W/h、1W/h或更小。任选地,可移动物体的有效负载可以具有低能耗,诸如小于约:5W/h、4W/h、3W/h、2W/h、1W/h或更小。
图7图示了根据本发明的实施方式的无人飞行器(UAV)700。UAV可以是如本文所述的可移动物体的示例。UAV 700可以包括具有四个旋翼702、704、706和708的推进系统。可以提供任何数目的旋翼(例如,一个、两个、三个、四个、五个、六个或更多个)。无人飞行器的旋翼、旋翼组件或其他推进系统可使所述无人飞行器能够悬停/维持位置、改变取向和/或改变位置。相对的旋翼的轴之间的距离可以是任何合适的长度710。例如,长度710可以小于或等于2m,或者小于或等于5m。在一些实施方式中,长度710可以处在从40cm至1m、从10cm至2m或者从5cm至5m的范围内。本文对UAV的任何描述都可适用于可移动物体,诸如不同类型的可移动物体,反之亦然。UAV可以使用如本文所述的辅助起飞系统或方法。
在一些实施方式中,可移动物体可以被配置用于携带负载。所述负载可以包括乘客、货物、设备、仪器等之中的一种或多种。所述负载可以提供在外壳内。所述外壳可以与可移动物体的外壳相分离,或者是可移动物体的外壳的一部分。或者,负载可以具备外壳,而可移动物体不具有外壳。或者,负载的多个部分或者整个负载可以按无外壳方式提供。负载相对于所述可移动物体可以刚性地固定。任选地,负载相对于可移动物体可以是可移动的(例如,相对于可移动物体是可平移的或可旋转的)。如本文其他各处所描述,所述负载可以包括有效负载和/或载体。
在一些实施方式中,可移动物体、载体和有效负载相对于固定参考系(例如,周围环境)和/或相对于彼此的移动可以由终端来控制。所述终端可以是位于远离所述可移动物体、载体和/或有效负载的位置处的遥控装置。终端可以设置在支撑平台上或者固定至所述支撑平台。或者,终端可以是手持式或可穿戴式装置。例如,终端可以包括智能手机、平板电脑、膝上型计算机、计算机、眼镜、手套、头盔、麦克风或者其合适的组合。终端可以包括用户接口,诸如键盘、鼠标、操纵杆、触摸屏或显示器。任何合适的用户输入都可用于与终端交互,诸如手动输入命令、语音控制、手势控制或位置控制(例如,经由终端的移动、定位或倾斜)。
终端可以用于控制可移动物体、载体和/或有效负载的任何合适的状态。例如,终端可以用于控制可移动物体、载体和/或有效负载相对于固定参考物从彼此和/或到彼此的位置和/或取向。在一些实施方式中,终端可以用于控制可移动物体、载体和/或有效负载的单独元件,诸如载体的致动组件、有效负载的传感器或者有效负载的发射体。终端可以包括适于与可移动物体、载体或有效负载中的一个或多个通信的无线通信装置。
终端可以包括用于查看可移动物体、载体和/或有效负载的信息的合适的显示单元。例如,终端可被配置用于显示可移动物体、载体和/或有效负载关于位置、平移速度、平移加速度、取向、角速度、角加速度或其任何合适的组合的信息。在一些实施方式中,终端可以显示由有效负载提供的信息,诸如由功能性有效负载提供的数据(例如,由相机或其他图像捕捉装置记录的图像)。
任选地,同一个终端既可以控制可移动物体、载体和/或有效负载或者所述可移动物体、载体和/或有效负载的状态,又可以接收和/或显示来自所述可移动物体、载体和/或有效负载的信息。例如,终端可以控制有效负载相对于环境的定位,同时显示由有效负载捕捉的图像数据,或者与有效负载的位置有关的信息。或者,不同的终端可以用于不同的功能。例如,第一终端可以控制可移动物体、载体和/或有效负载的移动或状态,而第二终端可以接收和/或显示来自可移动物体、载体和/或有效负载的信息。例如,第一终端可以用于控制有效负载相对于环境的定位,而第二终端显示由所述有效负载捕捉的图像数据。可以在可移动物体与既控制可移动物体又接收数据的集成终端之间,或者在可移动物体与既控制可移动物体又接收数据的多个终端之间利用各种通信模式。例如,可以在可移动物体与既控制可移动物体又从所述可移动物体接收数据的终端之间形成至少两种不同的通信模式。
图8图示了根据实施方式的包括载体802和有效负载804的可移动物体800。虽然可移动物体800被描画为飞行器,但这种描画并不旨在具有限制性,并且如本文前文所述可以使用任何合适类型的可移动物体。本领域技术人员将了解,本文在飞行器系统的背景下描述的任何实施方式都可应用于任何合适的可移动物体(例如,UAV)。在一些情况下,可以在不需要载体802的情况下在可移动物体800上提供有效负载804。可移动物体800可以包括推进机构806、感测系统808和通信系统810。
如前文所述,推进机构806可以包括旋翼、螺旋桨、桨叶、发动机、电机、轮子、轮轴、磁体或喷嘴中的一种或多种。可移动物体可以具有一个或多个、两个或更多个、三个或更多个或者四个或更多个推进机构。推进机构可以全都是同一类型。或者,一个或多个推进机构可以是不同类型的推进机构。推进机构806可以使用任何合适的装置来安装在可移动物体800上,所述装置诸如由本文其他各处所述的支撑元件(例如,驱动轴)。推进机构806可以安装在可移动物体800的任何合适的部分上,诸如顶部、底部、前部、后部、侧部或其合适的组合。
在一些实施方式中,推进机构806可以使得可移动物体800能够从地面垂直地起飞或者垂直地降落在地面上,而不需可移动物体800的任何水平移动(例如,无需沿着跑道滑行)。任选地,推进机构806可以可操作来允许可移动物体800在空中悬停在指定位置和/或取向上。一个或多个推进机构800可以独立于其他推进机构来控制。或者,推进机构800可被配置来同时受到控制。例如,可移动物体800可以具有多个水平定向的旋翼,所述多个水平定向的旋翼可以向可移动物体提供升力和/或推力。可以致动所述多个水平定向的旋翼来向可移动物体800提供垂直起飞、垂直降落以及悬停能力。在一些实施方式中,所述水平定向的旋翼中的一个或多个可以在顺时针方向上旋转,同时所述水平旋翼中的一个或多个可以在逆时针方向上旋转。例如,顺时针旋翼的数目可以等于逆时针旋翼的数目。每个水平定向的旋翼的旋转速率可独立地改变,以便于控制由每个旋翼产生的升力和/或推力,并且由此调节可移动物体800(例如,相对于至多三个平移自由度和至多三个旋转自由度)的空间部署、速度和/或加速度。
感测系统808可以包括一个或多个传感器,所述一个或多个传感器可以感测可移动物体800(例如,相对于至多三个平移自由度和至多三个旋转自由度)的空间部署、速度和/或加速度。所述传感器可以与内置温度调节装置相结合,所述内置温度调节装置被配置用于对传感器执行校准以随温度变化而确定传感器零偏。在一些情况下,温度调节装置可以在操作期间对传感器进行加热或冷却以使所述传感器的温度维持在预定操作温度范围内。所述一个或多个传感器可以包括全球定位系统(GPS)传感器、运动传感器、惯性传感器、近程传感器或图像传感器。由感测系统808提供的感测数据可以用于(例如,如下文所述使用合适的处理单元和/或控制模块)控制可移动物体800的空间部署、速度和/或取向。或者,感测系统808可以用于提供关于可移动物体周围的环境的数据,诸如天气条件、与潜在障碍物的接近度、地理特征的位置、人造结构的位置等。
通信系统810使得能够经由无线信号816与具有通信系统814的终端812通信。通信系统810、814可以包括任何数目的适合于无线通信的发射器、接收器和/或收发器。所述通信可以是单向通信,以使得数据只能在一个方向上传输。例如,单向通信可能仅涉及可移动物体800向终端812传输数据,或者反之亦然。数据可以从通信系统810的一个或多个发射器传输至通信系统812的一个或多个接收器,或者反之亦然。或者,所述通信可以是双向通信,以使得能够在两个方向上在可移动物体800与终端812之间传输数据。双向通信可以涉及从通信系统810的一个或多个发射器向通信系统814的一个或多个接收器传输数据,反之亦然。
在一些实施方式中,终端812可以向可移动物体800、载体802和有效负载804中的一个或多个提供控制数据,并且从可移动物体800、载体802和有效负载804中的一个或多个接收信息(例如,可移动物体、载体或有效负载的位置和/或运动信息;由有效负载感测的数据,诸如由有效负载相机捕捉的图像数据)。在一些情况下,来自终端的控制数据可以包括用于可移动物体、载体和/或有效负载的相对位置、移动、致动或控制的指令。例如,控制数据可能会导致对以下各项的修改:可移动物体的位置和/或取向(例如,经由推进机构806的控制),或者有效负载相对于可移动物体的移动(例如,经由载体802的控制)。来自终端的控制数据可能会导致对有效负载的控制,诸如对相机或其他图像捕捉装置的操作的控制(例如,拍摄静态或动态图片、放大或缩小、开启或关闭、切换成像模式、改变图像分辨率、改变聚焦、改变景深、改变曝光时间、改变视角或视野)。在一些情况下,来自可移动物体、载体和/或有效负载的通信可以包括来自一个或多个传感器(例如,感测系统808或有效负载804的传感器)的信息。所述通信可以包括来自一个或多个不同类型的传感器(例如,GPS传感器、运动传感器、惯性传感器、近程传感器或图像传感器)的感测信息。这类信息可以涉及可移动物体、载体和/或有效负载的定位(例如,位置、取向)、移动或加速度。来自有效负载的这类信息可以包括由所述有效负载捕捉的数据或所述有效负载的感测状态。由终端812提供和传输的控制数据可被配置用于控制可移动物体800、载体802或有效负载804中的一个或多个的状态。或者或组合地,载体802和有效负载804各自还可以包括通信模块,所述通信模块被配置用于与终端812通信,以使得所述终端可独立地与可移动物体800、载体802和有效负载804中的每一个通信并且对其加以控制。
在一些实施方式中,可移动物体800可被配置用于与除了终端812之外或代替终端812的另一远程装置通信。终端812也可被配置用于与另一远程装置以及可移动物体800通信。例如,可移动物体800和/或终端812可以与另一可移动物体或者另一可移动物体的载体或有效负载通信。当需要时,所述远程装置可以是第二终端或其他计算装置(例如,计算机、膝上型计算机、平板电脑、智能手机或其他移动装置)。远程装置可被配置用于向可移动物体800传输数据、从可移动物体800接收数据、向终端812传输数据和/或从终端812接收数据。任选地,远程装置可以连接至因特网或其他电信网络,以使得从可移动物体800和/或终端812接收的数据可被上传至网站或服务器。
图9是根据实施方式的用于控制可移动物体的系统900的方框图形式的示意图。系统900可以与本文所公开的系统、装置和方法的任何合适的实施方式结合使用。系统900可以包括感测模块902、处理单元904、非暂时性计算机可读介质906、控制模块908以及通信模块910。
感测模块902可以利用以不同方式收集与可移动物体有关的信息的不同类型的传感器。不同类型的传感器可以感测不同类型的信号或者来自不同来源的信号。例如,所述传感器可以包括惯性传感器、GPS传感器、近程传感器(例如,激光雷达)或视觉/图像传感器(例如,相机)。感测模块902可以操作性地耦合至具有多个处理器的处理单元904。在一些实施方式中,感测模块可以操作性地耦合至传输模块912(例如,Wi-Fi图像传输模块),所述传输模块912被配置用于向合适的外部装置或系统直接传输感测数据。例如,传输模块912可以用于向远程终端传输由感测模块902的相机捕捉的图像。
处理单元904可以具有一个或多个处理器,诸如可编程处理器(例如,中央处理单元(CPU))。处理单元904可以操作性地耦合至非暂时性计算机可读介质906。非暂时性计算机可读介质906可以储存可由处理单元904执行的逻辑、代码和/或程序指令,以用于执行一个或多个步骤。非暂时性计算机可读介质可以包括一个或多个存储器单元(例如,可移动介质或外部存储体,诸如SD卡或随机存取存储器(RAM))。在一些实施方式中,来自感测模块902的数据可直接传送和储存于非暂时性计算机可读介质906的存储器单元内。非暂时性计算机可读介质906的存储器单元可以储存可由处理单元904执行的逻辑、代码和/或程序指令,以执行本文所描述的方法的任何合适的实施方式。例如,处理单元904可被配置用于执行指令,从而使处理单元904的一个或多个处理器分析由感测模块产生的感测数据。存储器单元可以储存来自感测模块的有待由处理单元904处理的感测数据。在一些实施方式中,非暂时性计算机可读介质906的存储器单元可以用于储存由处理单元904产生的处理结果。
在一些实施方式中,处理单元904可以操作性地耦合至控制模块1608,所述控制模块1608被配置用于控制可移动物体的状态。例如,控制模块1608可被配置用于控制可移动物体的推进机构以调节可移动物体相对于六个自由度的空间部署、速度和/或加速度。或者或组合地,控制模块908可以控制载体、有效负载或感测模块中的一个或多个的状态。
处理单元904可以操作性地耦合至通信模块910,所述通信模块910被配置用于传输数据和/或接收来自一个或多个外部装置(例如,终端、显示装置或其他遥控器)的数据。可以使用任何合适的通信手段,诸如有线通信或无线通信。例如,通信模块910可以利用局域网(LAN)、广域网(WAN)、红外线、无线电、WiFi、点对点(P2P)网络、电信网络、云通信等之中的一种或多种。任选地,可以使用中继站,诸如塔、卫星或移动台。无线通信可以依赖于接近度或独立于接近度。在一些实施方式中,通信可能需要或者不需要视距。通信模块910可以传输和/或接收来自感测模块902的感测数据、由处理单元904产生的处理结果、预定控制数据、来自终端或遥控器的用户命令等之中的一种或多种。
系统900的部件可以按任何合适的配置来布置。例如,系统900的一个或多个部件可以位于可移动物体、载体、有效负载、终端、感测系统或与上述的一个或多个通信的附加外部装置上。此外,虽然图9描画了单一处理单元904和单一非暂时性计算机可读介质906,但本领域技术人员将了解,这并不旨在具有限制性,并且系统900可以包括多个处理单元和/或非暂时性计算机可读介质。在一些实施方式中,多个处理单元和/或非暂时性计算机可读介质中的一个或多个可以位于不同的位置,诸如位于可移动物体、载体、有效负载、终端、感测模块、与上述的一个或多个通信的附加外部装置或其合适的组合上,以使得由系统900执行的处理和/或存储器功能的任何合适的方面可以发生于一个或多个前述位置处。
虽然本文已经示出和描述了本发明的优选实施方式,但对于本领域技术人员而言将显而易见的是,这类实施方式只是以示例的方式提供的。在不偏离本发明的情况下,本领域技术人员现将会想到众多更改、改变和替代。应当理解,在实践本发明的过程中可以采用本文所描述的本发明的实施方式的各种替代方案。以下权利要求旨在限定本发明的范围,并因此覆盖这些权利要求及其等效形式的范围内的方法和结构。

Claims (217)

1.一种用于维持传感器的稳定操作的热调节系统,所述系统包括:
传感器;
一个或多个温度调节装置,其(1)与所述传感器热连通,(2)被配置用于在所述传感器的操作之前(a)将所述传感器的温度从初始温度调节至预定温度,并且(b)记录在(i)所述初始温度、(ii)所述预定温度以及(iii)所述初始温度与所述预定温度之间的一个或多个中间温度下的传感器零偏,并且(3)被配置用于将所述传感器的温度从起始温度调节至操作温度;以及
一个或多个处理器,其与所述传感器和所述一个或多个温度调节装置通信,所述一个或多个处理器被编程用于基于在(1)所述起始温度与所述预定温度之间的一个或多个中间温度以及(2)所述预定温度下的所述记录的传感器零偏来校正所述传感器的传感器测量值。
2.根据权利要求1所述的系统,其中所述一个或多个温度调节装置以预定温度变化率将所述传感器的温度从初始温度调节至预定温度。
3.根据权利要求2所述的系统,其中所述一个或多个温度调节装置以操作温度变化率将所述传感器的温度从起始温度调节至操作温度。
4.根据权利要求1所述的系统,其中所述一个或多个温度调节装置和所述传感器安装在共用基底或共用芯片上。
5.根据权利要求1所述的系统,其中在所述初始温度与所述预定温度之间的一个或多个中间整数温度下记录所述传感器零偏。
6.根据权利要求1所述的系统,其中通过在所述传感器的操作之前记录所述传感器零偏时所处的第一值与第二值之间插值来校正处于所述传感器的操作之前记录所述传感器零偏时所处的所述值之外的温度值。
7.根据权利要求6所述的系统,其中所述插值是线性插值。
8.根据权利要求1所述的系统,其中所述一个或多个温度调节装置中的至少一个是加热器。
9.根据权利要求1所述的系统,其中所述一个或多个温度调节装置中的至少一个是冷却装置。
10.根据权利要求1所述的系统,其中所述传感器是惯性测量单元(IMU)。
11.根据权利要求1所述的系统,其中所述传感器是陀螺仪。
12.根据权利要求1所述的系统,其中所述传感器是传感器阵列。
13.根据权利要求1所述的系统,其中所述共用基底是印刷电路板(PCB)。
14.根据权利要求10所述的系统,其中所述IMU包括微机电系统(MEMS)传感器。
15.根据权利要求1所述的系统,其中多个温度调节装置均匀地分布在所述传感器周围的三维空间或二维空间中。
16.根据权利要求1所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约10mm。
17.根据权利要求1所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约1mm。
18.根据权利要求1所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约0.1mm。
19.根据权利要求2所述的系统,其中所述预定温度变化率约为1℃/s。
20.根据权利要求2所述的系统,其中所述预定温度变化率约为0.1℃/s。
21.根据权利要求2所述的系统,其中所述预定温度变化率约为0.01℃/s。
22.根据权利要求2所述的系统,其中所述预定温度变化率约为0.001℃/s。
23.根据权利要求1所述的系统,其中在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
24.根据权利要求23所述的系统,其中所述填充物具有至少为空气热导率的2倍的热导率。
25.根据权利要求23所述的系统,其中所述填充物具有至少为所述空气热导率的5倍的热导率。
26.根据权利要求23所述的系统,其中所述填充物具有至少为所述空气热导率的10倍的热导率。
27.根据权利要求23所述的系统,其中所述填充物具有至少为所述空气热导率的100倍的热导率。
28.根据权利要求23所述的系统,其中所述填充物是热塑料。
29.根据权利要求23所述的系统,其中所述填充物是硅。
30.根据权利要求23所述的系统,其中所述填充物是环氧树脂。
31.根据权利要求23所述的系统,其中所述填充物将传感器与碎屑隔离。
32.根据权利要求1所述的系统,其中用户通过指导所述热调节系统在所述传感器的操作之前记录在(i)所述初始温度、(ii)所述预定温度以及(iii)所述初始温度与所述预定温度之间的一个或多个中间温度下的所述传感器零偏来发起校准。
33.根据权利要求32所述的系统,其中所述用户在所述校准期间将所述传感器放置在水平表面上。
34.根据权利要求32所述的系统,其中所述校准由用户通过在提供于所述传感器上的用户接口上输入命令来发起。
35.根据权利要求34所述的系统,其中所述用户接口包括按钮。
36.根据权利要求3所述的系统,其中所述操作温度变化率等于所述预定温度变化率。
37.根据权利要求3所述的系统,其中所述操作温度变化率大于所述预定温度变化率。
38.根据权利要求3所述的系统,其中所述操作温度变化率小于所述预定温度变化率。
39.根据权利要求38所述的系统,其中当所述传感器处于使用中时,所述温度调节装置是关闭的。
40.根据权利要求37所述的系统,其中所述操作温度变化率至少为所述预定温度变化率的2倍。
41.根据权利要求37所述的系统,其中所述操作温度变化率至少为所述预定温度变化率的10倍。
42.根据权利要求37所述的系统,其中所述操作温度变化率至少为所述预定温度变化率的50倍。
43.根据权利要求37所述的系统,其中所述操作温度变化率至少为所述预定温度变化率的100倍。
44.一种调节传感器单元的温度的方法,所述方法包括:
通过从一个或多个温度调节装置提供热刺激来校准所述传感器,所述一个或多个温度调节装置(1)与所述传感器热连通并且(2)被配置用于在所述传感器的操作之前(a)将所述传感器的温度从初始温度调节至预定温度,并且(b)记录在(i)所述初始温度、(ii)所述预定温度以及(iii)所述初始温度与所述预定温度之间的一个或多个中间温度下的传感器零偏;
利用温度传感器来感测所述传感器的温度;
从一个或多个温度调节装置提供热刺激,所述一个或多个温度调节装置(1)与所述传感器热连通,并且(2)被配置用于将所述传感器的所述温度从起始温度调节至操作温度;以及
基于在(1)所述起始温度与所述预定温度之间的一个或多个中间温度以及(2)所述预定温度下的所述记录的传感器零偏来校正所述传感器的传感器测量值。
45.根据权利要求44所述的方法,其中所述一个或多个温度调节装置以预定温度变化率将所述传感器的温度从初始温度调节至预定温度。
46.根据权利要求45所述的方法,其中所述一个或多个温度调节装置以操作温度变化率将所述传感器的所述温度从起始温度调节至操作温度。
47.根据权利要求44所述的方法,其中所述一个或多个温度调节装置和所述传感器安装在共用基底上。
48.根据权利要求44所述的方法,其中在所述初始温度与所述预定温度之间的一个或多个中间整数温度下记录所述传感器零偏。
49.根据权利要求44所述的方法,其中通过在所述传感器的操作之前记录所述传感器零偏时所处的第一值与第二值之间插值来校正处于所述传感器的操作之前记录所述传感器零偏时所处的所述值之外的温度值。
50.根据权利要求49所述的方法,其中所述插值是线性插值。
51.根据权利要求44所述的方法,其中所述一个或多个温度调节装置中的至少一个是加热器。
52.根据权利要求44所述的方法,其中所述一个或多个温度调节装置中的至少一个是冷却装置。
53.根据权利要求44所述的方法,其中所述传感器是惯性测量单元(IMU)。
54.根据权利要求44所述的方法,其中所述传感器是陀螺仪。
55.根据权利要求44所述的方法,其中所述传感器是传感器阵列。
56.根据权利要求44所述的方法,其中所述共用基底是印刷电路板(PCB)。
57.根据权利要求53所述的方法,其中IMU传感器包括微机电系统(MEMS)传感器。
58.根据权利要求44所述的方法,其中多个温度调节装置均匀地分布在所述传感器周围的三维空间或二维空间中。
59.根据权利要求44所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约10mm。
60.根据权利要求44所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约1mm。
61.根据权利要求44所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约0.1mm。
62.根据权利要求45所述的方法,其中所述预定温度变化率约为1℃/s。
63.根据权利要求45所述的方法,其中所述预定温度变化率约为0.1℃/s。
64.根据权利要求45所述的方法,其中所述预定温度变化率约为0.01℃/s。
65.根据权利要求45所述的方法,其中所述预定温度变化率约为0.001℃/s。
66.根据权利要求44所述的方法,其中在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
67.根据权利要求66所述的方法,其中所述填充物具有至少为空气热导率的2倍的热导率。
68.根据权利要求66所述的方法,其中所述填充物具有至少为所述空气热导率的5倍的热导率。
69.根据权利要求66所述的方法,其中所述填充物具有至少为所述空气热导率的10倍的热导率。
70.根据权利要求66所述的方法,其中所述填充物具有至少为所述空气热导率的100倍的热导率。
71.根据权利要求66所述的方法,其中所述填充物是热塑料。
72.根据权利要求66所述的方法,其中所述填充物是硅。
73.根据权利要求66所述的方法,其中所述填充物是环氧树脂。
74.根据权利要求66所述的方法,其中所述填充物将传感器与碎屑隔离。
75.根据权利要求44所述的方法,其中所述校准由用户发起。
76.根据权利要求75所述的方法,其中所述用户在所述校准期间将所述传感器放置在水平表面上。
77.根据权利要求44所述的方法,其中所述校准由用户通过在提供于所述传感器上的用户接口上输入命令来发起。
78.根据权利要求76所述的方法,其中所述用户接口包括按钮。
79.根据权利要求46所述的方法,其中所述操作温度变化率等于所述预定温度变化率。
80.根据权利要求46所述的方法,其中所述操作温度变化率大于所述预定温度变化率。
81.根据权利要求46所述的方法,其中所述操作温度变化率小于所述预定温度变化率。
82.根据权利要求81所述的方法,其中当所述传感器处于使用中时,所述温度调节装置是关闭的。
83.根据权利要求80所述的方法,其中所述操作温度变化率至少为所述预定温度变化率的2倍。
84.根据权利要求80所述的方法,其中所述操作温度变化率至少为所述预定温度变化率的10倍。
85.根据权利要求80所述的方法,其中所述操作温度变化率至少为所述预定温度变化率的50倍。
86.根据权利要求80所述的方法,其中所述操作温度变化率至少为所述预定温度变化率的100倍。
87.一种校准传感器的温度零偏的方法,所述方法包括:
将一个或多个温度调节装置提供成与所述传感器热连通;
在包括第一预定离散温度值和第二预定温度值的一系列预定离散温度值中从所述第一预定离散温度值遍历至所述第二预定温度值;
测量传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;
将所述传感器在每个对应的预定离散温度值下的所述温度零偏记录在存储器储存装置中;
确定所述传感器的所述测量的温度零偏与每个对应的预定离散温度值之间的关系;以及
基于所述传感器的所述测量的温度零偏与所述传感器的已知温度之间的所述确定的关系来调节由所述传感器提供的测量值以减小误差。
88.根据权利要求87所述的方法,其中在一系列预定离散温度值中从所述第一预定离散温度值遍历至所述第二预定温度值包括以预定温度变化率在一系列预定离散温度值中从所述第一预定离散温度值遍历至所述第二预定温度值。
89.根据权利要求87所述的方法,其中所述传感器和所述一个或多个温度调节装置安装在共用基底上。
90.根据权利要求87所述的方法,其中所述传感器和所述一个或多个温度调节装置安装在共用芯片上。
91.根据权利要求87所述的方法,其中所述预定离散温度值为整数值。
92.根据权利要求87所述的方法,其中所述一个或多个温度调节装置中的至少一个是加热器。
93.根据权利要求87所述的方法,其中所述传感器是惯性测量单元(IMU)。
94.根据权利要求87所述的方法,其中所述传感器是陀螺仪。
95.根据权利要求87所述的方法,其中所述一个或多个温度调节装置中的至少一个是冷却装置。
96.根据权利要求87所述的方法,其中多个温度调节装置均匀地分布在所述传感器周围的三维空间或二维空间中。
97.根据权利要求87所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约10mm。
98.根据权利要求87所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约1mm。
99.根据权利要求87所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约0.1mm。
100.根据权利要求87所述的方法,其中在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
101.根据权利要求100所述的方法,其中所述填充物具有至少为空气热导率的2倍的热导率。
102.根据权利要求100所述的方法,其中所述填充物具有至少为所述空气热导率的5倍的热导率。
103.根据权利要求100所述的方法,其中所述填充物具有至少为所述空气热导率的10倍的热导率。
104.根据权利要求100所述的方法,其中所述填充物具有至少为所述空气热导率的100倍的热导率。
105.根据权利要求100所述的方法,其中所述填充物是热塑料。
106.根据权利要求100所述的方法,其中所述填充物是硅。
107.根据权利要求100所述的方法,其中所述填充物是环氧树脂。
108.根据权利要求100所述的方法,其中所述填充物将所述传感器与碎屑热隔离。
109.根据权利要求87所述的方法,其中所述存储器储存装置与所述传感器无线通信。
110.根据权利要求87所述的方法,其中所述传感器的所述测量的温度零偏与每个预定离散温度值之间的所述关系通过多项式来描述。
111.根据权利要求87所述的方法,其中当所述传感器处于使用中时,所述一个或多个温度调节装置不操作。
112.根据权利要求87所述的方法,其中所述系列预定离散温度值由用户选择。
113.根据权利要求87所述的方法,其中所述系列预定离散温度值中的至少一部分所述预定离散温度值在校准期间处于所述传感器周围的周围环境的温度之外。
114.根据权利要求87所述的方法,其中用于确定所述关系的指令由用户提供。
115.一种用于产生对传感器的校准的热调节系统,所述系统包括:
一个或多个温度调节装置,其与所述传感器热连通;
控制器,其被编程用于指导所述一个或多个温度调节装置将所述传感器的所述温度在包括第一预定离散温度值和第二预定温度值的一系列预定离散温度值中从所述第一预定离散温度值调节至所述第二预定温度值;
热传感器,所述热传感器用于测量所述传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;
存储器储存装置,其将所述传感器在每个预定离散温度值下的所述温度零偏储存在存储器储存装置中;以及
一个或多个处理器,其被编程用于(1)确定所述传感器的所述测量的温度零偏与每个预定离散温度值之间的关系,并且将所述确定的关系储存在所述存储器储存装置中,并且(2)基于所述传感器的所述测量的温度零偏与所述传感器的已知温度之间的所述确定的关系来调节由所述传感器提供的测量值以减小误差。
116.根据权利要求115所述的系统,其中所述一个或多个温度调节装置以预定变化率将所述传感器的所述温度从所述第一预定离散温度值调节至所述第二预定温度值。
117.根据权利要求115所述的系统,其中所述传感器和所述一个或多个温度调节装置安装在共用基底上。
118.根据权利要求115所述的方法,其中所述传感器和所述一个或多个温度调节装置安装在共用芯片上。
119.根据权利要求115所述的系统,其中所述预定离散温度值为整数值。
120.根据权利要求115所述的系统,其中所述一个或多个温度调节装置中的至少一个是加热器。
121.根据权利要求115所述的系统,其中所述传感器是惯性测量单元(IMU)。
122.根据权利要求115所述的系统,其中所述传感器是陀螺仪。
123.根据权利要求115所述的系统,其中所述一个或多个温度调节装置中的至少一个是冷却装置。
124.根据权利要求115所述的系统,其中多个温度调节装置均匀地分布在所述传感器周围的三维空间或二维空间中。
125.根据权利要求115所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约10mm。
126.根据权利要求115所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约1mm。
127.根据权利要求115所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约0.1mm。
128.根据权利要求115所述的系统,其中在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
129.根据权利要求128所述的系统,其中所述填充物具有至少为空气热导率的2倍的热导率。
130.根据权利要求128所述的系统,其中所述填充物具有至少为所述空气热导率的5倍的热导率。
131.根据权利要求128所述的系统,其中所述填充物具有至少为所述空气热导率的10倍的热导率。
132.根据权利要求128所述的系统,其中所述填充物具有至少为所述空气热导率的100倍的热导率。
133.根据权利要求128所述的系统,其中所述填充物是热塑料。
134.根据权利要求128所述的系统,其中所述填充物是硅。
135.根据权利要求128所述的系统,其中所述填充物是环氧树脂。
136.根据权利要求128所述的系统,其中所述填充物将所述传感器与碎屑热隔离。
137.根据权利要求115所述的系统,其中所述存储器储存装置与所述传感器无线通信。
138.根据权利要求115所述的系统,其中所述传感器的所述测量的温度零偏与每个预定离散温度值之间的所述关系通过多项式来描述。
139.根据权利要求115所述的系统,其中当所述传感器处于使用中时,所述一个或多个温度调节装置不操作。
140.根据权利要求115所述的系统,其中所述系列预定离散温度值由用户选择。
141.根据权利要求115所述的系统,其中所述系列预定离散温度值中的至少一部分所述预定离散温度值在校准期间处于所述传感器周围的周围环境的温度之外。
142.根据权利要求115所述的系统,其中用于确定所述关系的指令由用户提供。
143.一种由用户校准传感器的温度零偏的方法,所述方法包括:
将一个或多个温度调节装置提供成与所述传感器热连通;
从所述用户接收命令以对所述传感器执行校准;
响应于来自所述用户的所述命令而遍历一系列预定离散温度值;
测量传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;
将所述传感器在每个对应的预定离散温度值下的所述温度零偏记录在存储器储存装置中;
确定所述传感器的所述测量的温度零偏与每个对应的预定离散温度值之间的关系;以及
基于所述传感器的所述测量的温度零偏与所述传感器的已知温度之间的所述确定的关系来调节由所述传感器提供的测量值以减小误差。
144.根据权利要求143所述的方法,其中所述传感器和所述一个或多个温度调节装置安装在共用基底或共用芯片上。
145.根据权利要求143所述的方法,其中用于对所述传感器执行校准的所述命令是经由软件接口从所述用户接收的。
146.根据权利要求143所述的方法,其中所述预定离散温度值为整数值。
147.根据权利要求143所述的方法,其中所述一个或多个温度调节装置中的至少一个是加热器。
148.根据权利要求143所述的方法,其中所述传感器是惯性测量单元(IMU)。
149.根据权利要求143所述的方法,其中所述一个或多个温度调节装置中的至少一个是冷却装置。
150.根据权利要求143所述的方法,其中多个温度调节装置均匀地分布在所述传感器周围的三维空间或二维空间中。
151.根据权利要求143所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约10mm。
152.根据权利要求143所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约1mm。
153.根据权利要求143所述的方法,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约0.1mm。
154.根据权利要求143所述的方法,其中在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
155.根据权利要求154所述的方法,其中所述填充物具有至少为空气热导率的2倍的热导率。
156.根据权利要求154所述的方法,其中所述填充物具有至少为所述空气热导率的5倍的热导率。
157.根据权利要求154所述的方法,其中所述填充物具有至少为所述空气热导率的10倍的热导率。
158.根据权利要求154所述的方法,其中所述填充物具有至少为所述空气热导率的100倍的热导率。
159.根据权利要求154所述的方法,其中所述填充物是热塑料。
160.根据权利要求154所述的方法,其中所述填充物是硅。
161.根据权利要求154所述的方法,其中所述填充物是环氧树脂。
162.根据权利要求154所述的方法,其中所述填充物将所述传感器与碎屑热隔离。
163.根据权利要求143所述的方法,其中所述存储器储存装置与所述传感器无线通信。
164.根据权利要求143所述的方法,其中所述传感器的所述测量的温度零偏与每个预定离散温度值之间的所述关系通过多项式来描述。
165.根据权利要求143所述的方法,其中当所述传感器处于使用中时,所述一个或多个温度调节装置不操作。
166.根据权利要求143所述的方法,其中所述系列预定离散温度值由用户选择。
167.根据权利要求143所述的方法,其中所述系列预定离散温度值中的至少一部分所述预定离散温度值在校准期间处于所述传感器周围的周围环境的温度之外。
168.一种用于由用户产生对传感器的校准的热调节系统,所述系统包括:
一个或多个温度调节装置,所述一个或多个温度调节装置与所述传感器热连通;
控制器,所述控制器被编程用于接收指令,以指导所述一个或多个温度调节装置通过一系列预定离散温度值来调节所述传感器的所述温度,并且测量所述传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;
存储器储存装置,其储存所述传感器在每个预定离散温度值下的所述温度零偏;以及
一个或多个处理器,其被编程用于(1)确定所述传感器的所述测量的温度零偏与每个预定离散温度值之间的关系,并且将所述确定的关系储存在所述存储器储存装置中,并且(2)基于所述传感器的所述测量的温度零偏与所述传感器的已知温度之间的所述确定的关系来调节由所述传感器提供的测量值以减小误差。
169.根据权利要求168所述的系统,其中所述传感器和所述一个或多个温度调节装置安装在共用基底上。
170.根据权利要求168所述的系统,其中所述传感器和所述一个或多个温度调节装置安装在共用芯片上。
171.根据权利要求168所述的系统,其中所述预定离散温度值为整数值。
172.根据权利要求168所述的系统,其中所述一个或多个温度调节装置中的至少一个是加热器。
173.根据权利要求168所述的系统,其中所述传感器是惯性测量单元(IMU)。
174.根据权利要求168所述的系统,其中所述一个或多个温度调节装置中的至少一个是冷却装置。
175.根据权利要求168所述的系统,其中多个温度调节装置均匀地分布在所述传感器周围的三维空间或二维空间中。
176.根据权利要求168所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约10mm。
177.根据权利要求168所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约1mm。
178.根据权利要求168所述的系统,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约0.1mm。
179.根据权利要求168所述的系统,其中在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
180.根据权利要求179所述的系统,其中所述填充物具有至少为空气热导率的2倍的热导率。
181.根据权利要求179所述的系统,其中所述填充物具有至少为所述空气热导率的5倍的热导率。
182.根据权利要求179所述的系统,其中所述填充物具有至少为所述空气热导率的10倍的热导率。
183.根据权利要求179所述的系统,其中所述填充物具有至少为所述空气热导率的100倍的热导率。
184.根据权利要求179所述的系统,其中所述填充物是热塑料。
185.根据权利要求179所述的系统,其中所述填充物是硅。
186.根据权利要求179所述的系统,其中所述填充物是环氧树脂。
187.根据权利要求179所述的系统,其中所述填充物将所述传感器与碎屑热隔离。
188.根据权利要求168所述的系统,其中所述存储器储存装置与所述传感器无线通信。
189.根据权利要求168所述的系统,其中所述传感器的所述测量的温度零偏与每个预定离散温度值之间的所述关系通过多项式来描述。
190.根据权利要求168所述的系统,其中当所述传感器处于使用中时,所述一个或多个温度调节装置不操作。
191.根据权利要求168所述的系统,其中所述系列预定离散温度值由用户选择。
192.根据权利要求168所述的系统,其中所述系列预定离散温度值中的至少一部分所述预定离散温度值在校准期间处于所述传感器周围的周围环境的温度之外。
193.一种包括机器可执行代码的非暂时性计算机可读介质,所述机器可执行代码在由一个或多个计算机处理器执行时实现一种由用户校准传感器的温度零偏的方法,所述方法包括:
将一个或多个温度调节装置提供成与所述传感器热连通;
在所述一个或多个计算机处理器处从所述用户接收命令,以对所述传感器执行校准,其中所述用户通过与所述一个或多个计算机处理器通信的用户接口来提供所述命令;
响应于来自所述用户的所述命令而遍历一系列预定离散温度值;
测量所述传感器在所述系列预定离散温度值中的每个预定离散温度值下的温度零偏;
将所述传感器在每个对应的预定离散温度值下的所述温度零偏记录在与所述一个或多个计算机处理器通信的存储器储存装置中;
确定所述传感器的所述测量的温度零偏与每个对应的预定离散温度值之间的关系;以及
从所述一个或多个计算机处理器传输命令,以基于所述传感器的所述测量的温度零偏与所述传感器的已知温度之间的所述确定的关系来调节由所述传感器提供的测量值以减小误差。
194.根据权利要求193所述的计算机可读介质,其中所述传感器和所述一个或多个温度调节装置安装在共用基底上。
195.根据权利要求193所述的计算机可读介质,其中所述传感器和所述一个或多个温度调节装置安装在共用芯片上。
196.根据权利要求193所述的计算机可读介质,其中所述预定离散温度值为整数值。
197.根据权利要求193所述的计算机可读介质,其中所述一个或多个温度调节装置中的至少一个是加热器。
198.根据权利要求193所述的计算机可读介质,其中所述传感器是惯性测量单元(IMU)。
199.根据权利要求193所述的计算机可读介质,其中所述一个或多个温度调节装置中的至少一个是冷却装置。
200.根据权利要求193所述的计算机可读介质,其中多个温度调节装置均匀地分布在所述传感器周围的三维空间或二维空间中。
201.根据权利要求193所述的计算机可读介质,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约10mm。
202.根据权利要求193所述的计算机可读介质,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约1mm。
203.根据权利要求193所述的计算机可读介质,其中所述传感器与所述一个或多个温度调节装置中的每一个之间的距离小于或等于约0.1mm。
204.根据权利要求193所述的计算机可读介质,其中在所述传感器与所述一个或多个温度调节装置中的至少一个之间的空间中提供填充物。
205.根据权利要求204所述的计算机可读介质,其中所述填充物具有至少为空气热导率的2倍的热导率。
206.根据权利要求204所述的计算机可读介质,其中所述填充物具有至少为所述空气热导率的5倍的热导率。
207.根据权利要求204所述的计算机可读介质,其中所述填充物具有至少为所述空气热导率的10倍的热导率。
208.根据权利要求204所述的计算机可读介质,其中所述填充物具有至少为所述空气热导率的100倍的热导率。
209.根据权利要求204所述的计算机可读介质,其中所述填充物是热塑料。
210.根据权利要求204所述的计算机可读介质,其中所述填充物是硅。
211.根据权利要求204所述的计算机可读介质,其中所述填充物是环氧树脂。
212.根据权利要求204所述的计算机可读介质,其中所述填充物将所述传感器与碎屑热隔离。
213.根据权利要求193所述的计算机可读介质,其中所述存储器储存装置与所述传感器无线通信。
214.根据权利要求193所述的计算机可读介质,其中所述传感器的所述测量的温度零偏与每个预定离散温度值之间的所述关系通过多项式来描述。
215.根据权利要求193所述的计算机可读介质,其中当所述传感器处于使用中时,所述一个或多个温度调节装置不操作。
216.根据权利要求193所述的计算机可读介质,其中所述系列预定离散温度值由用户选择。
217.根据权利要求193所述的计算机可读介质,其中所述系列预定离散温度值中的至少一部分所述预定离散温度值在校准期间处于所述传感器周围的周围环境的温度之外。
CN201580078906.8A 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法 Active CN107533339B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010337549.5A CN111506132B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法
CN202010342764.4A CN111459211B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076996 WO2016168974A1 (en) 2015-04-20 2015-04-20 Systems and methods for thermally regulating sensor operation

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202010337549.5A Division CN111506132B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法
CN202010342764.4A Division CN111459211B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法

Publications (2)

Publication Number Publication Date
CN107533339A CN107533339A (zh) 2018-01-02
CN107533339B true CN107533339B (zh) 2020-05-22

Family

ID=57142758

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202010337549.5A Active CN111506132B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法
CN201580078906.8A Active CN107533339B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法
CN202010342764.4A Active CN111459211B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010337549.5A Active CN111506132B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010342764.4A Active CN111459211B (zh) 2015-04-20 2015-04-20 用于对传感器操作进行热调节的系统和方法

Country Status (5)

Country Link
US (3) US10429409B2 (zh)
EP (2) EP3164776B1 (zh)
JP (1) JP6313452B2 (zh)
CN (3) CN111506132B (zh)
WO (1) WO2016168974A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131127A1 (en) * 2015-02-19 2016-08-25 Aeryon Labs Inc. Systems and processes for calibrating unmanned aerial vehicles
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
US9969486B1 (en) * 2016-06-21 2018-05-15 Amazon Technologies, Inc. Unmanned aerial vehicle heat sensor calibration
US9823089B1 (en) 2016-06-21 2017-11-21 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration as part of departure from a materials handling facility
US10032275B1 (en) 2016-06-21 2018-07-24 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration during flight
US10220964B1 (en) 2016-06-21 2019-03-05 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration validation before flight
WO2018074230A1 (ja) * 2016-10-18 2018-04-26 ソニーセミコンダクタソリューションズ株式会社 チップモジュールおよびその信号処理方法、並びに、電子機器
US10650552B2 (en) 2016-12-29 2020-05-12 Magic Leap, Inc. Systems and methods for augmented reality
EP3343267B1 (en) 2016-12-30 2024-01-24 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
US10578870B2 (en) 2017-07-26 2020-03-03 Magic Leap, Inc. Exit pupil expander
CN107888810B (zh) * 2017-11-13 2024-03-01 合肥美亚光电技术股份有限公司 InGaAs红外相机及控制方法
CN116990888A (zh) 2017-12-10 2023-11-03 奇跃公司 光波导上的抗反射涂层
US11187923B2 (en) 2017-12-20 2021-11-30 Magic Leap, Inc. Insert for augmented reality viewing device
WO2019178567A1 (en) 2018-03-15 2019-09-19 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
EP3803488A4 (en) 2018-05-30 2021-07-28 Magic Leap, Inc. COMPACT VARIABLE FOCUS CONFIGURATIONS
WO2019231850A1 (en) 2018-05-31 2019-12-05 Magic Leap, Inc. Radar head pose localization
WO2019236495A1 (en) 2018-06-05 2019-12-12 Magic Leap, Inc. Homography transformation matrices based temperature calibration of a viewing system
WO2020010097A1 (en) 2018-07-02 2020-01-09 Magic Leap, Inc. Pixel intensity modulation using modifying gain values
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
WO2020010226A1 (en) 2018-07-03 2020-01-09 Magic Leap, Inc. Systems and methods for virtual and augmented reality
EP4270016A3 (en) * 2018-07-24 2024-02-07 Magic Leap, Inc. Temperature dependent calibration of movement detection devices
WO2020023543A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Viewing device with dust seal integration
US11112862B2 (en) 2018-08-02 2021-09-07 Magic Leap, Inc. Viewing system with interpupillary distance compensation based on head motion
WO2020028191A1 (en) 2018-08-03 2020-02-06 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
CN112955073A (zh) 2018-08-22 2021-06-11 奇跃公司 患者观察系统
US11009522B2 (en) * 2018-09-07 2021-05-18 Caterpillar Inc. Systems and methods for calibrating an acceleration sensor using a payload system
WO2020070554A2 (en) * 2018-10-04 2020-04-09 Innoviz Technologies Ltd. Electrooptical systems having heating elements
JP7472127B2 (ja) 2018-11-16 2024-04-22 マジック リープ, インコーポレイテッド 画像鮮明度を維持するための画像サイズによってトリガされる明確化
EP4369151A2 (en) 2019-02-06 2024-05-15 Magic Leap, Inc. Target intent-based clock speed determination and adjustment to limit total heat generated by multiple processors
JP2022523852A (ja) 2019-03-12 2022-04-26 マジック リープ, インコーポレイテッド 第1および第2の拡張現実ビューア間でのローカルコンテンツの位置合わせ
US11445232B2 (en) 2019-05-01 2022-09-13 Magic Leap, Inc. Content provisioning system and method
US11016544B2 (en) * 2019-07-02 2021-05-25 Microsoft Technology Licensing, Llc System and method for adaptive thermal management of battery packs
JP2022542363A (ja) 2019-07-26 2022-10-03 マジック リープ, インコーポレイテッド 拡張現実のためのシステムおよび方法
WO2021081781A1 (zh) * 2019-10-29 2021-05-06 深圳市大疆创新科技有限公司 一种无人控制机器人的惯性传感器加热方法
JP2023502927A (ja) 2019-11-15 2023-01-26 マジック リープ, インコーポレイテッド 外科手術環境において使用するための視認システム
CN110830696B (zh) * 2019-11-26 2021-03-12 成都立鑫新技术科技有限公司 一种双目视觉测量技术的校准方法
WO2021224796A1 (en) * 2020-05-04 2021-11-11 Auterion AG System and method for software-defined drones
CN113567008B (zh) * 2021-07-22 2024-03-01 上海派智能源股份有限公司 一种水箱状态检测装置、方法及其洗拖一体机
CN114710567A (zh) * 2022-04-28 2022-07-05 上海芯超半导体科技有限公司 讯号发送方法、发送装置及信息交互系统
US11808780B1 (en) * 2022-05-20 2023-11-07 Honeywell International Inc. Inertial sensor error modeling and compensation, and system for lifetime inertial sensor calibration and navigation enhancement
CN115144617B (zh) * 2022-07-01 2023-05-05 中国空气动力研究与发展中心设备设计与测试技术研究所 一种极低风速标定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212999A (ja) * 1996-11-27 1998-08-11 Denso Corp 内燃機関制御用の酸素濃度センサの学習装置及びその学習方法
US6515285B1 (en) * 1995-10-24 2003-02-04 Lockheed-Martin Ir Imaging Systems, Inc. Method and apparatus for compensating a radiation sensor for ambient temperature variations
CN101619975A (zh) * 2009-06-30 2010-01-06 中国人民解放军武汉军械士官学校光电技术研究所 一种激光陀螺温度补偿控制装置及用途
CN103256941A (zh) * 2013-04-19 2013-08-21 中国兵器工业集团第二一四研究所苏州研发中心 一种mems陀螺仪高阶温度补偿的实用方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527003A (en) 1994-07-27 1996-06-18 Litton Systems, Inc. Method for in-field updating of the gyro thermal calibration of an intertial navigation system
JP3335857B2 (ja) 1996-12-12 2002-10-21 株式会社東芝 耐熱型計測器
US6236139B1 (en) * 1999-02-26 2001-05-22 Jds Uniphase Inc. Temperature compensated microelectromechanical structures and related methods
RU2199777C2 (ru) * 1999-07-15 2003-02-27 Дагестанский государственный технический университет Устройство для термостабилизации нескольких объектов на разных температурных уровнях
US20020008661A1 (en) 2000-07-20 2002-01-24 Mccall Hiram Micro integrated global positioning system/inertial measurement unit system
US6486661B2 (en) * 2001-02-12 2002-11-26 Delphi Technologies, Inc. Sensor bias drift compensation
CN1391147A (zh) * 2001-06-12 2003-01-15 上海裕生智能节能设备有限公司 可编程节电装置
JP2003021613A (ja) * 2001-07-05 2003-01-24 Denso Corp ガスセンサ素子
JP2003121285A (ja) * 2001-10-19 2003-04-23 Toyota Motor Corp 圧力センサ
US6910381B2 (en) * 2002-05-31 2005-06-28 Mykrolis Corporation System and method of operation of an embedded system for a digital capacitance diaphragm gauge
JP2008028017A (ja) 2006-07-19 2008-02-07 Sharp Corp 樹脂封止型半導体装置
KR101004574B1 (ko) * 2006-09-06 2010-12-30 히타치 긴조쿠 가부시키가이샤 반도체 센서 장치 및 그 제조 방법
US7748898B2 (en) * 2007-02-27 2010-07-06 Denso Corporation Temperature sensor and method of producing the temperature sensor
CN101109637A (zh) * 2007-08-21 2008-01-23 浙江大学 一种提高光纤陀螺零偏温度灵敏度性能的方法
JP2009053100A (ja) * 2007-08-28 2009-03-12 Mitsutoyo Corp Memsモジュール及びmemsモジュールの特性安定化方法
JP5040538B2 (ja) * 2007-09-05 2012-10-03 セイコーエプソン株式会社 電子部品の温度制御装置、電子部品の温度制御方法及びicハンドラ
US8410868B2 (en) * 2009-06-04 2013-04-02 Sand 9, Inc. Methods and apparatus for temperature control of devices and mechanical resonating structures
UA106614C2 (uk) 2009-10-26 2014-09-25 Лейка Геосистемз Аг Спосіб калібрування інерціальних датчиків
US8558150B2 (en) 2009-12-01 2013-10-15 Honeywell International Inc. Inertial measurement unit (IMU) multi-point thermal control
US8402824B1 (en) * 2009-12-14 2013-03-26 Hrl Laboratories, Llc Frequency locking of resonators for improved temperature control of gyroscopes
US8326533B2 (en) * 2010-01-21 2012-12-04 Invensense, Inc. Apparatus and methodology for calibration of a gyroscope and a compass included in a handheld device
US8887566B1 (en) * 2010-05-28 2014-11-18 Tanenhaus & Associates, Inc. Miniaturized inertial measurement and navigation sensor device and associated methods
US9110478B2 (en) * 2011-01-27 2015-08-18 Genia Technologies, Inc. Temperature regulation of measurement arrays
JP5682822B2 (ja) 2011-03-18 2015-03-11 横河電機株式会社 温度ドリフト補正装置
JP5633074B2 (ja) * 2011-05-27 2014-12-03 日本スピンドル製造株式会社 温調装置
US10956794B2 (en) * 2011-07-05 2021-03-23 Bernard Fryshman Induction heating systems
US9486109B2 (en) * 2011-07-14 2016-11-08 Tsi Technologies Llc Induction heating system employing induction-heated switched-circuit vessels
JP5723739B2 (ja) * 2011-09-30 2015-05-27 日立オートモティブシステムズ株式会社 Memsセンサ
JP2013120173A (ja) * 2011-12-09 2013-06-17 Kurita Water Ind Ltd 付着物検出用のセンサー及び付着物検出装置
CN102620719B (zh) * 2012-04-17 2014-04-23 西安精准测控有限责任公司 具备高精度、温度补偿的倾角传感器及其动态补偿方法
EP2860502B1 (en) * 2012-06-06 2017-04-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Optical fiber thermal sensor
CN102841616B (zh) * 2012-09-25 2014-11-05 北京机械设备研究所 一种惯性定位定向设备温控方法
CN103063879B (zh) * 2012-12-28 2014-11-05 苏州中盛纳米科技有限公司 Mems加速度传感器的多参数批量测试设备
US9274136B2 (en) 2013-01-28 2016-03-01 The Regents Of The University Of California Multi-axis chip-scale MEMS inertial measurement unit (IMU) based on frequency modulation
CN103248364B (zh) 2013-04-12 2016-02-10 东南大学 一种惯性传感器imu信号模数转换模块
KR101365098B1 (ko) * 2013-06-27 2014-02-20 금호개발상사(주) 하이패스용 rf 안테나의 온도 보상 시스템
CN103383508B (zh) * 2013-07-22 2015-12-23 京东方科技集团股份有限公司 一种液晶滴下装置及液晶滴下方法
CN103472259B (zh) * 2013-09-18 2015-04-29 东南大学 一种硅微谐振式加速度计温度补偿方法
CN203690968U (zh) * 2013-12-06 2014-07-02 深圳市大疆创新科技有限公司 电池、具有该电池的飞行器
EP3482328A4 (en) * 2016-06-03 2020-04-15 Celmatix Inc. FERTILITY EVALUATION METHOD BASED ON GENETIC AND PHENOTYPIC DATA OF MAN AND WOMAN

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515285B1 (en) * 1995-10-24 2003-02-04 Lockheed-Martin Ir Imaging Systems, Inc. Method and apparatus for compensating a radiation sensor for ambient temperature variations
JPH10212999A (ja) * 1996-11-27 1998-08-11 Denso Corp 内燃機関制御用の酸素濃度センサの学習装置及びその学習方法
CN101619975A (zh) * 2009-06-30 2010-01-06 中国人民解放军武汉军械士官学校光电技术研究所 一种激光陀螺温度补偿控制装置及用途
CN103256941A (zh) * 2013-04-19 2013-08-21 中国兵器工业集团第二一四研究所苏州研发中心 一种mems陀螺仪高阶温度补偿的实用方法

Also Published As

Publication number Publication date
EP3578507B1 (en) 2022-10-12
JP6313452B2 (ja) 2018-04-18
US20170184629A1 (en) 2017-06-29
EP3578507A1 (en) 2019-12-11
EP3164776A1 (en) 2017-05-10
CN107533339A (zh) 2018-01-02
EP3164776A4 (en) 2017-12-06
US20230358781A1 (en) 2023-11-09
CN111506132B (zh) 2022-04-05
CN111459211A (zh) 2020-07-28
WO2016168974A1 (en) 2016-10-27
JP2017516164A (ja) 2017-06-15
US20190391176A1 (en) 2019-12-26
EP3164776B1 (en) 2019-07-31
US10429409B2 (en) 2019-10-01
CN111459211B (zh) 2022-07-15
US11703522B2 (en) 2023-07-18
CN111506132A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN107533339B (zh) 用于对传感器操作进行热调节的系统和方法
US11015956B2 (en) System and method for automatic sensor calibration
JP6632082B2 (ja) 熱調節システムおよび方法
CN109219785B (zh) 一种多传感器校准方法与系统
CN107615211B (zh) 使用传感器融合估计可移动物体的状态信息的方法及系统
CN107850901B (zh) 使用惯性传感器和图像传感器的传感器融合
CN107850436B (zh) 使用惯性传感器和图像传感器的传感器融合
CN106462167B (zh) 飞行器姿态控制方法
CN108351574B (zh) 用于设置相机参数的系统、方法和装置
EP3158411B1 (en) Sensor fusion using inertial and image sensors
CN107209514B (zh) 传感器数据的选择性处理
JP6329642B2 (ja) センサ融合
US11105622B2 (en) Dual barometer systems for improved altitude estimation
JP6275887B2 (ja) センサ較正方法及びセンサ較正装置
JP2018039507A (ja) 無人航空機、及び無人航空機で慣性計測ユニットを分離する方法
CN113137965A (zh) 飞行高度估计系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240522

Address after: Building 3, Xunmei Science and Technology Plaza, No. 8 Keyuan Road, Science and Technology Park Community, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province, 518057, 1634

Patentee after: Shenzhen Zhuoyu Technology Co.,Ltd.

Country or region after: China

Address before: 518057 Shenzhen Nanshan High-tech Zone, Shenzhen, Guangdong Province, 6/F, Shenzhen Industry, Education and Research Building, Hong Kong University of Science and Technology, No. 9 Yuexingdao, South District, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SZ DJI TECHNOLOGY Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right