CN107531489A - 新型铁化合物与氧化石墨烯的复合体 - Google Patents

新型铁化合物与氧化石墨烯的复合体 Download PDF

Info

Publication number
CN107531489A
CN107531489A CN201680018445.XA CN201680018445A CN107531489A CN 107531489 A CN107531489 A CN 107531489A CN 201680018445 A CN201680018445 A CN 201680018445A CN 107531489 A CN107531489 A CN 107531489A
Authority
CN
China
Prior art keywords
complex
iron
graphene oxide
iron compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680018445.XA
Other languages
English (en)
Inventor
木下勇
桥本秀树
矶边清
世良佳彦
山下荣次
堀部智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chemical Industries Co Ltd
Kwansei Gakuin Educational Foundation
Original Assignee
Fuji Chemical Industries Co Ltd
Kwansei Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chemical Industries Co Ltd, Kwansei Gakuin Educational Foundation filed Critical Fuji Chemical Industries Co Ltd
Publication of CN107531489A publication Critical patent/CN107531489A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0042Assembling discrete nanostructures into nanostructural devices
    • B82B3/0057Processes for assembling discrete nanostructures not provided for in groups B82B3/0047 - B82B3/0052
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Dispersion Chemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明提供作为光催化剂或电极的有效成分极其有用的新型铁化合物与氧化石墨烯的复合体。一种铁化合物与氧化石墨烯的复合体,其在氧化石墨烯上负载铁化合物粒子而成。

Description

新型铁化合物与氧化石墨烯的复合体
技术领域
本发明涉及铁化合物与氧化石墨烯的复合体、该复合体的制法及该复合体的用途、特别是作为在由水等制造(产生)氢的反应中使用的光催化剂及在水的分解反应中使用的电极的用途。
背景技术
以往,已知有利用太阳光等光能而由水或醇等产生氢的技术,在这样的技术中,使用光催化剂(例如参照专利文献1)。作为光催化剂,已知有使用铂等作为助催化剂的氧化钛等金属氧化物半导体、或使用了铂、钌、钴、镍等的金属络合物等,使用它们来提高产氢效率的技术被广泛研究。
作为氧化石墨烯与铁的复合体,例如已知有以下的复合体。已知将在通过频闪光被还原的氧化石墨烯表面形成有铁氧化物纳米粒子的复合体用于锂离子电极(非专利文献1)。已知有将硝酸铁与羧甲基纤维素钠的凝胶进行干燥·加热处理而得到的铁的铁氧化物的平均粒径为2~100nm、铁/碳比为0.01~0.5的铁碳复合体(专利文献2)。已知有在无定形碳中分散平均粒径为2~100nm的氧化铁、铁/碳比为0.01~0.5、具有磁性的铁碳复合体(专利文献3)。合成通过将具有磁性的铁氧化物在氧化石墨烯的水溶液中混合·干燥而得到的氧化铁与氧化石墨烯的复合体,作为生物适应性扩展试剂使用(非专利文献2)。
此外,已知将负载有具有磁性的铁氧化物的氧化石墨烯作为光产氢电极使用(非专利文献3)
现有技术文献
专利文献
专利文献1:日本特开2012-245469号公报
专利文献2:日本特开2013-35743号公报
专利文献3:日本特开2014-69973号公报
非专利文献
非专利文献1:日本化学会讲演予稿集,95,3,649,2015
非专利文献2:Nanoscale Research Letters,9,656,2014
非专利文献3:Advanced Materials,25,3820-3839,2013
发明内容
发明所要解决的课题
本发明的主要目的是提供作为光催化剂或电极的有效成分极其有用的新型铁化合物与氧化石墨烯的复合体。具体而言,其目的是提供对于使用能够长期使用且对环境的负荷少的原材料、利用自然光由水等产生氢而言有用的光催化剂;及提供使用该催化剂的产氢装置;以及在水的水解反应中使用的电极。进而,其目的还是提供新型铁化合物与氧化石墨烯的复合体的制法、及由水等制造氢的方法。
用于解决课题的方案
本发明人们发现:若将在主要具有环氧基的氧化石墨烯上牢固地分散负载有粒径为0.1~10nm的铁化合物粒子的新型铁化合物与氧化石墨烯的复合体作为光催化剂使用,则来自水等的产氢效率非常高。此外,该光催化剂由于使用廉价的金属,所以能够降低氢的制造成本。进而发现,这样的铁化合物与氧化石墨烯的复合体通过在不活泼溶剂中对铁化合物和氧化石墨烯照射紫外光及可见光的简便的方法而适宜地制造。本发明是通过基于这些见解并进一步反复研究而完成的发明。
发明效果
本发明提供由因在地壳中大量地存在所以供给稳定、环境方面的安全性高的铁化合物与氧化石墨烯的复合体构成的光催化剂。该光催化剂廉价,且产氢效率高,回收·再生容易,且环境污染性极低,能够大幅降低氢的制造成本。此外,本发明还能够提供作为该光催化剂极其有用的新型铁化合物与氧化石墨烯的复合体、该复合体的制法及该复合体的用途、特别是作为在由水等制造(产生)氢的反应中使用的光催化剂及在水的分解反应中使用的电极的用途。进而,本发明还能够提供使用铁化合物与氧化石墨烯的复合体的由水等制造氢的方法(产生的方法)。
即,本发明提供下述公开的方式的发明。
项1.一种铁化合物与氧化石墨烯的粒子状复合体,其特征在于,
(1)粒子状复合体的一次粒子的粒径为0.1~100μm,
(2)铁化合物的粒径为0.1~10nm,
(3)铁的含量为0.1~50质量%,
(4)在红外吸收光谱中,实质上不存在来源于O-H基、C=O基及701cm-1附近的Fe-O基的吸收,存在来源于C-O基的吸收,
(5)在氧化石墨烯上负载有铁化合物。
项2.根据项1所述的复合体,其中,铁化合物为Fe3O4、Fe2O3或它们的混合物。
项3.根据项1或2所述的复合体,其中,铁化合物的粒径为0.5~5nm。
项4.根据项1~3中任一项所述的复合体,其中,铁的含量为0.5~40质量%。
项5.根据项1~4中任一项所述的复合体,其中,在粉末X射线衍射测定中的2θ=30°以上时实质上不具有信号。
项6.根据项1~4中任一项所述的复合体,其中,在pH2的水溶液中,照射白色光后,在石墨烯上维持负载铁化合物,及在pH14的水溶液中,照射白色光后,在石墨烯上维持负载铁化合物。
项7.一种铁化合物与氧化石墨烯的复合体的制造方法,其具有以下工序:使原料的铁化合物和氧化石墨烯在不活泼溶剂中悬浮,并对该悬浮液照射紫外光线及可见光线。
项8.根据项7所述的制造方法,其中,原料的铁化合物为铁与无机酸的盐、铁与羧酸的盐、铁与磺酸的盐、氢氧化铁、苯酚铁、铁复盐、及铁络合物中的至少1种。
项9.根据项7或8所述的制造方法,其中,紫外光线及可见光线的波长为100nm~800nm。
项10.根据项7~9中任一项所述的制造方法,其中,紫外光线及可见光线的照射时间为1分钟~24小时。
项11.一种光催化剂,其含有项1~6中任一项所述的铁化合物与氧化石墨烯的复合体。
项12.在项1~6中任一项所述的铁化合物与氧化石墨烯的复合体的存在下,与水和/或醇类的一种以上、根据需要使用的光敏化剂和/或给电子体混合后,照射光而制造氢的方法。
项13.根据项12的方法,其中,醇类为乙醇。
根据项12或13所述的方法,其中,光为太阳光或白色LED光。
项14.一种氢制造装置,其具备项1~6中任一项所述的铁化合物与氧化石墨烯的复合体作为产氢催化剂。
附图说明
图1是表示实施例1(1)中得到的氧化石墨烯的MALDI、FT-ICR-MS分析的结果的数据。
图2是实施例1(1)中得到的氧化石墨烯的紫外可见吸收光谱。
图3是表示实施例1(1)中得到的氧化石墨烯的粉末X射线衍射测定的结果的数据。
图4是合成铁化合物与氧化石墨烯的复合体的实施例1(2)中使用的装置的示意图。
图5是表示实施例1(2)中得到的铁化合物与氧化石墨烯的复合体的荧光X射线分析的结果的数据。
图6是实施例1(1)中得到的氧化石墨烯及实施例1(2)中得到的铁化合物与氧化石墨烯的复合体的红外吸收光谱(IR:ATR法)。
图7是表示实施例1(2)中得到的铁化合物与氧化石墨烯的复合体的粉末X射线衍射测定的结果的数据。
图8是合成铁化合物与氧化石墨烯的复合体的实施例3中使用的装置的照片。
图9是表示实施例3中得到的铁化合物与氧化石墨烯的复合体的表面的X射线光电子分光测定(XPS)的结果的数据。
图10是通过扫描型电子显微镜/能量分散型分光法(SEM/EDX)观察实施例3中得到的铁化合物与氧化石墨烯的复合体的表面而得到的铁原子的映射图像。
图11是通过扫描型电子显微镜/能量分散型分光法(SEM/EDX)观察实施例3中得到的铁化合物与氧化石墨烯的复合体的表面而得到的氧原子的映射图像。
图12是通过扫描型电子显微镜/能量分散型分光法(SEM/EDX)观察实施例3中得到的铁化合物与氧化石墨烯的复合体的表面而得到的碳原子的映射图像。
图13是通过透射型电子显微镜/能量分散型分光法(TEM/EDX)观察实施例3中得到的铁化合物与氧化石墨烯的复合体的表面而得到的铁原子的映射图像。
图14是通过透射型电子显微镜/能量分散型分光法(TEM/EDX)观察实施例3中得到的铁化合物与氧化石墨烯的复合体的表面而得到的氧原子的映射图像。
图15是通过透射型电子显微镜/能量分散型分光法(TEM/EDX)观察实施例3中得到的铁化合物与氧化石墨烯的复合体的表面而得到的碳原子的映射图像。
图16是通过透射型电子显微镜(TEM)观察实施例3中得到的铁化合物与氧化石墨烯的复合体的表面而得到的图像。
图17表示实施例3中得到的铁化合物与氧化石墨烯的扫描型显微镜照片。
图18表示实施例4中得到的铁化合物与氧化石墨烯的扫描型显微镜照片。
图19是将铁化合物与氧化石墨烯的复合体作为光催化剂使用来制造(产生)氢的实施例5中使用的装置的照片。
图20是标绘实施例5中的光照射时间与产生的氢的总量的关系的图表。
图21是标绘实施例6中的光照射时间与产生的氢的总量的关系的图表。
图22是标绘实施例7中的光照射时间与产生的氢的总量的关系的图表。
图23是标绘实施例8中的光照射时间与产生的氢的总量的关系的图表。
图24是实施例9(2)中的循环伏安图。
具体实施方式
1.铁化合物与氧化石墨烯的复合体
本发明的铁化合物与氧化石墨烯的复合体,其特征在于,铁化合物以纳米尺寸的粒子状均匀且牢固地分散·负载于粉末状的氧化石墨烯上。
上述文献的铁-氧化石墨烯复合体以及本发明的铁化合物与氧化石墨烯的复合体能够通过例如以下的特性进行区别:(1)作为氧化石墨烯的碳与氧的键合状态,氧实质上不是羟基、羰基,而是环氧基;(2)铁化合物的粒径为0.1~10nm的铁化合物粒子以均匀地分散的状态被负载于氧化石墨烯上;(3)氧化石墨烯与铁化合物被牢固地负载;(4)该铁化合物或该复合体不具有磁性。具有上述(1)~(4)中显示的特征的铁化合物和氧化石墨烯作为光催化剂是有用的并不为人所知。
本发明的复合体形成鳞片状和/或板状的铁化合物与氧化石墨烯的复合体的一次粒子聚集而成的粒子状态。本发明的复合体的一次粒径可以为0.1~100μm,优选为0.5~80μm,最优选为2~40μm。它们的粒径由扫描型显微镜(SEM)照片求出。本发明的复合体的一次粒径与作为原料的氧化石墨烯或石墨烯的大小同样,关于分子量在制法的地方叙述。
本发明的复合体中的铁化合物为0价的铁、2价的铁、3价的铁或它们中的1种以上的混合物。优选为2价的铁、3价的铁或它们中的1种以上的混合物,更优选为2价的铁的氧化物、3价的铁的氧化物或它们中的1种以上的混合物,最优选为Fe2O3、Fe3O4或它们的混合物。
本发明的复合体中的铁的含量以铁元素换算计例如可以为0.1~50质量%,优选为0.5~40质量%,更优选为2~30质量%,特别优选为5~20质量%。
本发明的复合体中的铁化合物的粒径例如可以为0.1~10nm,优选为0.5~5nm,最优选为1~4nm。它们的粒径可以通过后述的透射型显微镜(TEM)进行测定。
在本发明的复合体中,氧主要作为环氧基形成氧化石墨烯。这可以通过在铁化合物与氧化石墨烯的复合体的IR光谱中,存在来源于C-O基(环氧基)的吸收(1072cm-1附近的吸收),且实质上不存在来源于O-H基(羟基)的吸收(3000cm-1~3800cm-1的范围及1382cm-1附近的吸收)、来源于C=O基(羰基)的吸收(1614cm-1附近的吸收)及来源于Fe-O基(铁与氧的键合)的吸收(701cm-1附近的吸收)而确认。另外,也可以部分包含羟基或羰基。这里所谓实质上不存在是指它们的吸收的峰高相对于来源于C-O基(环氧基)的吸收的峰高的相对比为0.1以下。
本发明的复合体不显示磁性,此外铁化合物和氧化石墨烯被牢固地分散·负载。磁性的确认通过如后述的实施例中所示的那样,铁化合物与氧化石墨烯的复合物不被磁铁吸附而确认。
本发明的复合体中,铁化合物与氧化石墨烯的键合与以往已知的铁-氧化石墨烯复合体在氧化石墨烯的表面负载有铁化合物相比,具有更强的键合。因此,在使用本发明的复合体作为催化剂时,具有许多的再使用性。铁化合物与氧化石墨烯的键合的强度通过在pH2的酸性水溶液中、或pH14的碱性水溶液中,即使进行光照射(例如白色LED:OSW4XMEC1E、optosupply、照射8天),负载于氧化石墨烯上的铁化合物粒子也不会聚集(例如在光照射后,即使使基于NZ-Fe-B的磁体(日本磁石工业,钕磁铁φ10mm×2mm)与分散有该复合体的试管的外壁接触,该复合体也不会被磁体吸引而附着于试管壁上),而被牢固地固定在氧化石墨烯上而显示。
2.铁化合物与氧化石墨烯的复合体的制法
本发明的铁化合物与氧化石墨烯的复合体使用以下装置而制造:在硬质玻璃制容器上具有带起泡器的氮供给管线、反应液的逆流防止器、搅拌子、不活泼气体导入口及导出口,且在外部具备带石英夹套的汞灯(USHIO450W高压汞灯)及带循环型冷却装置的水浴(30℃)的装置;或在硬质玻璃的反应容器中具有搅拌子及不活泼气体的导入口及导出口,此外根据需要具有流水冷却器,在内部具备以石英玻璃的冷却夹套覆盖的光照射器(光源:100W高压汞灯、SEN LIGHTS Co.,Ltd.、HL100CH-4)的装置;该制造优选通过在不活泼气体(例如氮气、氩气等)的气氛下对原料的铁化合物与氧化石墨烯的不活泼溶剂分散液照射紫外光及可见光来进行。
本制造工序中使用的原料的铁化合物为0价、2价或3价的铁化合物,例如可以为氯化铁、溴化铁、硝酸铁、硫酸铁、磷酸铁、高氯酸铁等铁与无机酸的盐;甲酸铁、醋酸铁、三氟醋酸铁、丙酸铁、草酸铁、富马酸铁、柠檬酸铁、酒石酸铁、硬脂酸铁、苯甲酸铁等铁与羧酸的盐;甲磺酸铁、三氟甲磺酸铁、乙磺酸铁、苯磺酸铁、对磺酸铁等铁与磺酸的盐;氢氧化铁;苯酚铁;六氰酸铁钠、六氰酸铁钾、六氰酸铁铵、乙二胺四醋酸铁钠等铁复盐;乙酰丙酮铁络合物、铁羰基化合物等铁络合物,优选为氯化铁、溴化铁、硝酸铁、硫酸铁、磷酸铁、铁与羧酸的盐、氢氧化铁、苯酚铁、乙酰丙酮铁络合物或铁羰基化合物,更优选为氯化铁、醋酸铁、氢氧化铁、乙酰丙酮铁络合物或铁羰基化合物,最优选为氯化铁、醋酸铁或铁-羰基化合物。
所使用的氧化石墨烯例如可以为市售品或通过将石墨或石墨烯进行氧化而制造的氧化石墨烯,优选为通过将石墨氧化而制造的氧化石墨烯(例如将石墨使用硫酸或高锰酸钾等氧化而制造的氧化石墨烯)。另外,在将石墨使用硫酸进行氧化的情况下,在所得到的氧化石墨烯中存在微量的硫,在使用该氧化石墨烯而制造的铁化合物与氧化石墨烯的复合体中,通常也存在微量的硫。作为氧化石墨烯,例如可以使用作为氧化石墨烯粉末、氧化石墨烯、还原氧化石墨烯、高比表面积石墨烯纳米粉售卖的氧化石墨烯,具体而言,可以使用Sigma Aldrich公司等市售的氧化石墨烯。
在氧化石墨烯的制造中使用的石墨只要是适于本发明的复合体的石墨,则可以使用任意的石墨。作为石墨的形状,例如可以使用球状石墨、粒状石墨、鳞状石墨、鳞片状石墨、及粉末石墨,从铁化合物的负载的难易性、催化剂活性出发,优选使用鳞状石墨、鳞片状石墨。具体而言,可以使用Nacalai Tesque制的粉末石墨、EM JAPAN公司的高比表面积石墨烯纳米粉等市售的石墨。该石墨一次粒径为0.1~100μm,优选为0.5~80μm,最优选为2~40μm。
氧化石墨烯的组成式例如为[CxOyHz]k,其中,x为5~12,y为2~8,z为2~10,k为8~15,优选x为6~10,y为3~6,z为2~5,k为10~13。
此外,该氧化石墨烯的分子量例如为500~5000,优选为800~4000,更优选为1500~3000,最优选为2000~2500。
此外,铁化合物与氧化石墨烯的混合比例例如只要按照铁化合物与氧化石墨烯的复合体包含所期望的铁化合物的含量的方式设定即可。
所使用的紫外光及可见光的波长例如可以为100nm~800nm,优选为180nm~600nm,更优选为260nm~600nm。
所使用的不活泼溶剂只要不参与反应则没有特别限定,例如可以为二乙基醚、四氢呋喃、二噁烷等醚类;甲醇、乙醇、异丙醇等醇类;醋酸乙酯、醋酸丙酯等酯类;二甲基甲酰胺、二甲基乙酰胺等酰胺类;二甲基亚砜等亚砜类;水;或它们的混合溶剂,优选为醚类、醇类、酰胺类、水或它们的混合溶剂,最优选为四氢呋喃、乙醇、二甲基甲酰胺、水或它们的1种以上的混合溶剂。
反应温度根据原料、所使用的紫外光及可见光的波长等的不同而不同,但通常为0℃~50℃,优选为10℃~30℃,最优选为20℃~30℃。
反应时间根据原料、所使用的紫外光及可见光的波长、反应温度等的不同而不同,但通常为1分钟~24小时,优选为10分钟~10小时,最优选为30分钟~5小时。
在反应结束后,作为目标物的铁化合物与氧化石墨烯的复合体通过常规方法从反应混合液中分离(例如,通过将反应混合液过滤,并将所得到的固体进行洗涤、干燥,目标物作为粉末形状而分离)。
3.铁化合物与氧化石墨烯的复合体的用途
(1)作为光催化剂的用途
通过将本发明的铁化合物与氧化石墨烯的复合体作为光催化剂使用,可以由水等制造氢。
在氢的制造中使用的装置是在硬质玻璃制容器上具备能够将产生的氢连续地导出到外部的气体导出管、搅拌子及温度计,且在容器的内部或外部具备光照射器的装置。
可以通过在该容器中加入本发明的铁化合物与氧化石墨烯的复合体或负载有该复合体的物质(例如在玻璃、塑料制等透明的板等上使用树脂系的粘接剂等而负载的物质)和作为氢制造的原料的水等,进一步根据需要加入反应助剂(例如光敏化剂、给电子剂等),并对所得到的悬浮液进行光照射来制造氢。
作为氢制造的原料的水等例如可以为水、甲醇、乙醇、丙醇等醇类或它们的混合物,优选为水、乙醇或它们的混合物,特别优选为水。此外,水例如可以为自来水、蒸馏水、离子交换水、纯水、工业用水等,优选为自来水、蒸馏水或工业用水。
照射的光例如可以为太阳光、白色LED光、荧光灯光、高压汞灯等,优选为太阳光或白色LED光。
光催化剂相对于作为氢制造的原料的水等的比例例如可以为0.0001~5质量%,优选为0.001~1质量%,最优选为0.01~0.1质量%。
作为反应助剂使用的光敏化剂为公知的光敏化剂,例如可以为芳香族烃系色素(例如香豆素、荧光素、二溴荧光素、曙红Y、曙红B、赤藓红B、罗丹明B、孟加拉玫瑰红、结晶紫、孔雀绿、金胺O、吖啶橙、亮甲酚蓝、中性红、硫堇、亚甲基蓝、橙II、靛蓝、茜素、频哪氰醇、小檗碱、四环素、红紫素、噻唑橙等)、吡喃鎓盐系色素(例如吡喃鎓、噻喃鎓、硒代吡喃鎓等)、花青系色素、氧杂菁系色素、部花青系色素、三烯丙基碳鎓系色素等);富勒烯衍生物(例如氢氧化富勒烯、氨基丁酸富勒烯、氨基己酸富勒烯、羧酸富勒烯、双丙二酸二乙基富勒烯、双丙二酸乙基富勒烯等);卟啉、酞菁类似物(例如光卟啉(Photofrin)、他拉泊芬钠(Laserphyrin)、维替泊芬(Visudyne)、血卟啉、次卟啉IX-2,4-二丙烯酸、次卟啉IX-2,4-二磺酸、2,4-二乙酰基次卟啉IX、TSPP、酞菁四羧酸、酞菁二磺酸、酞菁四磺酸、它们的锌、铜、镉、钴、镁、铝、铂、钯、镓、锗、二氧化硅、锡等金属络合物等);金属络合物系色素(例如钌-联吡啶络合物、钌-菲咯啉络合物、钌-联吡嗪络合物、钌-4,7-二苯基菲咯啉络合物、钌-二苯基-菲咯啉-4,7-二磺酸酯络合物、铂-二吡啶基胺络合物、钯-二吡啶基胺络合物等)等,优选为荧光素或二溴荧光素,最优选为荧光素。此外,上述的光敏化剂可以单独使用1种,也可以将2种以上组合使用。
光敏化剂的使用量例如相对于光催化剂1质量份可以为0.1~100质量份,优选为1~10质量份。
此外,给电子体是能够对上述的光敏化剂给予电子的化合物,例如可以为三乙胺、三乙醇胺、乙二胺四醋酸(EDTA)、抗坏血酸等,优选为三乙胺或三乙醇胺。此外,上述给电子体可以单独使用1种,也可以将2种以上组合使用。
给电子体的使用量例如相对于光催化剂1质量份可以为10~1000质量份,优选为100~750质量份。
反应温度例如可以为0~60℃,优选为20~50℃。此外,对光催化剂照射光的期间由于连续地制造氢,所以只要根据制造氢的时间来照射光即可。
所得到的氢由于能够经由气体导出管连续地导出到外部,所以根据需要可以放入高压储气瓶等中而保存·搬运等。
(2)作为电极的有效成分的用途
此外,可以通过常规方法来制造使用了本发明的铁化合物与氧化石墨烯的复合体的电极(例如,将该复合体及碳糊剂以1:100的重量比混合,填塞到碳糊电极的凹处,与放置于平坦的台子上的包药纸摩擦,将电极的表面平滑化,可以制造电极)。
本发明的电极可以实质上仅通过本发明的铁化合物与氧化石墨烯的复合体而构成(可以实质上含有该复合体作为有效成分),也可以通过本发明的该复合体构成电极的表面,并通过其他的金属等构成内部。
进而,本发明的电极可以使该电极的大小、形状等与公知的(产氢)电极同样,可以作为在水的电解中使用的公知的电极的替代而使用。
进而,本发明的(产氢)电极由于能够廉价地制造,并且,产氢效率高,所以能够大幅地降低氢的制造成本。
实施例
以下,示出实施例,对本发明更具体地进行说明,但本发明并不限定于它们。
[实施例1]铁化合物与氧化石墨烯的复合体的合成
(1)氧化石墨烯的合成
在500cm3的一口茄型烧瓶中加入浓硫酸(95~98%、133cm3)和石墨(Graphiteflakes、NACALAI TESQUE社制)(1.01g),在室温(约20℃)下,搅拌15分钟。接着,加入KMnO4(1.04g),在室温(约20℃)下,搅拌约1天。进而,加入KMnO4(1.03g),在室温(约20℃)下,搅拌约1天。进而,加入KMnO4(1.04g),在室温(约20℃)下,搅拌约1天。最后,加入KMnO4(1.03g),在室温(约20℃)下,搅拌约1天,得到淡紫色的悬浮液。
接着,在烧杯中加入冰(100cm3),缓慢地注入上述的淡紫色的液体。进而,一边将该烧杯用冰浴冷却,一边缓慢地加入30%H2O2水溶液(aq)至淡紫色变成淡绿色为止。将所得到的悬浮液分成小部分地加入离心管中,进行离心分离(3900rpm、3小时)。除去上清液,将沉淀物用水洗涤后,进行离心分离(3900rpm、30分钟)。除去上清液,将沉淀物用5%HCl水溶液(aq)洗涤后,进行离心分离(3900rpm、30分钟)。同样地,除去上清液,将沉淀物用乙醇洗涤后,进行离心分离(3900rpm、30分钟)。进而,除去上清液,将沉淀物用乙醇洗涤后,进行离心分离(3900rpm、30分钟)。最后,除去上清液,将沉淀物用二乙醚洗涤后,滤取,用保干器进行减压干燥,得到茶色固体的氧化石墨烯(收量为1.797g)。
对于所得到的氧化石墨烯,使用Bruker Daltonics公司制的Solarix,进行基质辅助激光解吸电离法(MALDI)、傅里叶变换离子回旋共振质谱分析(FT-ICR-MS分析)。将结果示于图1中。由图1确认,最大峰附近(分子量为2000附近)处的氧化石墨烯的化学种为[C8O4H3]12.3
将所得到的氧化石墨烯的紫外可见吸收光谱(日本分光株式会社制、UV/VIS/NIRSpectrophotometer V-570)示于图2中,将粉末X射线衍射(Rigaku Corporation制、台式X射线衍射装置MiniFlex600)示于图3中。
(2)铁化合物与氧化石墨烯的复合体的合成
组装图4中所示的构成的装置[在硬质玻璃制的容器(3)上,具有带起泡器的氮供给管线(1)、反应液的逆流防止器(2)、搅拌子、不活泼气体导入口及导出口,在外部具备带石英夹套的汞灯(USHIO450W高压汞灯:(4))及带循环型冷却装置的水浴(30℃:(5))的构成的装置],在氮气气氛下,将(1)中得到的氧化石墨烯(0.182g)及Fe(CO)5(0.177g)混合到四氢呋喃(THF、20cm3、完成脱氧处理)中。在四氢呋喃中,氧化石墨烯为细微地分散的状态。接着,使用汞灯(USHIO、UM-452)在室温下对反应液照射波长为260~600nm的光(1小时30分钟)。通过光照射,反应液由茶色变化成黑色。接着,在氮气气氛下,滤取所得到的反应液,得到黑色固体(滤液为淡绿色)。将该黑色固体用THF(10cm3)、二氯甲烷(10cm3)及醚(10cm3)洗涤后,进行真空干燥,得到铁化合物与氧化石墨烯的复合体(收量为0.16g)。
将通过本反应得到的铁化合物与氧化石墨烯的复合体的固体粉末在室温下盛到包药纸上,即使从包药纸下接触磁铁(基于Nd-Fe-B的磁体、日本磁石工业社制、钕磁铁、ψ10mm×2mm),也没有粘附。
此外,将通过本反应得到的铁化合物与氧化石墨烯的复合体在试管中分散到酸性水溶液(pH2)或碱性水溶液(pH14)中,在室温下进行光照射(白色LED:OSW4XME3ClE、Optosupply、照射8天),即使使磁铁接触试管的外壁,该复合体也没有被磁体吸引,没有粘附到试管壁上。
对于通过本反应得到的铁化合物与氧化石墨烯的复合体,使用RigakuCorporation制的台式全反射荧光X射线分析装置NANOHUNTER,将进行荧光X射线分析的结果示于图5中。由荧光X射线分析的结果确认,包含Fe。
此外,对于通过本反应得到的铁化合物与氧化石墨烯的复合体,使用FT-IRSpectrometer FT/IR-6200(日本分光株式会社制),将通过ATR测定进行红外吸收光谱(IR)的结果示于图6中。另外,Fe-GO表示本实施例的铁化合物与氧化石墨烯的复合体,GO表示实施例1(1)的氧化石墨烯。在图6中所示的光谱中,由于没有2000cm-1附近的来源于Fe-CO基的吸收,所以获知Fe(CO)5的全部的CO脱离。此外,在图6的光谱中,作为原料的氧化石墨烯的红外吸收光谱中确认到的来源于O-H基的3000-3800cm-1的宽幅的吸收及1382cm-1的吸收、以及来源于C=O基的1614cm-1的吸收消失(这些吸收的峰高相对于来源于C-O基的吸收的峰高的相对比为0.1以下),来源于C-O基的1072cm-1的吸收仍然残留。由这些事实获知,在该复合体中,作为原料的氧化石墨烯的羧基和羟基消失,环氧基残留。此外,进而,实质上不存在来源于Fe-O基的701cm-1的吸收(该吸收的峰高相对于来源于C-O基的吸收的峰高的相对比为0.1以下)。
进而,对于通过本反应得到的铁化合物与氧化石墨烯的复合体,使用台式X射线衍射装置MiniFlex600(Rigaku Corporation制),将进行粉末X射线衍射测定的结果示于图7中。如图7中所示的那样,获知在2θ=9.65°处有比较尖细的信号,氧化石墨烯的层间秩序被部分地保持。另一方面,在图7中,没有出现由铁产生的结构性衍射信号。由此获知,许多的铁化合物粒子作为约3nm以下的纳米粒子而存在于氧化石墨烯中。另外,由粉末X射线衍射测定的比较,铁化合物与氧化石墨烯的复合体中的氧化石墨烯与原料中使用的氧化石墨烯相比整体变化成非晶质。
进而,通过以下的方法定量通过本反应得到的铁化合物与氧化石墨烯的复合体中的Fe的含有率。
即,将通过本反应得到的铁化合物与氧化石墨烯的复合体(5.0mg)加入王水(4cm3、HCl:HNO3=3:1)中,在50℃下搅拌2小时后,在室温(约20℃)下整夜搅拌。在所得到的反应溶液中加入水并稀释后,使用离心分离器(3900rpm、10分钟),将上清液收集到100cm3容量瓶中。将残留的沉淀物用水洗涤,将同样地进行离心分离并收集上清液的操作合计反复进行5次。在收集的上清液中加入水,得到100cm3的制备液。使用该制备液,进行电感耦合等离子体质谱分析(ICP-MS)的测定(标准曲线法)。将测定结果示于表1中。另外,表1中,样品1/100及1/10分别为将上述的制备液用水稀释成100倍及10倍而测定的结果。另外,制备液100cm3中的Fe含有率以溶液浓度×稀释率进行计算。
[表1]
样品 检体 溶液浓度(ppb) 稀释率 含有率(ppm)
1/100 Fe56 34.6501 100.91 3.49
1/100 Fe57 34.9327 100.91 3.52
1/10 Fe56 333.7690 10.05 3.35
1/10 Fe57 332.4528 10.05 3.34
由以上结果,铁化合物与氧化石墨烯的复合体中的Fe含量在每100cm3制备液中为3.425[ppm(mg/kg)]×0.1(kg)=0.343mg(即,获知铁化合物与氧化石墨烯的复合体中的Fe含有率为约7质量%)。
[实施例2]铁化合物与氧化石墨烯的复合体的合成
将上述的实施例1(1)中得到的氧化石墨烯(4mg)悬浮到50%乙醇水溶液(20cm3)中。在产生的悬浮液中加入Fe(CH3COO)2(10.9mg)后,与实施例1(2)同样地进行光反应(1小时),进行与实施例1(2)同样的洗涤处理,得到铁化合物与氧化石墨烯的复合体(收量为4.2mg)。
[实施例3]铁化合物与氧化石墨烯的复合体的合成
使用图8的反应装置(在硬质玻璃的反应容器[1]上具有搅拌子及不活泼气体的导入口[3]及导出口[4],此外,根据需要具有流水冷却器,在内部具备以石英玻璃的冷却夹套[5]覆盖的光照射器[2]的反应装置),在氩气气氛下,在实施例1(1)的氧化石墨烯(0.5g)和脱水THF(100cm3)的悬浮液中加入五羰基铁(关东化学株式会社、0.5g),密闭后,在室温下搅拌10分钟。在流水冷却下,一边鼓泡氮气,一边使用100W高压汞灯(波长:180nm~600nm、SENLIGHTS Co.,Ltd.、HL100CH-4),在室温下进行1小时30分钟光照射。在光照射后,在氩气氛下滤取所得到的混合物,用脱水THF及二乙醚进行洗涤。利用保干器进行减压干燥,得到0.611g黑色粉末的该复合体。
对于通过本反应得到的铁化合物与氧化石墨烯的复合体,使用Omicron公司制、B002431(X射线源Al-Kα:hν=1486.6eV、幅度=0.85eV、输出功率250W)进行X射线光电子分光测定(XPS)[在5.0×10-7Torr以下的减压条件下,能量扫描间隔:0.1eV、摄入时间:0.2sec及累积次数:设定为15次]。将所得到的XPS光谱的结果示于图10中。另外,图10中的Fe-GO表示铁化合物与氧化石墨烯的复合体,Fe3O4表示Fe3O4(Fe3O4的粉末:Kishida Chemical Co.,Ltd.、四氧化三铁020-40855、Lot.E41582F),Fe2O3表示Fe2O3(Fe2O3的粉末:三津和化学药品株式会社、氧化铁(III)粉末、ca.0.3μ、No.64697)。由图10获知,该复合体包含Fe3O4及Fe2O3这两者或任一者。
接着,对于通过本反应得到的铁化合物与氧化石墨烯的复合体的表面,使用Hitachi High-Technologies Corporation制的扫描型电子显微镜SU6600及BrukerCorporation制的附属装置(Bruker ASX QUANTAX XFlash 5060FQ:能量分散型分光法),分别进行SEM图像及各原子的映射图像的观察、元素分析。试样均贴附到碳带上而进行测定。
将铁原子的映射图像示于图10中(另外,较白地显示的部分为铁原子存在的地方。),将氧原子的映射图像示于图11中(另外,较白地显示的部分为氧原子存在的地方。)及将碳原子的映射图像示于图12中(另外,较白地显示的部分为碳原子存在的地方。)。
此外,对于所得到的该复合体,使用日本电子株式会社制、JEOL、FEG透射型电子显微镜(300kW),通过能量分散型分光法(TEM/EDX)进行观察。将铁原子的映射图像示于图13中(另外,较白地显示的部分为铁原子存在的地方。),将氧原子的映射图像示于图14中(另外,较白地显示的部分为氧原子存在的地方。),将碳原子的映射图像示于图15中(另外,较白地显示的部分为碳原子存在的地方。)。
进而,将提高放大率而观察的TEM图像示于图16中。
由图10~15获知,在铁化合物与氧化石墨烯的复合体中,铁原子及氧原子以高均匀性分散而负载。此外,由图16获知,铁化合物与氧化石墨烯的复合体中存在的铁化合物粒子大多为约3nm以下。
进而,以下示出通过扫描型电子显微镜/能量分散型分光法(SEM/EDX)测定的该复合体的元素分析的结果。
C:38.87wt%、O:34.47wt%、Fe:22.77wt%及S:3.88wt%。
另外,硫(S)为氧化石墨烯中包含的杂质。
对于通过本反应得到的铁化合物与氧化石墨烯的复合体,将扫描型电子显微镜照片(SU6600、Hitachi High-Technologies Corporation制)的2个照片示于图17中。获知铁化合物与氧化石墨烯的复合体形成鳞片状和/或板状的一次粒子聚集而成的粒子,一次粒子的直径为0.2μm~40μm。
[实施例4]铁化合物与氧化石墨烯的复合体的合成
使用图8的反应装置,在氩气气氛下,在实施例1(1)氧化石墨烯(0.5g)和乙醇水溶液(100mL、50vol%)的悬浮液中加入无水醋酸铁(Aldrich公司制、0.5g),在室温下搅拌10分钟。在流水冷却下,一边鼓泡氮气,一边使用高压汞灯(波长:180nm~600nm、SEN LIGHTSCo.,Ltd.制、HL100CH-4),在室温下进行1小时30分钟的光照射。光照射后,滤取所得到的混合物,用水和乙醇进行洗涤。利用保干器进行减压干燥,得到0.8g黑色粉末的该复合体。
对于通过本反应得到的铁化合物与氧化石墨烯的复合体,将扫描型电子显微镜照片的照片示于图18中。获知铁化合物与氧化石墨烯的复合体形成鳞片状和/或板状的一次粒子聚集而成的粒子,一次粒子的直径为0.5μm~40μm。
[实施例5]氢的制造(产生)
以实施例1(2)中得到的铁化合物与氧化石墨烯的复合体作为光催化剂,使用图19的反应装置(在管瓶(vial)(30cm3:[1])上具备带垫片塞(Septum Stopper,日语:セプタム栓)[2]、及白色LED(OSW4XME3ClE、Optosupply:[3])的装置),由水及乙醇制造(产生)氢。将实施例1(2)的铁化合物与氧化石墨烯的复合体(1mg)、荧光素(6.6mg)、三乙胺(5%v/v)、乙醇及水(乙醇与水的体积比=1:1)混合(混合液A1)。将混合液A1(10cm3)加入管瓶(30cm3)中,塞上带垫片塞,一边用搅拌器进行搅拌,一边在20℃下,对该管瓶照射白色LED光(OSW4XME3ClE、Optosupply)。在光照射后,每隔一定时间(25小时为止),用气密注射器采集管瓶中的空间的气体0.1cm3,用气相色谱法(装置:GL Science(株)制、GC-3200、柱:GLSciences Inc.制、Molecular Sieve 13X 60/80、外径=1/8英寸、内径=2.2mm、长度=4m、柱温度:60℃、TCD温度:60℃、注射器温度:60℃、载气:氮气、TCD电流:60mA、柱压力:200kPa)对采集的气体中的氢的量进行定量。由于管瓶中的空间的体积(除带垫片塞和溶液以外的管瓶的容积)为20cm3,所以通过以下的式子,将光照射时间与产生的氢的总量的关系示于图20中。另外,在图20中,Fe-GO表示铁化合物与氧化石墨烯的复合体,TEA表示三乙胺(图21及图22中也相同)。
(所采集的气体中的氢的量)×200≈(由体系产生的氢的总量)
图20中,作为比较对象,使用除了没有加入铁化合物与氧化石墨烯的复合体,除此以外还一并示出与混合液A1同样地制作的混合液B1进行氢的制造(产生)反应的结果。由图20的结果,在使用铁化合物与氧化石墨烯的复合体的情况下,约25小时时产氢量成为3.0cm3以上,另一方面,在没有使用该复合体的情况下,产氢量实质上为0cm3。由此获知,本发明的铁化合物与氧化石墨烯的复合体作为由水及乙醇制造(产生)氢的光催化剂是极其有效的。
[实施例6]氢的制造(产生)
除了使用在实施例5中的氢的制造(产生)反应后将铁化合物与氧化石墨烯的复合体滤取并用蒸馏水洗涤而得到的该复合体作为光催化剂以外,与实施例5同样地制作混合液A1,使用其与实施例5同样地进行氢的制造(产生)反应。将光照射时间与产生的氢的总量的关系示于图21中。由该结果,在将使用过一次的光催化剂滤取·洗涤后再利用的情况下,本发明的铁化合物与氧化石墨烯的复合体也显示优异的催化剂活性。
[实施例7]氢的制造(产生)
除了仅使用水来代替乙醇和水(体积比为1:1)以外,与实施例5同样地制作混合液A2,使用其与实施例5同样地进行氢的制造(产生)反应。将光照射时间与产生的氢的总量的关系示于图22中。此外,图22中,作为比较对象,使用除了没有加入铁化合物与氧化石墨烯的复合体,除此以外还一并示出与混合液A2同样地制作的混合液B2进行氢的制造(产生)反应的结果。由该结果获知,本发明的铁化合物与氧化石墨烯的复合体作为由水制造(产生)氢的光催化剂是极其有效的。
[实施例8]氢的制造(产生)
除了使用实施例4的铁化合物与氧化石墨烯的复合体作为光催化剂以外,与实施例5同样地进行氢的制造(产生)反应。将光照射时间与产生的氢的总量的关系示于图23中。另外,图23中,Fe-GO(OAc)表示实施例4中得到的铁化合物与氧化石墨烯的复合体,TEA表示三乙胺。由该结果获知,由Fe(CH3COO)2制造的铁化合物与氧化石墨烯的复合体作为由水制造(产生)氢的光催化剂也是极其有效的。
[实施例9]电极的催化能力
(1)电极的制造
将实施例3中得到的铁化合物与氧化石墨烯的复合体及碳糊剂(BAS公司制、CPO碳糊剂Oil Base)以1:100的重量比进行混合,填塞到碳糊电极(BAS公司制、2210)的凹处,与放置于平坦的台子上的包药纸摩擦,将电极的表面平滑化,得到电极。
(2)电极的催化能力
以(1)的电极作为工作电极,以铂线作为对电极,以银/氯化银电极作为参比电极。在支撑电解质溶液中,使用0.01M的HCl水溶液。将上述3个电极插入圆筒型玻璃电池(内径为16mm)内的支撑电解质溶液(3cm3)中,鼓泡氮气,除去试验溶液的溶存氧后,进行循环伏安测定。关于恒电位仪,使用电化学分析器(BAS、model608A)。将其结果示于图24中。另外,图24中,Fe-GO表示铁化合物与氧化石墨烯的复合体,CPO表示碳糊剂。由该结果,与仅CPO相比在低电位侧观测到由质子还原产生的电流,获知含有本发明的铁化合物与氧化石墨烯的复合体作为有效成分的电极具有催化能力。

Claims (15)

1.一种铁化合物与氧化石墨烯的粒子状复合体,其特征在于,
(1)粒子状复合体的一次粒子的粒径为0.1~100μm,
(2)铁化合物的粒径为0.1~10nm,
(3)铁的含量为0.1~50质量%,
(4)在红外吸收光谱中,实质上不存在来源于O-H基、C=O基及701cm-1附近的Fe-O基的吸收,存在来源于C-O基的吸收,
(5)在氧化石墨烯上负载有铁化合物。
2.根据权利要求1所述的复合体,其中,
铁化合物为Fe3O4、Fe2O3或它们的混合物。
3.根据权利要求1或2所述的复合体,其中,
铁化合物的粒径为0.5~5nm。
4.根据权利要求1~3中任一项所述的复合体,其中,
铁的含量为0.5~40质量%。
5.根据权利要求1~4中任一项所述的复合体,其中,
在粉末X射线衍射测定中的2θ=30°以上时实质上不具有信号。
6.根据权利要求1~4中任一项所述的复合体,其中,
在pH2的水溶液中,照射白色光后,在石墨烯上维持负载铁化合物,及在pH14的水溶液中,照射白色光后,在石墨烯上维持负载铁化合物。
7.一种铁化合物与氧化石墨烯的复合体的制造方法,其具有以下工序:
使原料的铁化合物和氧化石墨烯在不活泼溶剂中悬浮,并对该悬浮液照射紫外光线及可见光线。
8.根据权利要求7所述的制造方法,其中,
原料的铁化合物为铁与无机酸的盐、铁与羧酸的盐、铁与磺酸的盐、氢氧化铁、苯酚铁、铁复盐、及铁络合物中的至少1种。
9.根据权利要求7或8所述的制造方法,其中,
紫外光线及可见光线的波长为100nm~800nm。
10.根据权利要求7~9中任一项所述的制造方法,其中,
紫外光线及可见光线的照射时间为1分钟~24小时。
11.一种光催化剂,其含有权利要求1~6中任一项所述的铁化合物与氧化石墨烯的复合体。
12.在权利要求1~6中任一项所述的铁化合物与氧化石墨烯的复合体的存在下与水和/或醇类的一种以上、根据需要使用的光敏化剂和/或给电子体混合后,照射光而制造氢的方法。
13.根据权利要求12的方法,其中,
醇类为乙醇。
14.根据权利要求12或13所述的方法,其中,
光为太阳光或白色LED光。
15.一种氢制造装置,其具备权利要求1~6中任一项所述的铁化合物与氧化石墨烯的复合体作为产氢催化剂。
CN201680018445.XA 2015-03-27 2016-03-25 新型铁化合物与氧化石墨烯的复合体 Pending CN107531489A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-066945 2015-03-27
JP2015066945 2015-03-27
PCT/JP2016/059776 WO2016158806A1 (ja) 2015-03-27 2016-03-25 新規な鉄化合物とグラフェンオキサイドとの複合体

Publications (1)

Publication Number Publication Date
CN107531489A true CN107531489A (zh) 2018-01-02

Family

ID=57006779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680018445.XA Pending CN107531489A (zh) 2015-03-27 2016-03-25 新型铁化合物与氧化石墨烯的复合体

Country Status (12)

Country Link
US (1) US20190001307A1 (zh)
EP (1) EP3275836A4 (zh)
JP (1) JPWO2016158806A1 (zh)
KR (1) KR20170137123A (zh)
CN (1) CN107531489A (zh)
AU (1) AU2016242574A1 (zh)
BR (1) BR112017020686A2 (zh)
CA (1) CA2981127A1 (zh)
CO (1) CO2017010894A2 (zh)
MX (1) MX2017012346A (zh)
RU (1) RU2706318C2 (zh)
WO (1) WO2016158806A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673994B2 (en) 2018-02-09 2023-06-13 Sekisui Chemical Co., Ltd. Photosensitizer and active energy ray-curable composition

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066630A1 (ja) * 2016-10-05 2018-04-12 学校法人関西学院 イリジウム化合物-グラフェンオキサイド複合体
CN109715291A (zh) * 2016-10-05 2019-05-03 学校法人关西学院 金属化合物-氧化石墨烯复合体
JPWO2018066629A1 (ja) * 2016-10-05 2019-08-29 学校法人関西学院 銅化合物−グラフェンオキサイド複合体
IT201600104397A1 (it) * 2016-10-18 2018-04-18 Fond Bruno Kessler Materiale composito a base di grafene per la generazione di idrogeno e calore in ambiente acquoso e processo per la sua produzione
CN108394893B (zh) * 2018-03-14 2021-04-13 南京信息工程大学 一种类氧化石墨烯材料及其应用
JP7082342B2 (ja) * 2018-03-30 2022-06-08 学校法人関西学院 燃料電池の空気側電極用触媒
JP7045665B2 (ja) * 2018-03-30 2022-04-01 学校法人関西学院 酸素ガスの製造方法
CN109806912B (zh) * 2019-03-11 2021-05-14 山西大学 可磁回收的钕配合物/GO/Fe3O4三元复合物及其制备方法和应用
US10767106B2 (en) * 2019-04-12 2020-09-08 China University Of Petroleum Viscosity reduction system for microwave extraction of heavy oil and preparation method thereof
RU2725822C1 (ru) * 2019-07-09 2020-07-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Способ получения нанокомпозиционного сорбционного материала на основе графена и наночастиц оксида железа
CN110280295A (zh) * 2019-07-19 2019-09-27 盐城工学院 一种g-C3N4基复合光催化材料及其制备方法
PL436197A1 (pl) * 2020-12-02 2022-06-06 Instytut Niskich Temperatur I Badań Strukturalnych Im. Włodzimierza Trzebiatowskiego Polskiej Akademii Nauk Sposób i urządzenie do wytwarzania wodoru
CN113060721B (zh) * 2021-03-15 2022-04-29 中国科学院宁波材料技术与工程研究所 金属氧化物纳米颗粒负载三维石墨烯材料的制法及其应用
CN113398949A (zh) * 2021-08-16 2021-09-17 广西大学 一种磁性还原氧化石墨烯/钨酸银复合光催化剂及其制备方法与应用
CN114464782B (zh) * 2021-12-30 2023-12-01 杭州电子科技大学 一种非晶氧化铁纳米颗粒/多层石墨烯复合材料及制备方法
CN114874273B (zh) * 2022-05-16 2024-03-29 浙江晟格生物科技有限公司 一种l-果糖制备方法
KR20240104669A (ko) 2022-12-28 2024-07-05 인하대학교 산학협력단 폐전지로부터 철 산화물/그래핀 산화물 복합체를 제조하는 방법
CN117482905B (zh) * 2023-12-30 2024-03-15 江西国中业伟环保科技有限公司 一种用于回收工矿废水中稀土的复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245469A (ja) * 2011-05-27 2012-12-13 Toyota Industries Corp 光触媒およびこれを用いた水素製造方法
JP2013035743A (ja) * 2011-07-12 2013-02-21 Institute Of National Colleges Of Technology Japan 炭素質複合体及びその製造方法
CN103623844A (zh) * 2013-07-16 2014-03-12 南昌大学 一种过渡金属硫化物/石墨烯复合纳米材料的制备方法
CN103831107A (zh) * 2014-01-14 2014-06-04 西安交通大学 一种三氧化二铁纳米片包裹纳米碳纤维催化剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011119961A2 (en) * 2010-03-26 2011-09-29 Virginia Commonwealth University Production of graphene and nanoparticle catalysts supported on graphene using microwave radiation
ES2549636T3 (es) * 2012-04-05 2015-10-30 Commissariat à l'énergie atomique et aux énergies alternatives Método para preparar un catalizador que media en el desprendimiento de H2, dicho catalizador y usos del mismo
RU2530084C2 (ru) * 2013-01-30 2014-10-10 Федеральное государственное унитарное предприятие "Государственный ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (ФГУП "ГНИИХТЭОС") Способ получения графеновых структур
WO2014181355A2 (en) * 2013-05-09 2014-11-13 Council Of Scientific & Industrial Research Composition for enhanced life time of charge carriers for solar hydrogen production from water splitting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245469A (ja) * 2011-05-27 2012-12-13 Toyota Industries Corp 光触媒およびこれを用いた水素製造方法
JP2013035743A (ja) * 2011-07-12 2013-02-21 Institute Of National Colleges Of Technology Japan 炭素質複合体及びその製造方法
CN103623844A (zh) * 2013-07-16 2014-03-12 南昌大学 一种过渡金属硫化物/石墨烯复合纳米材料的制备方法
CN103831107A (zh) * 2014-01-14 2014-06-04 西安交通大学 一种三氧化二铁纳米片包裹纳米碳纤维催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANCAI XIE等: "Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting", 《ADVANCED MATERIALS》 *
JAE YOUNG KIM等: "Graphene–carbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film", 《RSC ADV.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673994B2 (en) 2018-02-09 2023-06-13 Sekisui Chemical Co., Ltd. Photosensitizer and active energy ray-curable composition

Also Published As

Publication number Publication date
US20190001307A1 (en) 2019-01-03
CA2981127A1 (en) 2016-10-06
AU2016242574A1 (en) 2017-10-26
MX2017012346A (es) 2018-04-20
KR20170137123A (ko) 2017-12-12
JPWO2016158806A1 (ja) 2018-01-25
BR112017020686A2 (pt) 2018-06-26
RU2017134805A3 (zh) 2019-06-07
EP3275836A4 (en) 2018-11-14
WO2016158806A1 (ja) 2016-10-06
CO2017010894A2 (es) 2018-03-09
RU2706318C2 (ru) 2019-11-15
RU2017134805A (ru) 2019-04-05
EP3275836A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
CN107531489A (zh) 新型铁化合物与氧化石墨烯的复合体
Wang et al. N, B-codoping induces high-efficiency solid-state fluorescence and dual emission of yellow/orange carbon dots
Liu et al. A stable Ag3PO4@ PANI core@ shell hybrid: enrichment photocatalytic degradation with π-π conjugation
Thongsai et al. Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation
Pal et al. Emergence of sulfur quantum dots: Unfolding their synthesis, properties, and applications
Li et al. Carbon nanodots: synthesis, properties and applications
Zhu et al. Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis
Kumari et al. pH-responsive Mn-doped carbon dots for white-light-emitting diodes, fingerprinting, and bioimaging
Zou et al. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts
CN109715291A (zh) 金属化合物-氧化石墨烯复合体
Zhang et al. Water‐Soluble MoS3 Nanoparticles for Photocatalytic H2 Evolution
Yang et al. Carbon dots-embedded zinc-based metal-organic framework as a dual-emitting platform for metal cation detection
Xu et al. Red-emissive carbon dots from spinach: Characterization and application in visual detection of time
George et al. Enhanced photocatalytic performance of novel S2− doped MIL-53 (Fe) under visible light
Yin et al. Doping carbon nitride quantum dots into melamine‐silver matrix: an efficient photocatalyst with tunable morphology and photocatalysis for H2O2 evolution under visible light
Li et al. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols
Li et al. The One‐Step Preparation of Green‐Emissioned Carbon Dots through Hydrothermal Route and Its Application
He et al. Few‐Layered Mo x W1− x S2‐Modified CdS Photocatalyst: One‐Step Synthesis with Bifunctional Precursors and Improved H2‐Evolution Activity
Zhai et al. Sustainable fabrication of N-doped carbon quantum dots and their applications in fluorescent inks, Fe (III) detection and fluorescent films
George et al. NH2-MIL-125 (Ti) and its emeraldine functionalized derivative as a chemical sensor for effective detection of dopamine
Han et al. High-performance photocatalytic peroxymonosulfate activation by carbon quantum dots via precise surface chemistry regulation: Insight into the structure–function relations
Zhang et al. One-step hydrothermal synthesis of NS-GQDs/Bi2S3 microrods with highly photocatalytic performance for Cr (VI) reduction
Gong et al. Yellow fluorescent nitrogen and bromine co-doped graphene quantum dots for bioimaging
Liu et al. Formation of nitrogen-doped blue-and green-emitting fluorescent carbon dots via a one-step solid-phase pyrolysis
WO2018066629A1 (ja) 銅化合物-グラフェンオキサイド複合体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180102

WD01 Invention patent application deemed withdrawn after publication