CN107528317A - 一种电力系统暂态稳定分析方法 - Google Patents

一种电力系统暂态稳定分析方法 Download PDF

Info

Publication number
CN107528317A
CN107528317A CN201710864436.9A CN201710864436A CN107528317A CN 107528317 A CN107528317 A CN 107528317A CN 201710864436 A CN201710864436 A CN 201710864436A CN 107528317 A CN107528317 A CN 107528317A
Authority
CN
China
Prior art keywords
mrow
msub
mtr
mtd
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710864436.9A
Other languages
English (en)
Inventor
汪成根
杨阳
卜京
张梦月
王俊
周前
张宁宇
胡昊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710864436.9A priority Critical patent/CN107528317A/zh
Publication of CN107528317A publication Critical patent/CN107528317A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种电力系统暂态稳定分析方法。电力系统暂态稳定分析方法主要有时域仿真法和直接法,暂态能量函数法属于直接法。暂态能量函数法模型比较简单,能计及非线性问题,可避免复杂的数值积分运算,计算速度快,还可提供系统稳定裕度指标,但由于模型精确度、临界点选择性以及线性路径假设的限制,传统的暂态能量函数一直存在保守性问题。本发明提出的基于SMR(Squared Matrix Representation)技术的改进暂态能量函数法,通过引入SMR技术改进暂态能量函数分析方法,采用叠加程序来获取最优李雅普诺夫函数,改善了传统暂态能量函数保守性的问题。

Description

一种电力系统暂态稳定分析方法
技术领域
本发明涉及一种基于SMR技术的改进暂态能量函数法,属于电力系统暂态稳定分析、暂态能量函数研究以及非线性优化领域。
背景技术
电力系统的互联形成互联电力系统,可以带来显著的技术经济效益。但是电力系统的规模越大,互联的部分越多,其中任一元件发生故障,都有可能引起事故扩大。如果电网结构不够强壮,或者安全自动装置不够健全,或者管理失当,都有可能使系统陷入稳定危机,造成系统稳定破坏甚至大面积停电,乃至全网崩溃。因此,国内外大型电力系统的运行与规划都把电力系统的稳定安全评定置于重要地位。
电力系统暂态稳定评估的目标是快速评估系统运行的稳定状态和模式,筛选出威胁系统暂态稳定的严重故障,确定预防控制和紧急控制策略,制定实施措施。目前,电力系统暂态稳定分析方法主要有时域仿真法和暂态能量函数法。时域仿真法能精确考虑各种复杂模型,可获得各状态变量随时间的变化曲线,但计算量很大、所需时间长,只能用于离线分析,且其结果不能给出系统的稳定裕度定量指标。暂态能量函数法克服了数值仿真法的计算速度慢和无法定量分析稳定性的局限性,模型比较简答,能计及非线性问题,还能够提供系统稳定裕度定量指标。但由于模型精确度、临界点选择性以及线性路径假设的限制,传统的暂态能量函数法一直存在保守性问题。虽然许多学者对保守性问题进行了大量研究,但是随着系统大规模的发展,对系统暂态稳定指标精确度度越来越高,因此,保守性还需进一步的改善。
在暂态稳定分析中,有理李雅普诺夫函数具有相较于二次型和多项式型李雅普诺夫函数保守性更小的优点,同时目前几何学中发展迅速的SMR技术可以将非凸优化模型转变成凸优化模型求解,从而能够获取全局最优解。因此,本发明将两者进行结合,引入SMR技术改进暂态能量函数分析方法,采用叠加程序来获取最优李雅普诺夫函数,对改善传统暂态能量函数法保守性具有重要的意义。但是由于在构建传统暂态能量函数时对路径相关积分项的近似处理使得临界切除时间存在保守性。
发明内容
本发明的目的在于改善构建传统电力系统暂态能量函数时对路径相关积分项的近似处理导致保守性问题。
为解决上述技术问题,发明人采用了如下的技术方案:
一种电力系统暂态稳定分析方法,包括以下步骤:
第一步,利用泰勒级数对原电力系统的系统方程进行重构
本步骤的主要思想是将多项式函数和非多项式函数分离,然后利用泰勒级数对非多项式部分近似展开。具体来讲,将系统(1-1)写成(1-2)等效形式。
其中,h(x(t)),g(x(t))是向量多项式函数并且属于多项式集合Pn,代表非多项式函数。在D内是可以解析的。令(1-3)成立:
|α|=α1+…+αn,α!=α1!...αn!,xα=x1 α...xn α (1-3)
其中,x∈Rn并且α=(α1,....,αn)T∈Nn是n维向量。k阶导数可表示为式(1-4)所示:
因此,式(1-2)中可以写成如下所示的泰勒展开式:
其中,ξi是有界参数,k代表幂级数,β为满足式|β|=k+1的参数;ηi(x)是k阶泰勒多项式,如式(1-6)所示:带佩余亚诺相的泰勒展开
ξi为泰勒余项值的值。
第二步,利用有理李雅普诺夫函数扩大估计稳定域
首先,我们定义V(x)为系统(2-1)的有理李雅普诺夫函数,即:
其中,Vnum、Vden均属于多项式集合P,并且满足(2-2)~(2-3)所示的条件:
且Vnum(0n)=0 (2-2)
在获取系统稳定域时,首先要定义V(x)一个子集υ(c)={x∈Rn:V(x)≤c},我们的目的是通过求解式(2-4)所示的优化模型来寻找最优李雅普诺夫函数v(x),从而减小保守性。
为了求解问题(2-4),最为关键的一步是利用有理李雅普诺夫函数估计最大稳定域ck。通过求解(2-5)最优问题获得最大稳定域ck。(在零处为0,其余可写成平方和)
其中,的变量在零点处-ψ(x,c,s(x),ξ)的值为0,并且多项式-ψ(x,c,s(x),ξ)是由每个单项式平方和相加组成的,构成方法如式(2-6)~(2-8)所示:
ψ(x,c,s(x),ξ)=r(x)+q(x)ξ+s(x)(cVden(x)-Vnum(x)) (2-8)
第三步利用SMR技术构造凸优化模型
对于步骤(2)中SOS模型,MATLAB工具箱中的YALMIP,SOSOPT和SOSTOOLS均不能够对其进行直接求解,可以利用SMR技术对局部SOS模型进行处理,并且能够将非凸优化模型转化为凸优化模型,从而能够保证求出的单机无穷大系统稳定域全局最优。SMR技术处理SOS优化模型如下:
s(x)=(φ(n,d(q)))TSφ(n,d(q))
ψ(x,c,s(x),ξ)=(ψ(c,S,ξ))T(ψ(c,S,ξ)+L(γ))φ(n,d(ψ)) (3-1)
u(x)=u1(x)+u2(x),u1(x)=-r(x)-q(x)Tξ+s(x)Vnum(x) (3-2)
其中,R(ξ),W(S),U2(S)和分别是-r(x)-q(x)Tξ,s(x)Vnum(x),u2(x)和V(x)的SMR矩阵。d(q)为不小于degx(q)/2的最小整数,degx(q)/2为多项式函数q(x)∈P0 SOS的最高次数,φ(n,d(q))是由不同幂次数的变量组成的向量,变量的幂次数均小于等于d(q)的正整数,n是变量的个数,c是稳定域边界,x是函数变量,L(γ)为仿射空间,满足:
根据上述处理方法,对于最优有理李雅普诺夫函数的确定及最大稳定域ck的获得可以通过求(3-5)实现。
其中,是式(3-6)所示GEVP问题的解,其模型如下所示:
第四步寻求最优李雅普诺夫函数
上述步骤对SMR技术求解不变的有理李雅普诺夫函数获得最大稳定域,其结果并不是最优的。因此本步骤根据以上理论分析,首先通过式(5-21)获得初始有理李雅普诺夫函数V0(x):
其中,Vq(x)是系统线性部分的二次型李雅普诺夫函数,Va(x)是辅助多项式函数,其选择方法为(xTx)·(xTPx),我们的目的是在v(c)范围内通过扩大区域多项式所包围的区域来寻求最优有理李雅普诺夫函数,具体如式(4-2)所示:
其中, 是多项式。例如可以选择提出利用式(4-3)寻求最优有理李雅普诺夫函数并获取最大的稳定域。
本发明所达到的有益效果:
本发明公开了一种电力系统暂态稳定分析方法,引入SMR技术改进了传统的暂态能量函数法,采用叠加程序来获取最优李雅普诺夫函数,对改善传统暂态能量函数法保守性具有重要的意义。但是由于在构建传统暂态能量函数时对路径相关积分项的近似处理使得临界切除时间存在保守性。
附图说明
图1SMR技术改进暂态能量函数流程图;
图2单机无穷大系统;
图3单机无穷大系统的稳定域。
具体实施方式
如图1、图2所示,本发明公开了一种基于电力系统暂态稳定分析方法,采用SMR技术改进暂态能量函数法。电力系统暂态稳定分析方法主要有时域仿真法和直接法,暂态能量函数法属于直接法。暂态能量函数法模型比较简单,能计及非线性问题,可避免复杂的数值积分运算,计算速度快,还可提供系统稳定裕度指标,但由于模型精确度、临界点选择性以及线性路径假设的限制,传统的暂态能量函数一直存在保守性问题。本发明提出的基于SMR(Squared Matrix Representation)技术的改进暂态能量函数法,通过引入SMR技术改进暂态能量函数分析方法,采用叠加程序来获取最优李雅普诺夫函数,改善了传统暂态能量函数保守性的问题。具体优化方法如下:
第一步,利用泰勒级数对原电力系统的系统方程进行重构
本步骤的主要思想是将多项式函数和非多项式函数分离,然后利用泰勒级数对非多项式部分近似展开。具体地,设系统方程如下:
其中,x(t)=(x1(t),x2(t),......,xn(t))T
将系统多项式函数与非多项式函数分离,可得:
其中,h(x(t)),g(x(t))是向量多项式函数,且属于多项式集合Pn表示非多项式函数。在D内可解析。
|α|=α1+…+αn,α!=α1!...αn!,xα=x1 α...xn α (1-3)
其中,x∈Rn且α=(α1,....,αn)T∈Nn是n维向量。
则对于非多项式函数其k阶导数可表示为:
因此,式(1-2)中可以写成如下所示的泰勒展开式:
其中,ξi是有界参数,k代表幂级数,β为满足式|β|=k+1的参数;ξi为泰勒余项值的值,ηi(x)是k阶泰勒多项式,如下式所示:
第二步,利用有理李雅普诺夫函数扩大估计稳定域
首先,定义V(x)为系统(2-1)的有理李雅普诺夫函数,即:
其中,Vnum、Vden均属于多项式集合P,并且满足(2-2)~(2-3)所示的条件:
且Vnum(0n)=0 (2-2)
在获取系统稳定域时,首先要定义V(x)一个子集υ(c)={x∈Rn:V(x)≤c},通过求解式(2-4)所示的优化模型来寻找最优李雅普诺夫函数v(x),从而减小保守性。
为了求解问题(2-4),最为关键的一步是利用有理李雅普诺夫函数估计最大稳定域ck。通过求解(2-5)最优问题获得最大稳定域ck
其中,的变量在零点处-ψ(x,c,s(x),ξ)的值为0,并且多项式-ψ(x,c,s(x),ξ)是由每个单项式平方和相加组成的,构成方法如式(2-6)~(2-8)所示:
ψ(x,c,s(x),ξ)=r(x)+q(x)ξ+s(x)(cVden(x)-Vnum(x)) (2-8)其中,
第三步利用SMR技术构造凸优化模型
对于第二步中SOS模型,MATLAB工具箱中的YALMIP,SOSOPT和SOSTOOLS均不能够对其进行直接求解,可以利用SMR技术对局部SOS模型进行处理,并且能够将非凸优化模型转化为凸优化模型,从而能够保证求出的单机无穷大系统稳定域全局最优。SMR技术处理SOS优化模型如下:
s(x)=(φ(n,d(q)))TSφ(n,d(q))
ψ(x,c,s(x),ξ)=(ψ(c,S,ξ))T(ψ(c,S,ξ)+L(γ))φ(n,d(ψ)) (3-1)
u(x)=u1(x)+u2(x),u1(x)=-r(x)-q(x)Tξ+s(x)Vnum(x) (3-2)
其中,R(ξ),W(S),U2(S)和分别是-r(x)-q(x)Tξ,s(x)Vnum(x),u2(x)和V(x)的SMR矩阵;λ为正数。φ(n,d(q))是由不同幂次数的变量组成的向量,变量的幂次数均小于等于d(q)的正整数,n是变量的个数,d(q)为不小于degx(q)/2的最小整数,degx(q)/2为多项式函数q(x)∈P0 SOS的最高次数,c是稳定域边界,x是函数变量,L(γ)为仿射空间,满足:
根据上述处理方法,对于最优有理李雅普诺夫函数的确定及最大稳定域ck的获得可以通过求(3-5)实现。
其中,是式(3-6)所示GEVP问题的解,其模型如下所示:
第四步寻求最优李雅普诺夫函数
上述步骤对SMR技术求解不变的有理李雅普诺夫函数获得最大稳定域,其结果并不是最优的。因此本步骤根据以上理论分析,首先通过式(4-1)获得初始有理李雅普诺夫函数V0(x):
其中,Vq是系统线性部分的二次型李雅普诺夫函数,Va是辅助多项式函数,其选择方法为(xTx)·(xTPx),在v(c)范围内通过扩大区域多项式所包围的区域来寻求最优有理李雅普诺夫函数,具体如式(4-2)所示:
其中, 是多项式。例如可以选择利用式(4-3)寻求最优有理李雅普诺夫函数并获取最大的稳定域。
第五步,分析单机无穷大系统,获取VSG策略下计及逆变器饱和的风电系统最优李雅普诺夫函数。
确定单机无穷大系统的改进暂态能量函数。根据单机无穷大系统的系统方程如式(5-1)所示:
其中,x1=x=δ-δsf(x1)=Pem3sin(x1s)-PM。D为发电机阻尼系数,M为转动惯量,δ为发电机功角,δS为发电机故障后稳定运行时功角,ω为发电机转速,ωS为发电机同步角速度,Pem3为故障后发电机电磁输出功率的最大值,PM为原动机的机械输入功率。x1代表VSG虚拟功角,x2代表转子速度变化量。首先利用泰勒级数重构原系统,g1=-1/M,ζ1=f(x1),选择展开最大幂次数k=5,接着选择初始的有理李雅普诺夫函数如式(5-2)所示:
其中,a1,a2,b1,b12,b2,c1,c2,d1,d2,d12均为所要优化的系数。其次,建立初始区域形状多项式m、p、n分别是建立的多项式参数,在满足李雅普诺夫函数条件的前提下,通过不断改变多项式结构调整区域形状和大小使其逼近稳定域边界。
进一步,建立稳定域边界优化模型也即局部SOS优化模型,采用SMR技术对其进行处理,最终获得单机无穷大系统全局最优解,将系数代入(5-2)从而可以得到最优有理李雅普诺夫函数。
单机无穷大系统的改进暂态能量函数仿真分析,将仿真数据代入式(5-1)得到具体的单机无穷大系统方程(5-3):
然后,根据上一节中初始有理李雅普诺夫函数的选取方法,得到式(5-4):
接着,选择区域形状多项式如式(5-5)所示:
在满足约束条件的前提下,不断改变多项式的形状扩大区域来逼近实际稳定域,系统的稳定平衡点为(1.047,0),仿真结果如下:
从系统方程可以知g1=-0.6115,ζ1=0.45-sin(x1+1.047),ζ1泰勒级数展开式为:ζ1=0.45-((x1+1.047)-1/6(x1+1.047)3+1/120(x1+1.047)5+o(x1+1.047)5) (5-6)
上式最后一项为佩亚诺余项。
通过式子(5-1)和(5-2)迭代获得的最优有理李雅普诺夫函数如式(5-7)所示:
图3给出了基于SMR技术改进暂态能量函数分析方法得到单机无穷大系统的稳定域。其中,最内部的边界曲线所包含的区域为传统暂态能量函数方法得到的稳定域,靠近时域仿真获得的稳定边界的曲线所包含的区域为本文引用的SMR技术改进暂态能量函数方法计算获得的稳定域。可以明显的看出,本文所引入的改进暂态能量函数分析方法获取的稳定域更大,也与时域仿真方法得到的系统稳定域更接近。
表1给出了采用不同的暂态分析方法获取的不同故障线路情况下系统的临界切除时间,对比可以看出本文所引入的改进方法相比传统的暂态能量函数方法,系统的临界切除时间更长且结果与时域仿真得到的CCT较吻合。
表1单机无穷大系统临界切除时间
这主要是由于在满足李雅普诺夫等约束条件下,建立了获取稳定域边界优化模型,通过多次迭代逼近实际稳定域。其次,对比表1最后两列临界切除时间数值可知,本文所引入的改进方法解决了传统暂态能量函数分析方法的保守性问题。

Claims (6)

1.一种电力系统暂态稳定分析方法,其特征在于,包括以下步骤:
步骤1)利用泰勒级数对原电力系统的系统方程进行重构;
步骤2)利用有理李雅普诺夫函数扩大估计稳定域;
步骤3)利用SMR技术构造凸优化模型;
步骤4)寻求最优李雅普诺夫函数。
2.根据权利要求1所述的一种电力系统暂态稳定分析方法,其特征在于,所述步骤1)将多项式函数和非多项式函数分离,然后利用泰勒级数对非多项式部分近似展开,将系统(1-1)写成(1-2)等效形式:
<mrow> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,h(x(t)),g(x(t))是向量多项式函数并且属于多项式集合Pn,ζ1(x(t)),...,ζr(x(t))代表非多项式函数;在D内可解析;
令(1-3)成立:
|α|=α1+…+αn,α!=α1!...αn!,xα=x1 α...xn α (1-3)
其中,x∈Rn并且α=(α1,....,αn)T∈Nn是n维向量;k阶导数表示为式(1-4)所示:
因此,式(1-2)中写成如下所示的泰勒展开式:
其中,ξi是有界参数,k代表幂级数,β为满足式|β|=k+1的参数;ηi(x)是k阶泰勒多项式,带佩余亚诺相的泰勒展开式为:
ξi为泰勒余项值的值。
3.根据权利要求2所述的一种电力系统暂态稳定分析方法,其特征在于,所述步骤2)利用有理李雅普诺夫函数扩大估计稳定域,首先,定义V(x)为系统(2-1)的有理李雅普诺夫函数,即:
<mrow> <mi>V</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,Vnum、Vden均属于多项式集合P,并且满足(2-2)~(2-3)所示的条件:
<mrow> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>x</mi> <mo>&amp;Element;</mo> <mi>D</mi> <mo>/</mo> <mo>{</mo> <msub> <mn>0</mn> <mi>n</mi> </msub> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
在获取系统稳定域时,首先定义V(x)一个子集υ(c)={x∈Rn:V(x)≤c},通过求解式(2-4)的优化模型来寻找最优李雅普诺夫函数v(x);
μ=supρ(v(c))
通过求解(2-5)最优问题获得有理李雅普诺夫函数估计最大稳定域ck
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>c</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>sup</mi> <mi> </mi> <mi>c</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&amp;psi;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>s</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>,</mo> <mi>&amp;xi;</mi> <mo>)</mo> </mrow> <mo>&amp;Element;</mo> <msup> <msub> <mi>P</mi> <mn>0</mn> </msub> <mrow> <mi>S</mi> <mi>O</mi> <mi>S</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ForAll;</mo> <mi>x</mi> <mo>&amp;Element;</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>/</mo> <mo>{</mo> <mn>0</mn> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中,的变量在零点处-ψ(x,c,s(x),ξ)的值为0,并且多项式-ψ(x,c,s(x),ξ)是由每个单项式平方和相加组成的,构成方法如式(2-6)~(2-8)所示:
<mrow> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&amp;dtri;</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&amp;dtri;</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mi>r</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>r</mi> </munderover> <mrow> <mo>(</mo> <mrow> <msub> <mi>g</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>-</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;sigma;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>g</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <munder> <mo>&amp;Sigma;</mo> <mrow> <mo>|</mo> <mi>&amp;beta;</mi> <mo>|</mo> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </munder> <mfrac> <msup> <mi>x</mi> <mi>&amp;beta;</mi> </msup> <mrow> <mi>&amp;beta;</mi> <mo>!</mo> </mrow> </mfrac> <mo>,</mo> <mi>q</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>,</mo> <mo>...</mo> <msub> <mi>q</mi> <mi>r</mi> </msub> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
ψ(x,c,s(x),ξ)=r(x)+q(x)ξ+s(x)(cVden(x)-Vnum(x)) (2-8)
<mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&amp;Element;</mo> <msubsup> <mi>P</mi> <mn>0</mn> <mrow> <mi>s</mi> <mi>o</mi> <mi>s</mi> </mrow> </msubsup> <mo>.</mo> </mrow>
4.根据权利要求3所述的一种电力系统暂态稳定分析方法,其特征在于,所述步骤3)中SOS模型,可以利用SMR技术对局部SOS模型进行处理,将非凸优化模型转化为凸优化模型,SMR技术处理SOS优化模型如下:
s(x)=(φ(n,d(q)))TSφ(n,d(q))
ψ(x,c,s(x),ξ)=(ψ(c,S,ξ))T(ψ(c,S,ξ)+L(γ))φ(n,d(ψ)) (3-1)
u(x)=u1(x)+u2(x),u1(x)=-r(x)-q(x)Tξ+s(x)Vnum(x) (3-2)
<mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>s</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mover> <mi>V</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>,</mo> <mover> <mi>V</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;lambda;V</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>-</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
其中,R(ξ),W(S),U2(S)和分别是-r(x)-q(x)Tξ,s(x)Vnum(x),u2(x)和V(x)的SMR矩阵;λ为正数;d(q)为不小于degx(q)/2的最小整数,degx(q)/2为多项式函数q(x)∈P0 SOS的最高次数,φ(n,d(q))是由不同幂次数的变量组成的向量,变量的幂次数均小于等于d(q)的正整数,n是变量的个数,c是稳定域边界,x是函数变量;L(γ)为仿射空间,满足:
对于最优有理李雅普诺夫函数的确定及最大稳定域ck的获得通过求(3-5)实现:
<mrow> <msub> <mi>c</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mover> <mi>e</mi> <mo>~</mo> </mover> <mrow> <mn>1</mn> <mo>+</mo> <mi>&amp;lambda;</mi> <mover> <mi>e</mi> <mo>~</mo> </mover> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>-</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中,是式(3-6)所示GEVP(广义特征值最小化问题)问题的解,其模型如下所示:
<mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>e</mi> <mo>~</mo> </mover> <mo>=</mo> <mi>inf</mi> <mi> </mi> <mi>e</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>eU</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mo>-</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>L</mi> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>-</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
5.根据权利要求4所述的一种电力系统暂态稳定分析方法,其特征在于,步骤4)首先通过式(4-1)获得初始有理李雅普诺夫函数V0(x):
<mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>q</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> </mrow> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,Vq(x)是系统线性部分的二次型李雅普诺夫函数,Va(x)是辅助多项式函数,其选择方法为(xTx)·(xTPx),在v(c)范围内通过扩大区域多项式所包围的区域来寻求最优有理李雅普诺夫函数,具体如式(4-2)所示:
<mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>&amp;mu;</mi> <mo>~</mo> </mover> <mo>=</mo> <munder> <mi>sup</mi> <mrow> <mi>V</mi> <mo>,</mo> <mi>&amp;epsiv;</mi> </mrow> </munder> <mi>&amp;epsiv;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <mo>)</mo> </mrow> <mo>&amp;SubsetEqual;</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>3</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
其中,是多项式;利用式(4-3)寻求最优有理李雅普诺夫函数并获取最大的稳定域:
<mrow> <mover> <mi>&amp;mu;</mi> <mo>~</mo> </mover> <mo>=</mo> <munder> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>V</mi> <mo>,</mo> <mi>&amp;epsiv;</mi> </mrow> </munder> <mi>&amp;epsiv;</mi> </mrow>
6.根据权利要求1所述的一种电力系统暂态稳定分析方法,其特征在于,还包括步骤5),分析单机无穷大系统,获取VSG策略下计及逆变器饱和的风电系统最优李雅普诺夫函数。
CN201710864436.9A 2017-09-22 2017-09-22 一种电力系统暂态稳定分析方法 Pending CN107528317A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710864436.9A CN107528317A (zh) 2017-09-22 2017-09-22 一种电力系统暂态稳定分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710864436.9A CN107528317A (zh) 2017-09-22 2017-09-22 一种电力系统暂态稳定分析方法

Publications (1)

Publication Number Publication Date
CN107528317A true CN107528317A (zh) 2017-12-29

Family

ID=60736119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710864436.9A Pending CN107528317A (zh) 2017-09-22 2017-09-22 一种电力系统暂态稳定分析方法

Country Status (1)

Country Link
CN (1) CN107528317A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412172A (zh) * 2018-10-12 2019-03-01 南京航空航天大学 一种含tcsc装置的电力系统控制器的设计方法
CN109494718A (zh) * 2018-11-16 2019-03-19 陕西理工大学 考虑阻尼的复杂电力系统紧急控制方法
CN109659930A (zh) * 2018-12-15 2019-04-19 南京理工大学 基于能量函数的含vsg-iidg电力系统暂态稳定分析方法
CN109713661A (zh) * 2018-09-18 2019-05-03 天津大学 风电场接入对多机系统故障极限切除时间影响的分析方法
CN111103796A (zh) * 2019-12-06 2020-05-05 华南理工大学 基于平方和分解优化算法的交直流系统稳定域分析方法
CN111478332A (zh) * 2020-04-02 2020-07-31 贵州电网有限责任公司 基于保守极限的暂态稳定紧急控制切机定值在线调整方法
CN112510688A (zh) * 2020-11-20 2021-03-16 东北电力大学 基于相位校正李雅普诺夫指数的暂态电压稳定监测方法
CN114243748A (zh) * 2021-11-02 2022-03-25 天津大学 基于线性矩阵不等式优化法的vsc并网稳定域构建方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630273A (zh) * 2009-08-06 2010-01-20 中国电力科学研究院 一种电力系统小干扰稳定仿真方法
CN104808493A (zh) * 2015-04-21 2015-07-29 国电科学技术研究院 一种基于延时观测器的汽轮发电机主汽门开度预测控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630273A (zh) * 2009-08-06 2010-01-20 中国电力科学研究院 一种电力系统小干扰稳定仿真方法
CN104808493A (zh) * 2015-04-21 2015-07-29 国电科学技术研究院 一种基于延时观测器的汽轮发电机主汽门开度预测控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙震宇: "VSG策略下计及逆变器饱和的风电系统的暂态稳定分析方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713661A (zh) * 2018-09-18 2019-05-03 天津大学 风电场接入对多机系统故障极限切除时间影响的分析方法
CN109713661B (zh) * 2018-09-18 2022-08-02 天津大学 风电场接入对多机系统故障极限切除时间影响的分析方法
CN109412172A (zh) * 2018-10-12 2019-03-01 南京航空航天大学 一种含tcsc装置的电力系统控制器的设计方法
CN109494718A (zh) * 2018-11-16 2019-03-19 陕西理工大学 考虑阻尼的复杂电力系统紧急控制方法
CN109494718B (zh) * 2018-11-16 2022-05-13 陕西理工大学 考虑阻尼的复杂电力系统紧急控制方法
CN109659930A (zh) * 2018-12-15 2019-04-19 南京理工大学 基于能量函数的含vsg-iidg电力系统暂态稳定分析方法
CN109659930B (zh) * 2018-12-15 2022-07-22 南京理工大学 基于能量函数的含vsg-iidg电力系统暂态稳定分析方法
CN111103796A (zh) * 2019-12-06 2020-05-05 华南理工大学 基于平方和分解优化算法的交直流系统稳定域分析方法
CN111478332A (zh) * 2020-04-02 2020-07-31 贵州电网有限责任公司 基于保守极限的暂态稳定紧急控制切机定值在线调整方法
CN112510688A (zh) * 2020-11-20 2021-03-16 东北电力大学 基于相位校正李雅普诺夫指数的暂态电压稳定监测方法
CN114243748A (zh) * 2021-11-02 2022-03-25 天津大学 基于线性矩阵不等式优化法的vsc并网稳定域构建方法
CN114243748B (zh) * 2021-11-02 2023-01-06 天津大学 基于线性矩阵不等式优化法的vsc并网稳定域构建方法

Similar Documents

Publication Publication Date Title
CN107528317A (zh) 一种电力系统暂态稳定分析方法
CN103810646B (zh) 一种基于改进投影积分算法的有源配电系统动态仿真方法
CN107330543A (zh) 一种基于负荷聚类和相关度分析的煤耗优化分析方法
CN106356859A (zh) 一种基于Matlab的直角坐标牛顿法潮流计算方法
CN106021768A (zh) 含分布式电源接入的配电网简化建模方法
CN103886209A (zh) 基于马尔科夫的跳变电力系统时滞稳定性分析系统及方法
CN104269867A (zh) 一种节点扰动功率转移分布均衡度分析方法
CN104734148A (zh) 计及分布式电源的三相配电网连续潮流算法
CN107239856A (zh) 一种风向数据插补方法
CN104201671A (zh) 一种含风电的三相不平衡配电网的静态电压稳定性评估方法
CN103336882A (zh) 一种基于时域仿真的全过程动态电压稳定裕度评估方法
CN104820741A (zh) 兼顾风场分散性与机组差异性的风电场动态等值方法
CN106936131A (zh) 一种基于相轨迹分析的实用动态安全域的构建方法
CN104198840A (zh) 一种应用b样条理论改进的变压器三比值故障诊断方法
CN103149840A (zh) 一种基于动态规划的语义服务组合方法
CN106990301A (zh) 一种实时三相不平衡检测方法
CN102593820A (zh) 考虑发电机励磁电流约束和电枢电流约束的连续潮流算法
CN107317326A (zh) 一种基于改进rei等值的网架调整限流方法
CN106981872A (zh) 一种电力系统运行可靠性的确定方法及装置
CN104037806B (zh) 一种基于风力发电机组基本模型的电力系统潮流计算方法
CN101478159B (zh) 一种暂态稳定约束电力系统潮流优化方法
CN105226644A (zh) 基于可用容量一致性的带约束等值方法
CN113346489B (zh) 一种新能源空间耦合性建模评估方法及系统
CN104362664A (zh) 中压微网系统的并网方法
Murat et al. Validation of hydroelectric power plant model for speed governor development studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination