CN107505840A - 基于FReOS‑ELM的压电驱动FTS建模方法、控制方法及系统 - Google Patents

基于FReOS‑ELM的压电驱动FTS建模方法、控制方法及系统 Download PDF

Info

Publication number
CN107505840A
CN107505840A CN201710641525.7A CN201710641525A CN107505840A CN 107505840 A CN107505840 A CN 107505840A CN 201710641525 A CN201710641525 A CN 201710641525A CN 107505840 A CN107505840 A CN 107505840A
Authority
CN
China
Prior art keywords
model
training pattern
training
sample data
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710641525.7A
Other languages
English (en)
Inventor
汤晖
吴泽龙
高健
陈新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710641525.7A priority Critical patent/CN107505840A/zh
Publication of CN107505840A publication Critical patent/CN107505840A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Feedback Control In General (AREA)

Abstract

本申请公开了一种基于FReOS‑ELM的压电驱动FTS建模方法、控制方法及系统,本申请以当前期望输出位移和之前若干个输出位移、输入驱动电压作为模型的输入值,以当前时刻的压电陶瓷驱动器构件的输入驱动电压值作为模型的输出值,解决了迟滞非线性多值映射问题,避免繁杂的模型求逆过程;其次,本申请将模型转化为线性方程模型,极大地缩短了模型的训练时间;再者,本发明采用无限可导函数作为隐含层激活函数,具有更高的精度;进一步的,采用正则化思想,引入风险的比例参数,避免产生病态矩阵,大大提高了模型的训练稳定性和泛化性能;本发明还引入遗忘因子进行参数在线自适应更新,不仅方便,而且可以避免计算负荷和信息过载现象,提高了模型的适用性能。

Description

基于FReOS-ELM的压电驱动FTS建模方法、控制方法及系统
技术领域
本发明涉及精密控制领域,特别涉及一种基于FReOS-ELM的压电驱动FTS建模方法、控制方法及系统。
背景技术
压电陶瓷驱动器具有体积小、质量轻、刚度大、输出力大、输出位移分辨率高和快速动态响应等优点,而广泛的应用在快速刀具伺服系统(即FTS,Fast Tool Servo)中。但是压电材料制成的驱动器都具有固有的迟滞非线性特性以及FTS本身受到各种外界环境因素的影响,以及其往往需要高频驱动的特性使得迟滞非线性特性更加复杂。在FTS的精密驱动系统中,解决迟滞非线性特性带来的控制误差问题是一项非常有挑战性的问题,也是提高控制精度的关键问题。
目前迟滞非线性建模方法主要有三大类:物理类(如Maxwell模型、Duhem模型和JA模型),半物理类(如如preisach模型、PI模型)和智能类(如基于SVM模型和基于ANN模型)。
这些模型要么存在精度不高以及建模速度慢,要么就是存在难以在线建模要么就是逆模型难以获得;而且几乎没有一种可以较好的结合的控制中去应用,大多迟滞非线性模型必须依赖一些别的控制环节进行使用,如PID控制,重复控制等;即使有少数迟滞非线性模型能够实现运动控制,但是这些模型都难以进行有效的在线自适应调参。
发明内容
有鉴于此,本发明的目的在于提供一种基于FReOS-ELM的压电驱动FTS建模方法、控制方法及系统,其目的在于提高快速刀具伺服系统迟滞非线性建模中的模型精度和建模速度。其具体方案如下:
一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模方法,包括,
对与压电驱动的快速刀具伺服系统控制过程相关的数据进行采样,得到相应的样本数据;其中,所述样本数据包括输入样本数据和输出样本数据,每个采样时刻对应的输入样本数据包括当前时刻下的期望输出位移、之前若干采样时刻下的输出位移和输入驱动电压,每个采样时刻对应的输出样本数据包括当前时刻下的输入驱动电压;
基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型;
利用所述样本数据对所述待训练模型进行正则化训练,得到训练后模型,以通过所述训练后模型对所述快速刀具伺服系统进行位移控制。
优选的,所述利用所述样本数据训练所述待训练模型的过程之前,进一步包括:
对所述样本数据中的位移数据进行预处理;
其中,所述预处理包括放大处理和/或去噪处理。
优选的,所述基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型的过程,包括:
基于带遗忘特性的正则化在线序列极限学习机理论构建初始待训练模型,其中,初始待训练模型的表达式为:
式中,X(t)=[y(t),y(t-T),u(t-T),y(t-2T),u(t-2T)...y(t-kT),u(t-kT)],表示所述初始待训练模型中输入端获取到的第t时刻下的数据,t=T,2T...NT,T表示采样周期,y(t)表示第t时刻下所述快速刀具伺服系统的输出位移,u(t)表示第t时刻下所述快速刀具伺服系统的输入驱动电压,O(t)=u(t),表示所述初始待训练模型中输出端获取到的第t时刻下的数据,s表示所述初始待训练模型中隐含层的神经元的数量,βj表示所述初始待训练模型中隐含层的第j个神经元与输出层之间的连接权值,αj表示所述初始待训练模型中输入层与隐含层的第j个神经元之间的连接权值,θj表示所述初始待训练模型中隐含层的第j个神经元的阈值,f表示所述初始待训练模型中隐含层的激活函数;
对所述初始待训练模型中的连接权值αj和阈值θj进行设定,得到所述待训练模型。
优选的,所述对所述初始待训练模型中的连接权值αj和阈值θj进行设定的过程,包括:
对所述初始待训练模型的连接权值αj和阈值θj进行随机设定。
优选的,所述初始待训练模型中的隐含层激活函数为无限可导函数。
优选的,所述基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型的过程,还包括:
将所述待训练模型转化为线性待训练模型;其中,所述线性待训练模型为:
Y=Fβ;
式中,Y=[O(T) O(2T) … O(NT)]T为所述线性待训练模型中输出端获取到的数据,X=[X(T) X(2T) … X(NT)]T为所述线性待训练模型中输入端获取到的数据,β=[β1 β2… βs]T为所述线性待训练模型中隐含层与输出层之间的连接权值,F具体为:
优选的,所述利用所述样本数据训练所述待训练模型,得到训练后模型的过程,包括:
创建与所述线性待训练模型对应的目标函数和约束条件;
利用所述样本数据、所述目标函数和所述约束条件对所述线性待训练模型进行训练,得到训练后模型;
其中,所述目标函数具体为:ε=[ε(T) ε(2T) ... ε(NT)]为误差值,所述约束条件具体为:O=Fβ-ε,所述训练后模型中的连接权值β具体为:λ为预设的参数。
优选的,所述利用所述样本数据训练所述待训练模型,得到训练后模型之后,还包括:
利用新样本数据(xN+1,oN+1)对所述训练后模型进行训练更新,得到更新后模型;其中,所述更新后模型中的连接权值具体为:
式中,βN表示已利用N个样本数据进行训练后得到的训练后模型中的连接权值,其中,fN+1=f(αxN+1+θ),μ为遗忘因子,λ为预设的参数。
本发明还公开了一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模系统,包括:
数据采样模块,用于对与压电驱动的快速刀具伺服系统控制过程相关的数据进行采样,得到相应的样本数据;其中,所述样本数据包括输入样本数据和输出样本数据,每个采样时刻对应的输入样本数据包括当前时刻下的期望输出位移、之前若干采样时刻下的输出位移和输入驱动电压,每个采样时刻对应的输出样本数据包括当前时刻下的输入驱动电压;
模型构建模块,用于基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型;
模型训练模块,用于利用所述样本数据训练所述待训练模型,得到训练后模型,以通过所述训练后模型对所述快速刀具伺服系统进行位移控制。
本发明还相应公开了一种基于FReOS-ELM的压电驱动FTS控制方法,包括:
获取期待待控制快速刀具伺服系统输出的位移量,得到期望位移量;
将所述期望位移量输入至利用前述所公开的建模方法创建的模型中,得到所述模型输出的与所述期望位移量对应的驱动电压;
依据所述驱动电压,对所述待控制快速刀具伺服系统进行相应的控制,以使所述待控制快速刀具伺服系统产生与所述驱动电压对应的位移。
本发明进一步公开了一种基于FReOS-ELM的压电驱动FTS控制系统,包括,
第一参数获取模块,用于获取期待待控制快速刀具伺服系统输出的位移量,得到期望位移量;
第二参数获取模块,用于将所述期望位移量输入至前述公开的建模系统创建的模型中,得到所述模型输出的与所述期望位移量对应的驱动电压;
快速刀具伺服系统控制模块,用于依据所述驱动电压,对待控制快速刀具伺服系统进行相应的控制,以使所述待控制快速刀具伺服系统产生与所述驱动电压对应的位移。
由上可见,在本发明公开的压电驱动FTS迟滞非线性建模方法中,模型的构建不需要通过复杂的理论分析,因此建模方便快捷;另外,本发明建模方法所需的采样数据中,是以当前期望输出位移和之前若干个输出位移、输入驱动电压作为模型的输入值,以当前时刻的压电陶瓷驱动器构件的输入驱动电压值作为模型的输出值,不仅解决迟滞非线性多值映射问题,而且可直接将输出值用于驱动FTS,避免传统模型的繁杂的模型求逆过程;其次,上述建模方法的模型随机给定隐含层与输入层之间的权值和阈值,可将传统的神经网络非线性模型转化为线性方程模型,进而只需采用简单的广义逆计算就能一步计算出隐含层与输出层之间的连接权值,一步训练完模型,对比已有的智能迟滞非线性模型极大的缩短了模型的训练时间;再者,本发明建模方法的模型采用无限可导函数作为隐含层激活函数,能够达到高精度甚至0误差的训练效果;进一步的,上述改建模方法采用正则化思想,引入风险的比例参数,可较好的实现经验风险与结构风险间的折中,避免建模过程中产生病态矩阵,大大提高了模型的训练稳定性和泛化性能;本发明建模方法的模型还引入遗忘因子进行参数在线自适应更新,不仅方便,而且可以避免计算负荷和信息过载现象,提高了模型的适用性能;与此同时,由于上述建模所涉及的数学原理简单,便于实现运动控制系统的设计。
综上所述,本发明基于FReOS-ELM的迟滞非线性建模方法不仅可满足压电驱动的FTS运动建模,而且具有高效、高精度和稳定等优越性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例公开的一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模方法流程图;
图2为本发明实施例公开的一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模及控制流程图;
图3为向快速刀具伺服系统输入的驱动电压信号示意图;
图4为快速刀具伺服系统的经过放大和去噪处理的位移信号示意图;
图5为快速刀具伺服系统的的输入驱动电压-输出位移关系图;
图6为本发明与现有技术的拟合训练效果比对图;
图7为本发明与现有技术的预测效果比对图;
图8为不同遗忘因子μ对迟滞非线性模型的预测效果的影响示意图;
图9为本发明实施例公开的一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模系统结构示意图;
图10为本发明实施例公开的一种基于FReOS-ELM的压电驱动FTS控制方法流程图;
图11为本发明实施例公开的一种基于FReOS-ELM的压电驱动FTS控制系统结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模方法,参见图1所示,该方法包括:
步骤S11:对与压电驱动的快速刀具伺服系统控制过程相关的数据进行采样,得到相应的样本数据;其中,上述样本数据包括输入样本数据和输出样本数据,每个采样时刻对应的输入样本数据包括当前时刻下的期望输出位移、之前若干采样时刻下的输出位移和输入驱动电压,每个采样时刻对应的输出样本数据包括当前时刻下的输入驱动电压。
本实施例中,上述利用样本数据训练待训练模型的过程之前,还可以进一步包括:对样本数据中的位移数据进行预处理;
其中,上述预处理包括但不限于放大处理和/或去噪处理。
本实施例中,原始迟滞非线性的样本数据的类型包括输入驱动电压值,输出位移值和采样时间点。具体的,首先给FTS输入驱动电压信号,接着FTS在压电陶瓷驱动器的驱动下输出运动位移,利用电容位移传感器测量和采集FTS输出的运动位移,然后将该位移信号进行放大和去噪处理。随着采样时间的延续,最终可以得到包括一系列输入驱动电压值和输出位移值的样本数据以及相应的时间点。
步骤S12:基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型。
本实施例中,模型的构建是基于带遗忘特性的正则化在线序列极限学习机(即FReOS-ELM,Online Sequential Extreme Learning Machine with Forgettingproperty)理论来进行的,有利于提升模型构建速度和提高模型精度。
步骤S13:利用上述样本数据对所述待训练模型进行正则化训练,得到训练后模型,以通过训练后模型对快速刀具伺服系统进行位移控制。
可以理解的是,此处对上述样本数据的多少及维数不作限定,对待训练模型的训练时间也不作限定,在此进行说明。
可见,本发明实施例在用带遗忘特性的正则化在线序列极限学习机理论构建待训练模型的过程中,不需要通过其他复杂的理论分析,因此此种建模方法更加快速,也达到了更高误差精度,解决了现有建模方法中精度不高,建模速度慢的问题。另外,本发明建模方法所需的采样数据中,是以当前期望输出位移和之前若干个输出位移、输入驱动电压作为模型的输入值,以当前时刻的压电陶瓷驱动器构件的输入驱动电压值作为模型的输出值,不仅解决迟滞非线性多值映射问题,而且可直接将输出值用于驱动FTS,避免传统模型的繁杂的模型求逆过程。
本发明实施例公开了一种具体的基于FReOS-ELM的压电驱动FTS迟滞非线性建模方法,相对于上一实施例,本实施例对技术方法作了进一步的说明和优化,具体的:
上一实施例步骤S12中,基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型的过程,具体可以包括下面步骤S121和S122:
步骤S121:基于带遗忘特性的正则化在线序列极限学习机理论构建初始待训练模型,其中,初始待训练模型的表达式为:
式中,X(t)=[y(t),y(t-T),u(t-T),y(t-2T),u(t-2T)...y(t-kT),u(t-kT)],表示初始待训练模型中输入端获取到的第t时刻下的数据,t=T,2T...NT,T表示采样周期,y(t)表示第t时刻下快速刀具伺服系统的输出位移,u(t)表示第t时刻下快速刀具伺服系统的输入驱动电压,O(t)=u(t),表示初始待训练模型中输出端获取到的第t时刻下的数据,s表示初始待训练模型中隐含层的神经元的数量,βj表示初始待训练模型中隐含层的第j个神经元与输出层之间的连接权值,αj表示初始待训练模型中输入层与隐含层的第j个神经元之间的连接权值,θj表示初始待训练模型中隐含层的第j个神经元的阈值,f表示初始待训练模型中隐含层的激活函数。
需要说明的是,上述初始待训练模型中隐含层的神经元的数量s可以根据实际情况的需要,具体进行设定,例如,可以设定s=100。
步骤S122:对上述初始待训练模型中的连接权值αj和阈值θj进行设定,得到上述待训练模型。
具体的,对上述初始待训练模型中的连接权值αj和阈值θj进行设定的过程,包括:
对上述初始待训练模型的连接权值αj和阈值θj进行随机设定。
本实施例中,上述初始待训练模型当中的隐含层激活函数为无限可导函数。
具体的,无限可导函数可以为当然也可以为其他的无限可导函数,通过这样的设置方式,可以让建立的模型达到更高的控制精度甚至是误差为0的训练效果。
由上可见,上述建模方法的模型随机给定隐含层与输入层之间的权值和阈值,可将传统的神经网络非线性模型转化为线性方程模型,进而只需采用简单的广义逆计算就能一步计算出隐含层与输出层之间的连接权值,一步训练完模型,对比已有的智能迟滞非线性模型极大的缩短了模型的训练时间;再者,本发明建模方法的模型采用无限可导函数作为隐含层激活函数,能够达到高精度甚至0误差的训练效果。
另外,上一实施例步骤S12中,基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型的过程,还可以进一步包括下面步骤S123:
步骤S123:在对上述初始待训练模型的连接权值αj和阈值θj进行随机设定之后,将上述待训练模型转化为线性待训练模型;其中,上述线性待训练模型为:
Y=Fβ;
式中,Y=[O(T) O(2T) … O(NT)]T为上述线性待训练模型中输出端获取到的数据,X=[X(T) X(2T) … X(NT)]T为上述线性待训练模型中输入端获取到的数据,β=[β1 β2… βs]T为上述线性待训练模型中隐含层与输出层之间的连接权值,F具体为:
进一步的,利用上述样本数据训练上述待训练模型,得到训练后模型的过程,包括:
创建与上述线性待训练模型对应的目标函数和约束条件;
利用上述样本数据、上述目标函数和上述约束条件对上述线性待训练模型进行训练,得到上述训练后模型。
其中,上述目标函数具体为:ε=[ε(T) ε(2T) ... ε(NT)]为误差值,上述约束条件具体为:O=Fβ-ε,上述训练后模型中的连接权值β具体为:λ为预设的参数。
可以理解的是,在模型当中为了计算出隐含层与输出层之间的连接权值β。根据结构风险最小化原理,通过引入风险的比例参数,可较好的实现经验风险与结构风险的折中,λ为预设的参数,为引入的风险比例参数,在本实施例中,λ的取值范围为(108-1012),在此过程中,首先构造目标函数和约束条件,然后将上述的目标函数和约束条件用拉格朗日函数表示:
在得到上述拉格朗日函数之后,分别对β和ε求偏导,并令偏导等于0,可得隐含层与输出层之间的连接权值β。也即:
可见,此处引入风险比例参数,可较好的实现经验风险与结构风险间的折中,避免建模过程中产生病态矩阵,大大提高了模型的训练稳定性和泛化性能。
更进一步的,本实施例,在上述利用样本数据对线性待训练模型进行训练,得到训练后模型的过程之后,还可以包括:
利用新样本数据(xN+1,oN+1)对所述训练后模型进行训练更新,得到更新后模型;其中,所述更新后模型中的连接权值具体为:
式中,βN表示已利用N个样本数据进行训练后得到的训练后模型中的连接权值,其中,fN+1=f(αxN+1+θ),μ为遗忘因子,λ为预设的参数。
也即,当后台有新样本数据(xN+1,oN+1)加入时,相应的参数自适应更新方程为:
需要说明的是,在对该模型建立的过程中引入遗忘因子μ,一般取值为(0.95-0.99)。当历史数据的作用比较小、或系统参数随时间变化不大时,μ可取较小值;反之,μ可取较大值,也可以通过经验调整。此处对参数进行自适应的更新,不仅方便,而且避免了模型当中的计算负荷和信息过载的现象,提高了模型的适用性能。
进一步的,本发明实施例在图2中示出了上述基于FReOS-ELM的压电驱动FTS迟滞非线性建模流程以及基于训练后模型的压电驱动FTS控制流程,具体内容可参见图2所示,在此不再进行赘述。
为了验证基于FReOS-ELM的压电驱动FTS的自适应迟滞非线性建模方法的优越性能,在Matlab环境下将该方法与传统的基于BP神经网络的迟滞非线性建模方法进行对比。对比内容主要包括拟合训练精度,训练用时,预测精度和稳定性四个方面。
1)原始迟滞非线性的样本数据采集。
首先给FTS输入如图3所示的驱动电压信号,接着FTS在压电陶瓷驱动器的驱动下输出运动位移,利用电容位移传感器测量和采集FTS输出的运动位移,然后将该位移信号进行放大和去噪处理,结果如图4。随着采样时间的延续,可以得到一系列输入驱动电压值和输出位移值得样本数据以及相应的时间点。最终得到的迟滞非线性样本数据中的输入驱动电压-输出位移关系图,如图5所示。
2)构建模型训练样本数据集。
根据上述采集到的原始迟滞非线性的样本数据,构建模型训练样本数据集。设t时刻的输入驱动电压值为u(t),经过压电陶瓷驱动器构件后的输出位移值为y(t),系统采样周期为T,则:第t时刻的输入值可以描述为:
X(t)=[y(t),y(t-T),u(t-T),y(t-2T),u(t-2T)...y(t-kT),u(t-kT)];
第t时刻输出值可以描述为:O(t)=u(t);
也即,第t时刻的样本数据为:
(X(t),O(t))=([y(t),y(t-T),u(t-T),y(t-2T),u(t-2T)...y(t-kT),u(t-kT)],u(t))。
3)构建模型。
本实施例中,需要构建的模型为:
本实施例中,所选择的无限连续可导函数为:
并且,本实施例中隐含层神经元数目s=100。
另外,本实施例随机给定隐含层与输入层之间的权值αj和阈值θj,可将上述非线性训练模型转化为线性模型:
Y=Fβ
其中:Y=[O(T) O(2T) ... O(NT)]T,X=[X(T) X(2T) ... X(NT)]T,β=[β1 β2... βS]T以及:
4)模型的正则化训练。
这一步的目的是为了计算出隐含层与输出层之间的连接权值β。根据结构风险最小化原理,引入风险的比例参数λ,一般取值范围为(108-1012)。按照下式计算出隐含层与输出层之间的连接权值β:
此时模型训练完毕,可投入使用,当有新样本加入时,可进入下一个操作步骤。
5)带遗忘特性的参数在线自适应更新。
当有新训练样本时,则可以进行参数在线自适应更新设在N个样本的情况下,模型权值求解公式定义为:
其中,当后台有新样本(xN+1,oN+1)加入时,可根据下式进行参数自适应更新:
6)实验结果展示及其对比分析。
结果与分析说明1:拟合训练结果如图6和如表1所示
表1
通过上面结果可以知道:第一,基于FReOS-ELM的FTS的自适应迟滞非线性建模方法构建的迟滞非线性模型的训练时间远远低于传统BP神经网络的训练时间,大大缩短了几十倍,说明本发明提出的新方法具有比传统智能非线性迟滞建模方法具有更加高效的建模效率。第二,基于FReOS-ELM的FTS的自适应迟滞非线性建模方法构建的迟滞非线性模型的训练平均绝对误差远远小于传统BP神经网络的平均绝对误差,大大减小了几十倍,说明发明提出的新方法具有比传统智能非线性迟滞建模方法具有更高精度的拟合结果。第三,基于FReOS-ELM的FTS的自适应迟滞非线性建模方法构建的迟滞非线性模型的训练均方误差值远远小于传统BP神经网络的均方误差值,大大减小了几百倍,说明发明提出的新方法具有比传统智能非线性迟滞建模方法具有更加稳定的拟合结果。
结果与分析说明2:以紧接着的下一个周期的数据作为预测的检测,预测结果如图7和如表2所示
表2
通过上面结果可以知道:第一,基于FReOS-ELM的FTS的自适应迟滞非线性建模方法构建的迟滞非线性模型的预测平均绝对误差远远小于传统BP神经网络的平均绝对误差,大大减小了几百倍,说明发明提出的新方法具有比传统智能非线性迟滞建模方法具有更高精度的预测结果;第二,本发明实施例中基于FReOS-ELM的FTS的自适应迟滞非线性建模方法构建的迟滞非线性模型的预测均方误差值远远小于传统BP神经网络的均方误差值,大大减小了几千倍,说明发明提出的新方法具有比传统智能非线性迟滞建模方法具有更加稳定的预测结果。
结果与分析说明3:由于当有新样本加入时,基于BP神经网络的迟滞非线性模型无法进行在线自适应参数更新,因此本实验只能单独展示基于FReOS-ELM的FTS的自适应迟滞非线性模型的在线自适应结果。当遗忘因子μ=0.99时,结果如表3所示:
表3
其余不同遗忘因子的取值对模型在线自适应预测效果的影响如图8所示。
通过上面结果可以知道:第一,当有新样本加入时,基于FReOS-ELM的FTS的自适应迟滞非线性模型能够结合新样本进行在线自适应更新参数使得模型的对迟滞非线性特性的预测的均方误差值和平均绝对误差值性能更小,即说明基于FReOS-ELM的FTS的自适应迟滞非线性模型能够应用新样本数据进行在线自适应更新参数提高模型的综合性能,有利于适应新的环境。第二,基于FReOS-ELM的FTS的自适应迟滞非线性建模方法,在适当的遗忘因子大小下,能够使得进一步优化模型的预测性能,提高模型的适应性能。
相应的,本发明还提供了一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模系统,参见图9所示,该系统包括:
数据采样模块11,用于对与压电驱动的快速刀具伺服系统控制过程相关的数据进行采样,得到相应的样本数据;其中,所述样本数据包括输入样本数据和输出样本数据,每个采样时刻对应的输入样本数据包括当前时刻下的期望输出位移、之前若干采样时刻下的输出位移和输入驱动电压,每个采样时刻对应的输出样本数据包括当前时刻下的输入驱动电压;
模型构建模块12,用于基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型;
模型训练模块13,用于利用所述样本数据训练所述待训练模型,得到训练后模型,以通过所述训练后模型对所述快速刀具伺服系统进行位移控制。
本实施例中,上述模型构建模块12具体可以包括初始模型构建单元以及参数设定单元;其中,
初始模型构建单元,用于基于带遗忘特性的正则化在线序列极限学习机理论构建初始待训练模型,其中,初始待训练模型的表达式为:
式中,X(t)=[y(t),y(t-T),u(t-T),y(t-2T),u(t-2T)...y(t-kT),u(t-kT)],表示初始待训练模型中输入端获取到的第t时刻下的数据,t=T,2T...NT,T表示采样周期,y(t)表示第t时刻下快速刀具伺服系统的输出位移,u(t)表示第t时刻下快速刀具伺服系统的输入驱动电压,O(t)=u(t),表示初始待训练模型中输出端获取到的第t时刻下的数据,s表示初始待训练模型中隐含层的神经元的数量,βj表示初始待训练模型中隐含层的第j个神经元与输出层之间的连接权值,αj表示初始待训练模型中输入层与隐含层的第j个神经元之间的连接权值,θj表示初始待训练模型中隐含层的第j个神经元的阈值,f表示初始待训练模型中隐含层的激活函数;
参数设定单元,用于对上述初始待训练模型中的连接权值αj和阈值θj进行设定,得到上述待训练模型。
其中上述参数设定单元,具体用于对上述初始待训练模型的连接权值αj和阈值θj进行随机设定。
本实施例中,为了进一步提升模型的训练精度,上述初始模型构建单元所创建的初始待训练模型中的隐含层激活函数具体可以设置为无限可导函数。
为了进一步提升样本数据的可靠性,本实施例中的基于FReOS-ELM的压电驱动FTS迟滞非线性建模系统,还可以包括:
数据预处理单元,用于在利用样本数据训练待训练模型的过程之前,对样本数据进行预处理,如进行放大、去噪等处理。
本实施例中,上述模型构建模块12还可以进一步包括:
模型转换单元,用于将上述待训练模型转化为上述线性待训练模型;其中,上述线性待训练模型为:
Y=Fβ;
式中,Y=[O(T) O(2T) … O(NT)]T为上述线性待训练模型中输出端获取到的数据,X=[X(T) X(2T) … X(NT)]T为上述线性待训练模型中输入端获取到的数据,β=[β1 β2… βs]T为上述线性待训练模型中隐含层与输出层之间的连接权值,F具体为:
相应的,上述模型训练模块13,具体用于利用上述样本数据对上述线性待训练模型进行训练,得到训练后模型;
其中,上述模型训练模块13还包括目标函数和约束条件创建单元和待训练模型训练单元,其中,
目标函数和约束条件创建单元,用于创建与上述线性待训练模型对应的目标函数和约束条件;
待训练模型训练单元,用于利用上述样本数据、上述目标函数和上述约束条件对上述线性待训练模型进行训练,得到上述训练后模型。
其中,上述目标函数具体为:ε=[ε(T) ε(2T) ... ε(NT)]为误差值,上述约束条件具体为:O=Fβ-ε,上述训练后模型中的连接权值β具体为:
λ为预设的参数。
需要说明的是,此处根据结构风险最小化原理,引入风险的比例参数λ,一般λ取值范围为(108-1012)。可以理解的是,此处采用正则化思想,引入风险比例参数,可以较好的实现经验风险与结构风险间的折中,避免建模过程中产生的病态矩阵,大大提高了模型的训练稳定性和泛化性能。
进一步的,本实施例中的基于FReOS-ELM的压电驱动FTS迟滞非线性建模系统还可以包括:
模型更新模块,用于利用新样本数据(xN+1,oN+1)对所述训练后模型进行训练更新,得到更新后模型;其中,所述更新后模型中的连接权值具体为:
式中,βN表示已利用N个样本数据进行训练后得到的训练后模型中的连接权值,其中,fN+1=f(αxN+1+θ),μ为遗忘因子,λ为预设的参数。
需要说明的是,在对该模型建立的过程中引入遗忘因子对参数进行自适应的更新,不仅方便,而且避免了模型当中的计算负荷和信息过载的现象,提高了模型的适用性能。
关于上述各个模块以及单元更加具体的工作过程,可以参考前述实施例中公开的相应内容,在此不再进行赘述。
进一步的,本发明还公开了一种基于FReOS-ELM的压电驱动FTS控制方法,参见图10,该方法包括:
步骤S21:获取期待待控制快速刀具伺服系统输出的位移量,得到期望位移量;
步骤S22:将上述期望位移量输入至前述公开的建模方法所创建的模型中,得到上述模型输出的与所述期望位移量对应的驱动电压;
步骤S23:依据所述驱动电压,对待控制快速刀具伺服系统进行相应的控制,以使上述待控制压电驱动的快速刀具伺服系统产生与上述驱动电压对应的位移。
可以理解的是,在获取到上述驱动电压之后,将会控制与压电驱动的快速刀具伺服系统连接的电源产生相应的电信号,然后将该电信号传输至压电驱动的快速刀具伺服系统,以控制压电驱动的快速刀具伺服系统产生与上述驱动电压对应的位移量。
更进一步的,本发明还公开了一种基于FReOS-ELM的压电驱动FTS控制系统,参见图11,该系统包括:
第一参数获取模块21:用于获取期待待控制快速刀具伺服系统输出的位移量,得到期望位移量;
第二参数获取模块22:用于将上述期望位移量输入至前述建模系统所创建的模型中,得到上述模型输出的与上述期望位移量对应的驱动电压;
快速刀具伺服系统控制模块23:用于依据所述驱动电压,对待控制的快速刀具伺服系统进行相应的控制,以使上述待控制的快速刀具伺服系统产生与所述驱动电压对应的位移。
可以理解的是,通过建立的模型计算期望位移量所对应的驱动电压,然后依据驱动电压,对压电驱动的快速刀具伺服系统进行控制,以达到较好的控制效果。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种基于FReOS-ELM的压电驱动FTS建模方法、控制方法及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (11)

1.一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模方法,其特征在于,包括:
对与压电驱动的快速刀具伺服系统控制过程相关的数据进行采样,得到相应的样本数据;其中,所述样本数据包括输入样本数据和输出样本数据,每个采样时刻对应的输入样本数据包括当前时刻下的期望输出位移、之前若干采样时刻下的输出位移和输入驱动电压,每个采样时刻对应的输出样本数据包括当前时刻下的输入驱动电压;
基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型;
利用所述样本数据对所述待训练模型进行正则化训练,得到训练后模型,以通过所述训练后模型对所述快速刀具伺服系统进行位移控制。
2.根据权利要求1所述的方法,其特征在于,所述利用所述样本数据训练所述待训练模型的过程之前,进一步包括:
对所述样本数据中的位移数据进行预处理;
其中,所述预处理包括放大处理和/或去噪处理。
3.根据权利要求1所述的方法,其特征在于,所述基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型的过程,包括:
基于带遗忘特性的正则化在线序列极限学习机理论构建初始待训练模型,其中,初始待训练模型的表达式为:
式中,X(t)=[y(t),y(t-T),u(t-T),y(t-2T),u(t-2T)...y(t-kT),u(t-kT)],表示所述初始待训练模型中输入端获取到的第t时刻下的数据,t=T,2T...NT,T表示采样周期,y(t)表示第t时刻下所述快速刀具伺服系统的输出位移,u(t)表示第t时刻下所述快速刀具伺服系统的输入驱动电压,O(t)=u(t),表示所述初始待训练模型中输出端获取到的第t时刻下的数据,s表示所述初始待训练模型中隐含层的神经元的数量,βj表示所述初始待训练模型中隐含层的第j个神经元与输出层之间的连接权值,αj表示所述初始待训练模型中输入层与隐含层的第j个神经元之间的连接权值,θj表示所述初始待训练模型中隐含层的第j个神经元的阈值,f表示所述初始待训练模型中隐含层的激活函数;
对所述初始待训练模型中的连接权值αj和阈值θj进行设定,得到所述待训练模型。
4.根据权利要求3所述的方法,其特征在于,所述对所述初始待训练模型中的连接权值αj和阈值θj进行设定的过程,包括:
对所述初始待训练模型的连接权值αj和阈值θj进行随机设定。
5.根据权利要求3所述的方法,其特征在于,所述初始待训练模型中的隐含层激活函数为无限可导函数。
6.根据权利要求4或5所述的方法,其特征在于,所述基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型的过程,还包括:
将所述待训练模型转化为线性待训练模型;其中,所述线性待训练模型为:
Y=Fβ;
式中,Y=[O(T) O(2T) … O(NT)]T为所述线性待训练模型中输出端获取到的数据,X=[X(T) X(2T) … X(NT)]T为所述线性待训练模型中输入端获取到的数据,β=[β1 β2 …βs]T为所述线性待训练模型中隐含层与输出层之间的连接权值,F具体为:
7.根据权利要求6所述的方法,其特征在于,所述利用所述样本数据训练所述待训练模型,得到训练后模型的过程,包括:
创建与所述线性待训练模型对应的目标函数和约束条件;
利用所述样本数据、所述目标函数和所述约束条件对所述线性待训练模型进行训练,得到训练后模型;
其中,所述目标函数具体为:ε=[ε(T) ε(2T) ... ε(NT)]为误差值,所述约束条件具体为:O=Fβ-ε,所述训练后模型中的连接权值β具体为:λ为预设的参数。
8.根据权利要求7所述的方法,其特征在于,所述利用所述样本数据训练所述待训练模型,得到训练后模型之后,还包括:
利用新样本数据(xN+1,oN+1)对所述训练后模型进行训练更新,得到更新后模型;其中,所述更新后模型中的连接权值具体为:
式中,βN表示已利用N个样本数据进行训练后得到的训练后模型中的连接权值,其中,fN+1=f(αxN+1+θ),μ为遗忘因子,λ为预设的参数。
9.一种基于FReOS-ELM的压电驱动FTS迟滞非线性建模系统,其特征在于,包括:
数据采样模块,用于对与压电驱动的快速刀具伺服系统控制过程相关的数据进行采样,得到相应的样本数据;其中,所述样本数据包括输入样本数据和输出样本数据,每个采样时刻对应的输入样本数据包括当前时刻下的期望输出位移、之前若干采样时刻下的输出位移和输入驱动电压,每个采样时刻对应的输出样本数据包括当前时刻下的输入驱动电压;
模型构建模块,用于基于带遗忘特性的正则化在线序列极限学习机理论构建待训练模型;
模型训练模块,用于利用所述样本数据训练所述待训练模型,得到训练后模型,以通过所述训练后模型对所述快速刀具伺服系统进行位移控制。
10.一种基于FReOS-ELM的压电驱动FTS控制方法,其特征在于,包括:
获取期待待控制快速刀具伺服系统输出的位移量,得到期望位移量;
将所述期望位移量输入至利用如权利要求1至8任一项所述方法创建的模型中,得到所述模型输出的与所述期望位移量对应的驱动电压;
依据所述驱动电压,对所述待控制快速刀具伺服系统进行相应的控制,以使所述待控制快速刀具伺服系统产生与所述驱动电压对应的位移。
11.一种基于FReOS-ELM的压电驱动FTS控制系统,其特征在于,包括,
第一参数获取模块,用于获取期待待控制快速刀具伺服系统输出的位移量,得到期望位移量;
第二参数获取模块,用于将所述期望位移量输入至利用如权利要求9所述系统创建的模型中,得到所述模型输出的与所述期望位移量对应的驱动电压;
快速刀具伺服系统控制模块,用于依据所述驱动电压,对所述待控制快速刀具伺服系统进行相应的控制,以使所述待控制快速刀具伺服系统产生与所述驱动电压对应的位移。
CN201710641525.7A 2017-07-31 2017-07-31 基于FReOS‑ELM的压电驱动FTS建模方法、控制方法及系统 Pending CN107505840A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710641525.7A CN107505840A (zh) 2017-07-31 2017-07-31 基于FReOS‑ELM的压电驱动FTS建模方法、控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710641525.7A CN107505840A (zh) 2017-07-31 2017-07-31 基于FReOS‑ELM的压电驱动FTS建模方法、控制方法及系统

Publications (1)

Publication Number Publication Date
CN107505840A true CN107505840A (zh) 2017-12-22

Family

ID=60689323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710641525.7A Pending CN107505840A (zh) 2017-07-31 2017-07-31 基于FReOS‑ELM的压电驱动FTS建模方法、控制方法及系统

Country Status (1)

Country Link
CN (1) CN107505840A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710301A (zh) * 2018-06-07 2018-10-26 哈尔滨工业大学 一种采用Maxwell模型对压电陶瓷作动器迟滞非线性在线辨识和补偿的方法及系统
CN110045604A (zh) * 2019-02-27 2019-07-23 沈阳工业大学 音圈电机驱动洛伦兹力型fts重复滑模复合控制方法
CN113722877A (zh) * 2021-07-14 2021-11-30 广东工业大学 一种对锂电池放电时温度场分布变化进行在线预测的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043719A1 (en) * 1999-01-27 2009-02-12 Hall Douglas B Method for simulation of human response to stimulus
CN103455721A (zh) * 2013-08-30 2013-12-18 浙江工业大学 基于递推岭elm的填料塔载点气速预测方法
CN103593550A (zh) * 2013-08-12 2014-02-19 东北大学 一种基于集成均值子时段rpls-os-elm的荒管质量建模与预报方法
CN104050380A (zh) * 2014-06-26 2014-09-17 东北大学 一种基于Adaboost-PLS-ELM的LF炉终点温度预报方法
CN104070083A (zh) * 2014-06-27 2014-10-01 东北大学 一种基于集成pca-elm穿孔机导盘转速测量方法
CN104914467A (zh) * 2015-05-22 2015-09-16 中国石油天然气股份有限公司 提取分类模型道的地震相聚类分析方法
CN106354018A (zh) * 2016-11-21 2017-01-25 北京工业大学 基于rbf神经网络的溶解氧智能控制系统
CN106980264A (zh) * 2017-05-12 2017-07-25 南京理工大学 基于神经网络的压电驱动器的动态迟滞建模方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043719A1 (en) * 1999-01-27 2009-02-12 Hall Douglas B Method for simulation of human response to stimulus
CN103593550A (zh) * 2013-08-12 2014-02-19 东北大学 一种基于集成均值子时段rpls-os-elm的荒管质量建模与预报方法
CN103455721A (zh) * 2013-08-30 2013-12-18 浙江工业大学 基于递推岭elm的填料塔载点气速预测方法
CN104050380A (zh) * 2014-06-26 2014-09-17 东北大学 一种基于Adaboost-PLS-ELM的LF炉终点温度预报方法
CN104070083A (zh) * 2014-06-27 2014-10-01 东北大学 一种基于集成pca-elm穿孔机导盘转速测量方法
CN104914467A (zh) * 2015-05-22 2015-09-16 中国石油天然气股份有限公司 提取分类模型道的地震相聚类分析方法
CN106354018A (zh) * 2016-11-21 2017-01-25 北京工业大学 基于rbf神经网络的溶解氧智能控制系统
CN106980264A (zh) * 2017-05-12 2017-07-25 南京理工大学 基于神经网络的压电驱动器的动态迟滞建模方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710301A (zh) * 2018-06-07 2018-10-26 哈尔滨工业大学 一种采用Maxwell模型对压电陶瓷作动器迟滞非线性在线辨识和补偿的方法及系统
CN108710301B (zh) * 2018-06-07 2021-02-02 哈尔滨工业大学 压电陶瓷作动器迟滞非线性在线辨识和补偿的方法及系统
CN110045604A (zh) * 2019-02-27 2019-07-23 沈阳工业大学 音圈电机驱动洛伦兹力型fts重复滑模复合控制方法
CN110045604B (zh) * 2019-02-27 2022-03-01 沈阳工业大学 音圈电机驱动洛伦兹力型fts重复滑模复合控制方法
CN113722877A (zh) * 2021-07-14 2021-11-30 广东工业大学 一种对锂电池放电时温度场分布变化进行在线预测的方法
CN113722877B (zh) * 2021-07-14 2024-05-24 广东工业大学 一种对锂电池放电时温度场分布变化进行在线预测的方法

Similar Documents

Publication Publication Date Title
Chang PID control for chaotic synchronization using particle swarm optimization
CN107505840A (zh) 基于FReOS‑ELM的压电驱动FTS建模方法、控制方法及系统
CN111600492B (zh) 一种双有源全桥直流变换器的效率优化控制方法
CN104573238B (zh) 一种忆阻细胞神经网络的电路设计方法
CN107390546A (zh) 基于eos‑elm的压电驱动定位平台建模方法、控制方法及系统
CN104991997B (zh) 自适应差分进化算法优化的广义率相关p-i迟滞建模方法
CN106980264B (zh) 基于神经网络的压电驱动器的动态迟滞建模方法
CN101986564A (zh) 基于Backlash算子和神经网络的自适应滤波器
CN108875159A (zh) 一种压电驱动器的率相关迟滞建模方法
CN108287471A (zh) Mimo偏格式无模型控制器基于系统误差的参数自整定方法
CN109634108A (zh) 参数自整定的mimo异因子全格式无模型控制方法
CN101242101B (zh) 电力系统负荷谐波稳态模型的建立方法及仿真方法
CN105759603A (zh) 基于自动寻优无模型控制器的变压电路控制系统及方法
CN107367936A (zh) 基于os‑elm的压电陶瓷驱动器建模、控制方法及系统
CN104038055B (zh) 基于fpga的dc/dc转换器预测控制方法
CN102832640A (zh) 一种基于dsp的光伏并网系统分岔控制器及其工作方法
CN110492744A (zh) 应用于dc-dc变换器的恒功率负载控制方法及电路
CN107317477A (zh) 一种dc/dc变换器的控制方法、控制系统及控制装置
CN105319971A (zh) 基于光纤光栅的gma自适应控制方法及装置
CN108614431A (zh) 一种基于夹角的Hammerstein-Wiener系统多模型分解及控制方法
CN106533285B (zh) 基于Kriging模型的永磁直流电机转速控制方法
CN202886926U (zh) 一种多伺服传动电镀线的控制系统
CN106019933B (zh) 一种“粘滞-滑动”微动平台的预测控制方法
Zhu et al. Memristor-based neural network PID controller for buck converter
Lian et al. Permanent magnet synchronous motor control of electromechanical actuator based on parameter self-tuning method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171222

RJ01 Rejection of invention patent application after publication