CN109634108A - 参数自整定的mimo异因子全格式无模型控制方法 - Google Patents

参数自整定的mimo异因子全格式无模型控制方法 Download PDF

Info

Publication number
CN109634108A
CN109634108A CN201910103032.7A CN201910103032A CN109634108A CN 109634108 A CN109634108 A CN 109634108A CN 201910103032 A CN201910103032 A CN 201910103032A CN 109634108 A CN109634108 A CN 109634108A
Authority
CN
China
Prior art keywords
factor
mimo
error
time
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910103032.7A
Other languages
English (en)
Inventor
卢建刚
陈晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910103032.7A priority Critical patent/CN109634108A/zh
Publication of CN109634108A publication Critical patent/CN109634108A/zh
Priority to CN202010050264.3A priority patent/CN111522233B/zh
Priority to US16/776,933 priority patent/US11256221B2/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39062Calculate, jacobian matrix estimator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41366Linearization of embedded position signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42017Mimo controller with many inputs and outputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种参数自整定的MIMO异因子全格式无模型控制方法,针对现有的采用同因子结构的MIMO全格式无模型控制方法的局限性,也就是:在k时刻针对控制输入向量中的不同控制输入只能采用相同数值的惩罚因子与相同数值的步长因子的局限性,提出了一种采用异因子结构的MIMO全格式无模型控制方法,在k时刻针对控制输入向量中的不同控制输入可采用不同数值的惩罚因子和/或不同数值的步长因子,能够解决强非线性MIMO系统等复杂对象中存在的各个控制通道特性各异的控制难题,同时提出了参数自整定的方法以有效克服惩罚因子和步长因子需要费时费力进行整定的难题。与现有的控制方法相比,本发明具有更高的控制精度、更好的稳定性与更广的适用性。

Description

参数自整定的MIMO异因子全格式无模型控制方法
技术领域
本发明属于自动化控制领域,尤其是涉及一种参数自整定的MIMO异因子全格式无模型控制方法。
背景技术
炼油、石化、化工、制药、食品、造纸、水处理、火电、冶金、水泥、橡胶、机械、电气等行业的大多数被控对象,包括反应器、精馏塔、机器、设备、装置、生产线、车间、工厂,本质上都是MIMO(Multiple Input and Multiple Output,多输入多输出)系统。实现对MIMO系统的高精度、高稳定、高适用性控制,对工业的节能降耗、提质增效具有重要意义。然而,MIMO系统的控制难题,尤其是强非线性MIMO系统的控制难题,一直以来都是自动化控制领域所面临的重大挑战。
MIMO系统的现有控制方法中包括MIMO全格式无模型控制方法。MIMO全格式无模型控制方法是一种新型的数据驱动控制方法,不依赖被控对象的任何数学模型信息,仅依赖于MIMO被控对象实时测量的输入输出数据进行控制器的分析和设计,并且实现简明、计算负担小及鲁棒性强,具有良好的应用前景。MIMO全格式无模型控制方法的理论基础,由侯忠生与金尚泰在其合著的《无模型自适应控制—理论与应用》(科学出版社,2013年,第116页)中提出,其控制算法如下:
其中,u(k)为k时刻控制输入向量,u(k)=[u1(k),…,um(k)]T,m为控制输入总个数(m为大于1的正整数),Δu(k)=u(k)-u(k-1);e(k)为k时刻误差向量,e(k)=[e1(k),…,en(k)]T,n为输出总个数(n为正整数);Δy(k)=y(k)-y(k-1),y(k)为k时刻输出实际值向量,y(k)=[y1(k),…,yn(k)]T;Φ(k)为k时刻MIMO系统伪分块雅克比矩阵估计值,Φp(k)为Φ(k)的第p块(p为正整数,1≤p≤Ly+Lu),||ΦLy+1(k)||为矩阵ΦLy+1(k)的2范数;λ为惩罚因子;ρ1,…,ρLy+Lu为步长因子;Ly为控制输出线性化长度常数,Ly为正整数;Lu为控制输入线性化长度常数,Lu为正整数。
上述现有的MIMO全格式无模型控制方法,采用了同因子结构,也就是说:在k时刻,针对控制输入向量u(k)中的不同控制输入u1(k),…,um(k),只能采用相同数值的惩罚因子λ与相同数值的步长因子ρ1,…,相同数值的步长因子ρLy+Lu。当现有的MIMO同因子全格式无模型控制方法应用于强非线性MIMO系统等复杂对象时,由于控制通道特性各异,往往难以实现理想的控制效果,制约了MIMO全格式无模型控制方法的推广应用。
为此,为了打破现有的MIMO同因子全格式无模型控制方法的应用瓶颈,本发明提出了一种参数自整定的MIMO异因子全格式无模型控制方法。
发明内容
为了解决背景技术中存在的问题,本发明的目的在于,提供一种参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:
当被控对象为MIMO(Multiple Input and Multiple Output,多输入多输出)系统时,所述MIMO异因子全格式无模型控制方法计算k时刻第i个控制输入ui(k)的数学公式如下:
如果控制输入线性化长度常数Lu>1,则:
如果控制输入线性化长度常数Lu=1,则:
其中,k为正整数;m为所述MIMO系统控制输入总个数,m为大于1的正整数;n为所述MIMO系统输出总个数,n为正整数;i表示所述MIMO系统控制输入总个数中的第i个,i为正整数,1≤i≤m;j表示所述MIMO系统输出总个数中的第j个,j为正整数,1≤j≤n;ui(k)为k时刻第i个控制输入;Δuiu(k)=uiu(k)-uiu(k-1),iu为正整数;ej(k)为k时刻第j个误差,即k时刻误差向量e(k)=[e1(k),…,en(k)]T的第j个元素;Δyjy(k)=yjy(k)-yjy(k-1),yjy(k)为k时刻第jy个输出实际值,jy为正整数;Φ(k)为k时刻MIMO系统伪分块雅克比矩阵估计值,Φp(k)为Φ(k)的第p块,φj,i,p(k)为矩阵Φp(k)的第j行第i列元素,||ΦLy+1(k)||为矩阵ΦLy+1(k)的2范数;p为正整数,1≤p≤Ly+Lu;λi为第i个控制输入的惩罚因子;ρi,p为第i个控制输入的第p个步长因子;Ly为控制输出线性化长度常数,Ly为正整数;Lu为控制输入线性化长度常数,Lu为正整数;
针对MIMO系统,所述MIMO异因子全格式无模型控制方法将i的取值遍历正整数区间[1,m]内的所有值,即可计算得到k时刻控制输入向量u(k)=[u1(k),…,um(k)]T
所述MIMO异因子全格式无模型控制方法具有异因子特征;所述异因子特征是指针对正整数区间[1,m]内任意两个互不相等的正整数i与x,在采用所述控制方法对MIMO系统进行控制期间,至少存在一个时刻,使得如下(Ly+Lu+1)个不等式中至少有一个不等式成立:
λi≠λx;ρi,1≠ρx,1;…;ρi,Ly+Lu≠ρx,Ly+Lu
在采用所述控制方法对MIMO系统进行控制期间,对计算k时刻控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数进行参数自整定;所述待整定参数包含惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu(i=1,…,m)的任意之一或任意种组合。
所述参数自整定采用神经网络计算所述控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数;在更新所述神经网络的隐含层权系数、输出层权系数时,使用所述控制输入向量u(k)=[u1(k),…,um(k)]T分别针对各自数学公式中的待整定参数在k时刻的梯度;所述控制输入向量u(k)=[u1(k),…,um(k)]T中的ui(k)(i=1,…,m)针对所述ui(k)的数学公式中的待整定参数在k时刻的梯度,由ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数组成;所述ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数,采用如下的数学公式进行计算:
当所述ui(k)的数学公式中的待整定参数包含惩罚因子λi且Lu=1时,ui(k)针对所述惩罚因子λi在k时刻的偏导数为:
当所述ui(k)的数学公式中的待整定参数包含惩罚因子λi且Lu>1时,ui(k)针对所述惩罚因子λi在k时刻的偏导数为:
当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,p且1≤p≤Ly时,ui(k)针对所述步长因子ρi,p在k时刻的偏导数为:
当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,Ly+1时,ui(k)针对所述步长因子ρi,Ly+1在k时刻的偏导数为:
当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,p且Ly+2≤p≤Ly+Lu且Lu>1时,ui(k)针对所述步长因子ρju,i在k时刻的偏导数为:
计算得到的所述ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数,全部放入集合{ui(k)的梯度};针对MIMO系统,将i的取值遍历正整数区间[1,m]内的所有值,分别得到集合{u1(k)的梯度},…,集合{um(k)的梯度},并全部放入集合{梯度集合},所述集合{梯度集合}为包含全部{{u1(k)的梯度},…,{um(k)的梯度}}的集合;
所述参数自整定采用神经网络计算所述控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数,所述神经网络的输入包含所述集合{梯度集合}中的元素、集合{误差集合}中的元素的任意之一或任意种组合;所述集合{误差集合}包含误差向量e(k)=[e1(k),…,en(k)]T与所述误差向量e(k)中各元素ej(k)的误差函数组(j=1,…,n);所述ej(k)的误差函数组为k时刻及之前所有时刻第j个误差的累积即k时刻第j个误差ej(k)的一阶后向差分ej(k)-ej(k-1)、k时刻第j个误差ej(k)的二阶后向差分ej(k)-2ej(k-1)+ej(k-2)、k时刻第j个误差ej(k)的高阶后向差分的任意之一或任意种组合。
在采用上述技术方案的同时,本发明还可以采用或者组合采用以下进一步的技术方案:
所述k时刻第j个误差ej(k)采用第j个误差计算函数计算得到;所述第j个误差计算函数的自变量包含第j个输出期望值与第j个输出实际值。
所述第j个误差计算函数采用其中为k时刻第j个输出期望值,yj(k)为k时刻第j个输出实际值;或者采用其中为k+1时刻第j个输出期望值;或者采用或者采用
所述神经网络为BP神经网络;所述BP神经网络采用隐含层为单层的结构,即采用由输入层、单层隐含层、输出层组成的三层网络结构。
所述神经网络以系统误差函数的值最小化为目标,采用梯度下降法进行系统误差反向传播计算,更新所述神经网络的隐含层权系数、输出层权系数;所述系统误差函数的自变量包含误差向量e(k)=[e1(k),…,en(k)]T中的元素、n个输出期望值、n个输出实际值的任意之一或任意种组合。
所述系统误差函数为其中,ejy(k)为k时刻第jy个误差,Δuiu(k)=uiu(k)-uiu(k-1),uiu(k)为k时刻第iu个控制输入,ajy与biu为大于或等于0的常数,jy与iu为正整数。
所述被控对象包含反应器、精馏塔、机器、设备、装置、生产线、车间、工厂。
运行本发明所述控制方法的硬件平台包含工业控制计算机、单片机控制器、微处理器控制器、现场可编程门阵列控制器、数字信号处理控制器、嵌入式系统控制器、可编程逻辑控制器、集散控制系统、现场总线控制系统、工业物联网控制系统、工业互联网控制系统的任意之一或任意种组合。
本发明提供的参数自整定的MIMO异因子全格式无模型控制方法,针对控制输入向量中的不同控制输入可采用不同数值的惩罚因子或不同数值的步长因子,能够解决强非线性MIMO系统等复杂对象中存在的各个控制通道特性各异的控制难题,同时有效克服惩罚因子和步长因子需要费时费力进行整定的难题。因此,与现有的MIMO同因子全格式无模型控制方法相比,本发明提供的参数自整定的MIMO异因子全格式无模型控制方法具有更高的控制精度、更好的稳定性与更广的适用性。
附图说明
图1为本发明的原理框图;
图2为本发明采用的第i个BP神经网络结构示意图;
图3为两输入两输出MIMO系统采用本发明的参数自整定的MIMO异因子全格式无模型控制方法时第1个输出的控制效果图;
图4为两输入两输出MIMO系统采用本发明的参数自整定的MIMO异因子全格式无模型控制方法时第2个输出的控制效果图;
图5为两输入两输出MIMO系统采用本发明的参数自整定的MIMO异因子全格式无模型控制方法时的控制输入曲线;
图6为两输入两输出MIMO系统采用本发明的参数自整定的MIMO异因子全格式无模型控制方法时的惩罚因子变化曲线;
图7为两输入两输出MIMO系统采用本发明的参数自整定的MIMO异因子全格式无模型控制方法时的第1个步长因子变化曲线;
图8为两输入两输出MIMO系统采用本发明的参数自整定的MIMO异因子全格式无模型控制方法时的第2个步长因子变化曲线;
图9为两输入两输出MIMO系统采用本发明的参数自整定的MIMO异因子全格式无模型控制方法时的第3个步长因子变化曲线;
图10为两输入两输出MIMO系统采用本发明的参数自整定的MIMO异因子全格式无模型控制方法时的第4个步长因子变化曲线;
图11为两输入两输出MIMO系统采用现有的MIMO同因子全格式无模型控制方法时第1个输出的控制效果图;
图12为两输入两输出MIMO系统采用现有的MIMO同因子全格式无模型控制方法时第2个输出的控制效果图;
图13为两输入两输出MIMO系统采用现有的MIMO同因子全格式无模型控制方法时的控制输入曲线。
具体实施方式
下面结合附图和具体实施例对本发明进一步说明。
图1给出了本发明的原理框图。针对具有m个控制输入(m为大于1的正整数)与n个输出(n为正整数)的MIMO系统,采用MIMO异因子全格式无模型控制方法进行控制;确定MIMO异因子全格式无模型控制方法的控制输出线性化长度常数Ly,Ly为正整数;确定MIMO异因子全格式无模型控制方法的控制输入线性化长度常数Lu,Lu为正整数。针对第i个控制输入ui(k)(i=1,…,m),MIMO异因子全格式无模型控制方法用于计算ui(k)的数学公式的参数包含惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu;选择ui(k)的数学公式中的待整定参数,其为ui(k)的数学公式的参数的部分或全部,包含惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu的任意之一或任意种组合;在图1的示意图中,所有控制输入ui(k)(i=1,…,m)的数学公式中的待整定参数为惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu;ui(k)的数学公式中的待整定参数采用第i个BP神经网络进行计算。
图2为本发明采用的第i个BP神经网络结构示意图;BP神经网络可以采用隐含层为单层的结构,也可以采用隐含层为多层的结构;在图2的示意图中,为简明起见,BP神经网络采用了隐含层为单层的结构,即采用由输入层、单层隐含层、输出层组成的三层网络结构;确定第i个BP神经网络的输入层节点数、隐含层节点数、输出层节点数;第i个BP神经网络的输入层节点数设为m×(Ly+Lu+1)+n×3个,其中m×(Ly+Lu+1)个输入层节点的输入为集合{梯度集合}中的元素(iu=1,…,m),其中n×3个输入层节点的输入为集合{误差集合}中的元素(jy=1,…,n);第i个BP神经网络的输出层节点数不少于ui(k)的数学公式中的待整定参数的个数,图2中设定为ui(k)的数学公式中的待整定参数个数Ly+Lu+1个,分别输出惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu;第i个BP神经网络的隐含层权系数、输出层权系数的更新过程具体为:以系统误差函数的值最小化为目标,图2中以综合考虑全部n个误差贡献的系统误差函数的值最小化为目标,采用梯度下降法进行系统误差反向传播计算,更新第i个BP神经网络的隐含层权系数、输出层权系数;在更新第i个BP神经网络的隐含层权系数、输出层权系数时,使用包含{u1(k)的梯度},…,{um(k)的梯度}的集合{梯度集合}中的元素,也就是使用控制输入向量u(k)=[u1(k),…,um(k)]T分别针对各自数学公式中的待整定参数在k时刻的梯度(iu=1,…,m)。
结合图1与图2的上述说明,将本发明技术方案的实现步骤进一步说明如下:
将当前时刻记为k时刻;将第j个输出期望值与第j个输出实际值yj(k)之差作为k时刻第j个误差ej(k);将j的取值遍历正整数区间[1,n]内的所有值,得到误差向量e(k)=[e1(k),…,en(k)]T,并放入集合{误差集合};然后将集合{梯度集合}中的元素(iu=1,…,m)与集合{误差集合}中的元素(jy=1,…,n)作为第i个BP神经网络的输入,第i个BP神经网络进行前向计算,计算结果通过第i个BP神经网络的输出层输出,得到MIMO异因子全格式无模型控制方法计算ui(k)的数学公式中的待整定参数的值;基于误差向量e(k)、ui(k)的数学公式中的待整定参数的值,采用MIMO异因子全格式无模型控制方法计算k时刻第i个控制输入ui(k);将i的取值遍历正整数区间[1,m]内的所有值,即可计算得到k时刻控制输入向量u(k)=[u1(k),…,um(k)]T;对于控制输入向量u(k)中的ui(k),分别计算针对ui(k)的数学公式中的各个待整定参数在k时刻的偏导数,全部放入集合{ui(k)的梯度};将i的取值遍历正整数区间[1,m]内的所有值,分别得到集合{u1(k)的梯度},…,集合{um(k)的梯度},并全部放入集合{梯度集合};随后,以综合考虑全部n个误差贡献的系统误差函数的值最小化为目标,使用集合{梯度集合}中的梯度(iu=1,…,m),采用梯度下降法进行系统误差反向传播计算,更新第i个BP神经网络的隐含层权系数、输出层权系数;将i的取值遍历正整数区间[1,m]内的所有值,即可更新全部m个BP神经网络的隐含层权系数、输出层权系数;控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的n个输出实际值,然后重复执行本段落所述的步骤,对MIMO系统进行后一时刻的控制。
以下是本发明的具体实施例。
被控对象采用的两输入两输出MIMO系统,具有非最小相位非线性系统的复杂特征,属于特别难以控制的MIMO系统:
系统输出期望值y*(k)如下:
在具体实施例中,m=n=2。
控制输出线性化长度常数Ly的数值通常根据被控对象的复杂程度和实际的控制效果进行设定,一般在1到5之间,过大会导致计算量大,所以一般常取1或3,在本具体实施例中Ly取为1;控制输入线性化长度常数Lu的数值也通常根据被控对象的复杂程度和实际的控制效果进行设定,一般在1到10之间,过小会影响控制效果,过大会导致计算量大,所以一般常取3或5,在本具体实施例中Lu取为3。
针对上述具体实施例,开展五组试验进行对比验证。为了更清楚地比较五组试验的控制性能,采用均方根误差(Root Mean Square Error,RMSE)作为控制性能评价指标:
其中, 为k时刻第j个输出期望值,yj(k)为k时刻第j个输出实际值。RMSE(ej)的值越小,表明第j个输出实际值yj(k)与第j个输出期望值的误差总体而言更小,控制性能更好。
运行本发明控制方法的硬件平台采用工业控制计算机。
第一组试验时:第1个BP神经网络与第2个BP神经网络的输入层节点数均设为16个,其中10个输入层节点的输入均为集合{梯度集合}中的元素 其中6个输入层节点的输入均为集合{误差集合}中的元素 第1个BP神经网络与第2个BP神经网络的隐含层节点数均设为6个;第1个BP神经网络与第2个BP神经网络的输出层节点数均设为5个,其中第1个BP神经网络分别输出惩罚因子λ1与步长因子ρ1,11,21,31,4,第2个BP神经网络分别输出惩罚因子λ2与步长因子ρ2,12,22,32,4;然后采用本发明的参数自整定的MIMO异因子全格式无模型控制方法,对上述两输入两输出MIMO系统进行控制,图3为第1个输出的控制效果图,图4为第2个输出的控制效果图,图5为控制输入曲线,图6为惩罚因子变化曲线,图7为第1个步长因子变化曲线,图8为2个步长因子变化曲线,图9为第3个步长因子变化曲线,图10为第4个步长因子变化曲线;从控制性能评价指标进行考察,图3中第1个输出的RMSE(e1)为0.5243,图4中第2个输出的RMSE(e2)为0.8310;从异因子特征进行考察,图6中两个控制输入的惩罚因子变化曲线基本不重叠的现象表明对上述两输入两输出MIMO系统进行控制时惩罚因子的异因子特征显著,图7、图8、图9、图10中两个控制输入的步长因子变化曲线均基本不重叠的现象表明对上述两输入两输出MIMO系统进行控制时步长因子的异因子特征显著。
第二组试验时:第1个BP神经网络与第2个BP神经网络的输入层节点数均设为10个,10个输入层节点的输入均为集合{梯度集合}中的元素 第1个BP神经网络与第2个BP神经网络的隐含层节点数均设为6个;第1个BP神经网络与第2个BP神经网络的输出层节点数均设为5个,其中第1个BP神经网络分别输出惩罚因子λ1与步长因子ρ1,11,21,31,4,第2个BP神经网络分别输出惩罚因子λ2与步长因子ρ2,12,22,32,4;然后采用本发明的参数自整定的MIMO异因子全格式无模型控制方法,对上述两输入两输出MIMO系统进行控制;从控制性能评价指标进行考察,第1个输出的RMSE(e1)为0.5409,第2个输出的RMSE(e2)为0.9182。
第三组试验时:第1个BP神经网络与第2个BP神经网络的输入层节点数均设为6个,6个输入层节点的输入均为集合{误差集合}中的元素 第1个BP神经网络与第2个BP神经网络的隐含层节点数均设为6个;第1个BP神经网络与第2个BP神经网络的输出层节点数均设为5个,其中第1个BP神经网络分别输出惩罚因子λ1与步长因子ρ1,11,21,31,4,第2个BP神经网络分别输出惩罚因子λ2与步长因子ρ2,12,22,32,4;然后采用本发明的参数自整定的MIMO异因子全格式无模型控制方法,对上述两输入两输出MIMO系统进行控制;从控制性能评价指标进行考察,第1个输出的RMSE(e1)为0.5412,第2个输出的RMSE(e2)为0.9376。
第四组试验时:惩罚因子λ12与步长因子ρ1,11,21,31,4均固定,待整定参数只选择第2个控制输入的步长因子ρ2,12,22,32,4,因此只需采用一个BP神经网络;BP神经网络的输入层节点数设为6个,6个输入层节点的输入为集合{误差集合}中的元素BP神经网络的隐含层节点数设为6个;BP神经网络的输出层节点数设为4个,分别输出步长因子ρ2,12,22,32,4;然后采用本发明的参数自整定的MIMO异因子全格式无模型控制方法,对上述两输入两输出MIMO系统进行控制;从控制性能评价指标进行考察,第1个输出的RMSE(e1)为0.5421,第2个输出的RMSE(e2)为0.9850。
第五组试验时:直接采用现有的MIMO同因子全格式无模型控制方法,设定惩罚因子λ=1,设定步长因子ρ1=ρ2=ρ3=ρ4=0.5,对上述两输入两输出MIMO系统进行控制,图11为第1个输出的控制效果图,图12为第2个输出的控制效果图,图13为控制输入曲线;从控制性能评价指标进行考察,图11中第1个输出的RMSE(e1)为0.5433,图12中第2个输出的RMSE(e2)为1.0194。
五组试验控制性能评价指标的比较结果列于表1,采用本发明的第一组到第四组试验的结果均优于采用现有的MIMO同因子全格式无模型控制方法的第五组试验,其中通过对比图4与图12可以发现改进效果尤其显著,充分表明本发明提供的参数自整定的MIMO异因子全格式无模型控制方法具有更高的控制精度、更好的稳定性与更广的适用性。
表1控制性能比较
更进一步地,还应该特别指出以下六点:
(1)炼油、石化、化工、制药、食品、造纸、水处理、火电、冶金、水泥、橡胶、机械、电气等行业的大多数被控对象,包括反应器、精馏塔、机器、设备、装置、生产线、车间、工厂,本质上都是MIMO系统,其中一些MIMO系统具有非最小相位非线性系统的复杂特征,属于特别难以控制的MIMO系统;举例来说,比如炼油、石化、化工、制药等行业常用的连续搅拌反应器CSTR就是常见的两输入两输出MIMO系统,其两个控制输入分别是进料流量与冷却水流量,其两个输出分别是产物浓度与反应温度;当化学反应具有强放热效应时,连续搅拌反应器CSTR的MIMO系统就具有非最小相位非线性系统的复杂特征,是典型的难控对象。在上述具体实施例中,被控对象采用的两输入两输出MIMO系统,也具有非最小相位非线性系统的复杂特征,属于特别难以控制的MIMO系统;本发明对该被控对象能够实现高精度、高稳定、高适用性的控制,说明本发明的控制方法也能够对反应器、精馏塔、机器、设备、装置、生产线、车间、工厂等复杂MIMO系统实现高精度、高稳定、高适用性的控制。
(2)在上述具体实施例中,运行本发明控制方法的硬件平台为工业控制计算机;在实际应用时,还可以根据具体情况,选择单片机控制器、微处理器控制器、现场可编程门阵列控制器、数字信号处理控制器、嵌入式系统控制器、可编程逻辑控制器、集散控制系统、现场总线控制系统、工业物联网控制系统、工业互联网控制系统的任意之一或任意种组合作为运行本发明控制方法的硬件平台。
(3)在上述具体实施例中,将第j个输出期望值与第j个输出实际值yj(k)之差作为k时刻第j个误差ej(k),也就是仅为所述第j个误差计算函数中的一种方法;也可以将k+1时刻第j个输出期望值与k时刻第j个输出yj(k)之差作为第j个误差ej(k),也就是所述第j个误差计算函数还可以采用自变量包含第j个输出期望值与第j个输出实际值的其他计算方法,举例来说, 对上述具体实施例的被控对象而言,采用上述不同的误差计算函数,都能够实现良好的控制效果。
(4)BP神经网络的输入包含集合{梯度集合}中的元素、集合{误差集合}中的元素的任意之一或任意种组合;当BP神经网络的输入包含集合{梯度集合}中的元素时,上述具体实施例选择了k-1时刻的梯度,即 在实际应用时还可以根据具体情况,进一步增加更多时刻的梯度,举例来说,可增加k-2时刻的梯度,即 当BP神经网络的输入包含集合{误差集合}中的元素时,上述具体实施例选择了在实际应用时还可以根据具体情况,在集合{误差集合}中增加更多的误差函数组,举例来说,可增加ejy(k)的二阶后向差分,就是说将{e1(k)-2e1(k-1)+e1(k-2),e2(k)-2e2(k-1)+e2(k-2)}也作为BP神经网络的输入;更进一步地,BP神经网络的输入包含但不限于集合{梯度集合}中的元素、集合{误差集合}中的元素,举例来说,可增加{u1(k-1),u2(k-1)}也作为BP神经网络的输入;对上述具体实施例的被控对象而言,当BP神经网络的输入层节点数不断增加时,都能够实现良好的控制效果,多数情况下还会略有改善,但同时也增加了计算负担,所以BP神经网络的输入层节点数在实际应用时可以根据具体情况设定合理的数目。
(5)在上述具体实施例中,在以系统误差函数的值最小化为目标来更新BP神经网络的隐含层权系数、输出层权系数时,所述系统误差函数采用了综合考虑全部n个误差贡献的系统误差函数仅为所述系统误差函数中的一种函数;所述系统误差函数还可以采用自变量包含n个误差、n个输出期望值、n个输出实际值的任意之一或任意种组合的其他函数,举例来说,所述系统误差函数采用也就是采用的另一种函数形式;再举例来说,所述系统误差函数采用 其中,ejy(k)为k时刻第jy个误差,Δuiu(k)=uiu(k)-uiu(k-1),uiu(k)为k时刻第iu个控制输入,ajy与biu为大于或等于0的常数;显然,当biu均为0时,所述系统误差函数仅考虑了的贡献,表明最小化的目标是系统误差最小,也就是追求精度高;而当biu大于0时,所述系统误差函数同时考虑的贡献和的贡献,表明最小化的目标在追求系统误差小的同时,还追求控制输入变化小,也就是既追求精度高又追求操纵稳;对上述具体实施例的被控对象而言,采用上述不同的系统误差函数,都能够实现良好的控制效果;与系统误差函数仅考虑贡献时的控制效果相比,在系统误差函数同时考虑的贡献和的贡献时其控制精度略有降低而其操纵平稳性则有提高。
(6)所述参数自整定的MIMO异因子全格式无模型控制方法的待整定参数包含惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu(i=1,…,m)的任意之一或任意种组合;在上述具体实施例中,第一组到第三组的试验验证时,对惩罚因子λ12与步长因子ρ1,11,21,31,42,12,22,32,4全部实现了参数自整定,而第四组试验时则固定惩罚因子λ12与步长因子ρ1,11,21,31,4,而仅对第2个控制输入的步长因子ρ2,12,22,32,4实现参数自整定;在实际应用时,还可以根据具体情况,选择待整定参数的任意种组合;此外,所述待整定参数包括但不限于惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu(i=1,…,m)的任意之一或任意种组合;举例来说,根据具体情况,所述待整定参数还可以包括计算MIMO系统伪分块雅克比矩阵估计值Φ(k)所需的参数。
上述具体实施方式用来解释说明本发明,仅为本发明的优选实施例,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改、等同替换、改进等,都落入本发明的保护范围。

Claims (9)

1.参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:
当被控对象为MIMO(Multiple Input and Multiple Output,多输入多输出)系统时,所述MIMO异因子全格式无模型控制方法计算k时刻第i个控制输入ui(k)的数学公式如下:
如果控制输入线性化长度常数Lu>1,则:
如果控制输入线性化长度常数Lu=1,则:
其中,k为正整数;m为所述MIMO系统控制输入总个数,m为大于1的正整数;n为所述MIMO系统输出总个数,n为正整数;i表示所述MIMO系统控制输入总个数中的第i个,i为正整数,1≤i≤m;j表示所述MIMO系统输出总个数中的第j个,j为正整数,1≤j≤n;ui(k)为k时刻第i个控制输入;Δuiu(k)=uiu(k)-uiu(k-1),iu为正整数;ej(k)为k时刻第j个误差,即k时刻误差向量e(k)=[e1(k),…,en(k)]T的第j个元素;Δyjy(k)=yjy(k)-yjy(k-1),yjy(k)为k时刻第jy个输出实际值,jy为正整数;Φ(k)为k时刻MIMO系统伪分块雅克比矩阵估计值,Φp(k)为Φ(k)的第p块,φj,i,p(k)为矩阵Φp(k)的第j行第i列元素,||ΦLy+1(k)||为矩阵ΦLy+1(k)的2范数;p为正整数,1≤p≤Ly+Lu;λi为第i个控制输入的惩罚因子;ρi,p为第i个控制输入的第p个步长因子;Ly为控制输出线性化长度常数,Ly为正整数;Lu为控制输入线性化长度常数,Lu为正整数;
针对MIMO系统,所述MIMO异因子全格式无模型控制方法将i的取值遍历正整数区间[1,m]内的所有值,即可计算得到k时刻控制输入向量u(k)=[u1(k),…,um(k)]T
所述MIMO异因子全格式无模型控制方法具有异因子特征;所述异因子特征是指针对正整数区间[1,m]内任意两个互不相等的正整数i与x,在采用所述控制方法对MIMO系统进行控制期间,至少存在一个时刻,使得如下(Ly+Lu+1)个不等式中至少有一个不等式成立:
λi≠λx;ρi,1≠ρx,1;…;ρi,Ly+Lu≠ρx,Ly+Lu
在采用所述控制方法对MIMO系统进行控制期间,对计算k时刻控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数进行参数自整定;所述待整定参数包含惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu(i=1,…,m)的任意之一或任意种组合。
2.根据权利要求1所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:所述参数自整定采用神经网络计算所述控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数;在更新所述神经网络的隐含层权系数、输出层权系数时,使用所述控制输入向量u(k)=[u1(k),…,um(k)]T分别针对各自数学公式中的待整定参数在k时刻的梯度;所述控制输入向量u(k)=[u1(k),…,um(k)]T中的ui(k)(i=1,…,m)针对所述ui(k)的数学公式中的待整定参数在k时刻的梯度,由ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数组成;所述ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数,采用如下的数学公式进行计算:
当所述ui(k)的数学公式中的待整定参数包含惩罚因子λi且Lu=1时,ui(k)针对所述惩罚因子λi在k时刻的偏导数为:
当所述ui(k)的数学公式中的待整定参数包含惩罚因子λi且Lu>1时,ui(k)针对所述惩罚因子λi在k时刻的偏导数为:
当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,p且1≤p≤Ly时,ui(k)针对所述步长因子ρi,p在k时刻的偏导数为:
当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,Ly+1时,ui(k)针对所述步长因子ρi,Ly+1在k时刻的偏导数为:
当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,p且Ly+2≤p≤Ly+Lu且Lu>1时,ui(k)针对所述步长因子ρi,p在k时刻的偏导数为:
计算得到的所述ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数,全部放入集合{ui(k)的梯度};针对MIMO系统,将i的取值遍历正整数区间[1,m]内的所有值,分别得到集合{u1(k)的梯度},…,集合{um(k)的梯度},并全部放入集合{梯度集合},所述集合{梯度集合}为包含全部{{u1(k)的梯度},…,{um(k)的梯度}}的集合;
所述参数自整定采用神经网络计算所述控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数,所述神经网络的输入包含所述集合{梯度集合}中的元素、集合{误差集合}中的元素的任意之一或任意种组合;所述集合{误差集合}包含误差向量e(k)=[e1(k),…,en(k)]T与所述误差向量e(k)中各元素ej(k)的误差函数组(j=1,…,n);所述ej(k)的误差函数组为k时刻及之前所有时刻第j个误差的累积即k时刻第j个误差ej(k)的一阶后向差分ej(k)-ej(k-1)、k时刻第j个误差ej(k)的二阶后向差分ej(k)-2ej(k-1)+ej(k-2)、k时刻第j个误差ej(k)的高阶后向差分的任意之一或任意种组合。
3.根据权利要求1所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:所述k时刻第j个误差ej(k)采用第j个误差计算函数计算得到;所述第j个误差计算函数的自变量包含第j个输出期望值与第j个输出实际值。
4.根据权利要求3所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:所述第j个误差计算函数采用其中为k时刻第j个输出期望值,yj(k)为k时刻第j个输出实际值;或者采用其中为k+1时刻第j个输出期望值;或者采用或者采用
5.根据权利要求2所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:所述神经网络为BP神经网络;所述BP神经网络采用隐含层为单层的结构,即采用由输入层、单层隐含层、输出层组成的三层网络结构。
6.根据权利要求2所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:所述神经网络以系统误差函数的值最小化为目标,采用梯度下降法进行系统误差反向传播计算,更新所述神经网络的隐含层权系数、输出层权系数;所述系统误差函数的自变量包含误差向量e(k)=[e1(k),…,en(k)]T中的元素、n个输出期望值、n个输出实际值的任意之一或任意种组合。
7.根据权利要求6所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:所述系统误差函数为其中,ejy(k)为k时刻第jy个误差,Δuiu(k)=uiu(k)-uiu(k-1),uiu(k)为k时刻第iu个控制输入,ajy与biu为大于或等于0的常数,jy与iu为正整数。
8.根据权利要求1所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:所述被控对象包含反应器、精馏塔、机器、设备、装置、生产线、车间、工厂。
9.根据权利要求1所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:运行所述控制方法的硬件平台包含工业控制计算机、单片机控制器、微处理器控制器、现场可编程门阵列控制器、数字信号处理控制器、嵌入式系统控制器、可编程逻辑控制器、集散控制系统、现场总线控制系统、工业物联网控制系统、工业互联网控制系统的任意之一或任意种组合。
CN201910103032.7A 2019-02-01 2019-02-01 参数自整定的mimo异因子全格式无模型控制方法 Pending CN109634108A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910103032.7A CN109634108A (zh) 2019-02-01 2019-02-01 参数自整定的mimo异因子全格式无模型控制方法
CN202010050264.3A CN111522233B (zh) 2019-02-01 2020-01-17 参数自整定的mimo异因子全格式无模型控制方法
US16/776,933 US11256221B2 (en) 2019-02-01 2020-01-30 MIMO different-factor full-form model-free control with parameter self-tuning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910103032.7A CN109634108A (zh) 2019-02-01 2019-02-01 参数自整定的mimo异因子全格式无模型控制方法

Publications (1)

Publication Number Publication Date
CN109634108A true CN109634108A (zh) 2019-04-16

Family

ID=66064815

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910103032.7A Pending CN109634108A (zh) 2019-02-01 2019-02-01 参数自整定的mimo异因子全格式无模型控制方法
CN202010050264.3A Active CN111522233B (zh) 2019-02-01 2020-01-17 参数自整定的mimo异因子全格式无模型控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010050264.3A Active CN111522233B (zh) 2019-02-01 2020-01-17 参数自整定的mimo异因子全格式无模型控制方法

Country Status (2)

Country Link
US (1) US11256221B2 (zh)
CN (2) CN109634108A (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11922314B1 (en) * 2018-11-30 2024-03-05 Ansys, Inc. Systems and methods for building dynamic reduced order physical models
CN109634109A (zh) * 2019-02-01 2019-04-16 浙江大学 Mimo异因子偏格式无模型控制方法
CN109581864A (zh) * 2019-02-01 2019-04-05 浙江大学 参数自整定的mimo异因子偏格式无模型控制方法
CN109782588A (zh) * 2019-02-01 2019-05-21 浙江大学 Mimo异因子紧格式无模型控制方法
CN113093532B (zh) * 2021-03-05 2022-04-15 哈尔滨工程大学 一种非自衡系统的全格式无模型自适应控制方法
CN113110519B (zh) * 2021-05-26 2021-11-30 哈尔滨工程大学 一种舰船用非增量型无模型自适应艏向控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418858A (en) * 1994-07-11 1995-05-23 Cooper Tire & Rubber Company Method and apparatus for intelligent active and semi-active vibration control
US6055524A (en) * 1997-10-06 2000-04-25 General Cybernation Group, Inc. Model-free adaptive process control
US7152052B2 (en) * 2003-08-12 2006-12-19 George Shu-Xing Cheng Apparatus and method of controlling single-input-multi-output systems
US7346401B2 (en) * 2004-05-25 2008-03-18 International Business Machines Corporation Systems and methods for providing constrained optimization using adaptive regulatory control
US9437884B2 (en) * 2008-05-13 2016-09-06 GM Global Technology Operations LLC Self-tuning thermal control of an automotive fuel cell propulsion system
US9225772B2 (en) * 2011-09-26 2015-12-29 Knoa Software, Inc. Method, system and program product for allocation and/or prioritization of electronic resources
US9729277B2 (en) * 2015-12-14 2017-08-08 Tsinghua University Signal detecting method and device
US20160352419A1 (en) * 2015-05-27 2016-12-01 John P. Fonseka Constrained interleaving for 5G wireless and optical transport networks
CN108345213B (zh) * 2017-12-04 2020-08-21 浙江大学 Mimo紧格式无模型控制器基于系统误差的参数自整定方法
CN108287471B (zh) * 2017-12-04 2020-10-09 浙江大学 Mimo偏格式无模型控制器基于系统误差的参数自整定方法
CN108154231B (zh) * 2017-12-12 2021-11-26 浙江大学 Miso全格式无模型控制器基于系统误差的参数自整定方法
CN108153151B (zh) * 2017-12-12 2020-10-09 浙江大学 Mimo全格式无模型控制器基于系统误差的参数自整定方法
CN108107715B (zh) * 2017-12-12 2020-06-09 浙江大学 Miso全格式无模型控制器基于偏导信息的参数自整定方法
CN108170029B (zh) * 2017-12-12 2020-10-09 浙江大学 Mimo全格式无模型控制器基于偏导信息的参数自整定方法

Also Published As

Publication number Publication date
CN111522233A (zh) 2020-08-11
US20200249642A1 (en) 2020-08-06
CN111522233B (zh) 2024-02-20
US11256221B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
CN109634108A (zh) 参数自整定的mimo异因子全格式无模型控制方法
CN109581864A (zh) 参数自整定的mimo异因子偏格式无模型控制方法
CN109782586B (zh) 参数自整定的miso异因子紧格式无模型控制方法
Xu et al. Iterative learning control with Smith time delay compensator for batch processes
Xiong et al. Neural network model-based on-line re-optimisation control of fed-batch processes using a modified iterative dynamic programming algorithm
CN109814379A (zh) Mimo异因子全格式无模型控制方法
CN109814389A (zh) 参数自整定的mimo异因子紧格式无模型控制方法
CN109782588A (zh) Mimo异因子紧格式无模型控制方法
CN104698842B (zh) 一种基于内点法的lpv模型非线性预测控制方法
CN105404144A (zh) 连续搅拌反应釜的多模型自适应控制方法及系统
Wen et al. Novel data-driven two-dimensional Q-learning for optimal tracking control of batch process with unknown dynamics
CN109814388B (zh) 参数自整定的miso异因子偏格式无模型控制方法
CN109581992B (zh) 参数自整定的miso异因子全格式无模型控制方法
CN106647250A (zh) 基于离线优化/在线查表方式的双层结构预测控制方法
CN109581865B (zh) Miso异因子偏格式无模型控制方法
CN111752152B (zh) Siso紧格式无模型控制器基于lstm神经网络的参数自整定方法
CN109814390B (zh) Miso异因子全格式无模型控制方法
CN109782587B (zh) Miso异因子紧格式无模型控制方法
CN114690628A (zh) 伪雅克比矩阵参数自整定的mimo紧格式无模型控制方法
CN111505937A (zh) 一种多模态下的工业过程改进模型预测容错控制方法
CN109634109A (zh) Mimo异因子偏格式无模型控制方法
CN112180716A (zh) 高阶滑模及电力负荷频率控制方法、装置、计算机设备和存储介质
Yu et al. Adaptive RBF model for model-based control
CN111781821B (zh) SISO紧格式无模型控制器基于Attention机制循环神经网络的参数自整定方法
CN112015083B (zh) Siso紧格式无模型控制器基于集成学习的参数自整定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190416

WD01 Invention patent application deemed withdrawn after publication