CN107500432B - 一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法 - Google Patents

一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法 Download PDF

Info

Publication number
CN107500432B
CN107500432B CN201710826524.XA CN201710826524A CN107500432B CN 107500432 B CN107500432 B CN 107500432B CN 201710826524 A CN201710826524 A CN 201710826524A CN 107500432 B CN107500432 B CN 107500432B
Authority
CN
China
Prior art keywords
bleaching powder
coagulation
industrial wastewater
catalytic oxidation
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710826524.XA
Other languages
English (en)
Other versions
CN107500432A (zh
Inventor
庄玉贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201710826524.XA priority Critical patent/CN107500432B/zh
Publication of CN107500432A publication Critical patent/CN107500432A/zh
Application granted granted Critical
Publication of CN107500432B publication Critical patent/CN107500432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明涉及一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,包括以下步骤:步骤S1:将取自印染厂的工业废水和絮凝剂、助凝剂加入反应器中,控制反应液的pH为5‑10,室温下搅拌并静置,分离出上层清液;步骤S2:在分离出的清液中加入漂白粉与镁盐催化剂,控制反应液的pH为5‑9,室温下搅拌,完成混凝与催化氧化处理过程。本发明在经过混凝处理后的难降解工业废水中投入漂白粉和镁盐催化剂,在常温常压下产生新生态氧原子,与水作用生成羟自由基,利用羟自由基的强氧化性深度氧化难以生物降解的有色有毒污染物,其中采用的镁盐催化剂价廉又绿色环保,且无需回收再生,能成倍提高漂白粉的氧化脱色速率和去除COD的氧化指数。

Description

一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法
技术领域
本发明涉及工业废水处理技术领域,采用混凝和漂白粉催化氧化联合处理方法,特别适合印染等一类难降解的工业废水。
背景技术
印染废水是我国水量最大的工业废水之一,其特点是水量大、污染重,含有偶氮类、苯胺类、蒽醌类、苯酚类、苯乙烯、双酚A和二氯苯氨等大量有毒有色物质,难降解,对自然水体的危害尤为明显。
印染废水以采用生物降解法为主,因为可以实现废水资源化,使污水的处理和利用一体化。但是却存在着设施占地面积大,处理周期长,易受季节、气温、光照等自然因素的影响使效果不稳定等不足之处,尤其是难降解的印染废水的处理效果不理想。
所以难降解的印染废水处理研究大多采用两种甚至多种方法联合,其中混凝法是最常用的联合步骤。因为印染废水中高色度、高毒性的染料如分散染料、直接染料、还原染料和硫化染料等多为疏水性的,混凝去除率较高。但活性染料、酸性染料、阳离子染料和中性染料等多为亲水性的,混凝去除率较低。
所以混凝法也常与深度氧化联用,常见的氧化剂有过氧化氢、臭氧、高锰酸钾、氯气、次氯酸盐和二氧化氯等。其中,过氧化氢、臭氧、二氧化氯等氧化性强,可以有效去除废水中的色、臭、味,杀菌效果也很好,但是它们除了成本较高以外,由于药剂稳定性差,增大了储存、运输和使用的难度,高锰酸钾则会增大出水和污泥中锰的残留。
这些氧化剂的催化氧化中使用的催化剂研究,如Fenton试剂等较少是均相的,而以多相催化最常见,存在催化剂制备成本高,用量大,需回收和再生等缺陷,难以推广使用。
选用漂白粉对印染废水进行氧化脱色、去除COD,具有价廉,固体药剂易于储存、运输和使用的优点,但有效氯较低,且氧化反应速率和处理效果均有待提高。因此需要筛选高效率、低成本、无需回收和再生的绿色环保型催化剂,才便于推广使用。同时,印染废水大多色度和COD高,仅用氧化处理的漂白粉用量大,除了成本被提高以外,常常引起出水pH过高,难以达到排放标准。所以提出与混凝联合的处理方法,此方法也适用于类似的难降解工业废水的处理。
发明内容
有鉴于此,本发明的目的是提出一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,该方法在混凝沉降去除部分COD和色度之后,再采用镁盐催化剂进一步催化漂白粉氧化去除剩余的污染物,能够有效提高反应速率和氧化指数,增强氧化效果。
本发明采用以下方案实现:一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,包括以下步骤:
步骤S1:将取自印染厂的工业废水和絮凝剂、助凝剂加入反应器中,控制反应液的pH为5-10,室温下搅拌15-60min,静置20-60min,分离出上层清液;
步骤S2:在分离出的清液中加入漂白粉与镁盐催化剂,控制反应液的pH为5-9,室温下搅拌10-60min,完成工业废水的混凝与催化氧化处理过程。
进一步地,所述的工业废水与絮凝剂的质量比为1000:0.1-3,絮凝剂与助凝剂聚丙烯酰胺的质量比为1000:1-50。
进一步地,所述的工业废水混凝后分离出的清液与漂白粉的质量比为1000:0.2-5,漂白粉与镁盐催化剂的质量比为1000:10-200。
进一步地,所述的工业废水为印染废水,也可以为类似的难降解的工业废水。
进一步地,所述的絮凝剂为Al2(SO4)3·18H2O和AlCl3中的一种或者两种按照任意比例的混合。
进一步地,所述的助凝剂为聚丙烯酰胺。
进一步地,所述镁盐催化剂为硫酸镁或氯化镁中的一种或者两种按照任意比例混合。
进一步地,所述步骤S1与步骤S2中的搅拌方式为机械搅拌和曝气搅拌中的一种或两种方式交替进行。
在本发明中,所述的工业废水为印染废水时,难生物降解的印染废水采用混凝-漂白粉催化氧化法的原理如下:印染废水大多色度和COD高,毒性大,影响生物降解效果,如果仅用漂白粉氧化处理,漂白粉的用量大,除了提高成本以外,常常引起出水pH过高,难以达到排放标准,因此采用混凝联合的处理方法。在所述步骤S1中,若在混凝去除印染废水的污染物中应用絮凝剂Al2(SO4)3·18H2O和助凝剂聚丙烯酰胺进行处理,能够实现印刷废水的固液分离。根据混凝机理,印刷废水中高色度、高毒性的染料如分散染料、直接染料、还原染料和硫化染料等多为疏水性的,混凝去除率较高,但活性染料、酸性染料、阳离子染料和中性染料等多为亲水性的,混凝去除率较低。因为这些胶粒的表面和水溶性有机污染物大多带有电荷,由于同性电荷之间的相互排斥而使得胶粒分散开来,不易凝聚成大颗粒沉淀下来。向水样中投加带高异性电荷的无机絮凝剂,起到压缩胶粒双电层,降低其电动电位作用,搅拌使胶粒和水溶性污染物相互接触、碰撞,聚集成拥有一定粒径的聚集体,此时高分子有机助凝剂能把这些聚集体通过吸附、架桥、裹挟等作用,进一步凝聚成絮状体,它在寻转、沉降过程中又吸附、卷扫了更多的悬浮和水溶性有机污染物,最终在重力的作用下而沉淀,达到固液分离的目的。在所述步骤S2中,在混凝后的印染废水澄清液的漂白粉氧化过程中,将含镁离子的镁盐作为催化剂添加到反应物中并进行搅拌,能有效促进其在常温常压下产生新生态氧原子,与水作用生成羟自由基,利用羟自由基的强氧化性深度氧化难以生物降解的有色有毒污染物,能够提高氧化反应速率和氧化指数,提高还原性污染物的氧化去除效率。
与现有技术相比,本发明有以下有益效果:
(1)与生物降解法比较,本发明采用混凝-催化氧化法,在经过混凝处理后的难降解工业废水中投入漂白粉和镁盐催化剂,并进行搅拌,在常温常压下产生新生态氧原子,与水作用生成羟自由基,利用羟自由基的强氧化性深度氧化难以生物降解的有色有毒污染物,反应过程快速直接,使出水达到国家二级排放标准;
(2)本发明采用镁盐催化剂,其用量小,催化效率高,能够将氧化指数提高到接近2,在室温下能成倍提高漂白粉的氧化脱色速率,出水CODCr比不加催化剂降低三分之一,同时该镁盐催化剂绿色无毒,无需回收和再生,成本低廉,小于0.1元/t废水;
(3)本发明的废水处理设施占地少,投资省,处理周期短,设施利用率高,且药剂总费用小于2元/t废水;
(4)本发明尤其适用于难生物降解的高毒性印染等工业废水。
附图说明
图1为本发明中催化氧化联合处理方法的流程示意图。
图2为本发明实施例中未加入催化剂的氧化反应历程图。
图3为本发明实施例中加入催化剂的催化氧化反应历程图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
如图1所示,本实施例提供了一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,包括以下步骤:
步骤S1:将取自印染厂的工业废水和絮凝剂、助凝剂加入反应器中,控制反应液的pH为5-10,室温下搅拌15-60min,静置20-60min,分离出上层清液;
步骤S2:在分离出的清液中加入漂白粉与镁盐催化剂,控制反应液的pH为5-9,室温下搅拌10-60min,完成工业废水的混凝与催化氧化处理过程。
在本实施例中,所述的工业废水与絮凝剂的质量比为1000:0.1-3,絮凝剂与助凝剂聚丙烯酰胺的质量比为1000:1-50。
在本实施例中,所述的工业废水混凝后分离出的清液与漂白粉的质量比为1000:0.2-5,漂白粉与镁盐催化剂的质量比为1000:10-200。
在本实施例中,所述的工业废水为印染废水,也可以为类似的难降解的工业废水。
在本实施例中,所述的絮凝剂为Al2(SO4)3·18H2O和AlCl3中的一种或者两种按照任意比例的混合。
在本实施例中,所述的助凝剂为聚丙烯酰胺。
在本实施例中,所述镁盐催化剂为硫酸镁或氯化镁中的一种或者两种按照任意比例混合。
在本实施例中,所述步骤S1与步骤S2中的搅拌方式为机械搅拌和曝气搅拌中的一种或两种方式交替进行。
在本实施例中,所述的工业废水为印染废水时,难生物降解的印染废水采用混凝-漂白粉催化氧化法的原理如下:印染废水大多色度和COD高,毒性大,影响生物降解效果,如果仅用漂白粉氧化处理,漂白粉的用量大,除了提高成本以外,常常引起出水pH过高,难以达到排放标准,因此采用混凝联合的处理方法。在所述步骤S1中,若在混凝去除印染废水的污染物中应用絮凝剂Al2(SO4)3·18H2O和助凝剂聚丙烯酰胺进行处理,能够实现印染废水的固液分离。根据混凝机理,印染废水中高色度、高毒性的染料如分散染料、直接染料、还原染料和硫化染料等多为疏水性的,混凝去除率较高。但活性染料、酸性染料、阳离子染料和中性染料等多为亲水性的,混凝去除率较低。因为这些胶粒的表面和水溶性有机污染物大多带有电荷,由于同性电荷之间的相互排斥而使得胶粒分散开来,不易凝聚成大颗粒沉淀下来。向水样中投加带高异性电荷的无机絮凝剂,起到压缩胶粒双电层,降低其电动电位作用,搅拌使胶粒和水溶性污染物相互接触、碰撞,吸附、聚集成拥有一定粒径的聚集体,此时高分子有机助凝剂能把这些聚集体通过吸附、架桥、裹挟等作用,进一步凝聚成絮状体,它在寻转、沉降过程中又吸附、卷扫了更多的悬浮和水溶性有机污染物,最终在重力的作用下而沉淀,达到固液分离的目的。在所述步骤S2中,在混凝后的印染废水澄清液的漂白粉氧化过程中将含镁离子的镁盐作为催化剂添加到反应物中并进行搅拌,能有效促进其在常温常压下产生新生态氧原子,与水作用生成羟自由基,利用羟自由基的强氧化性深度氧化难以生物降解的有色有毒污染物,能够提高氧化反应速率和氧化指数,增强还原性污染物的氧化去除效率。
其中,镁盐催化剂的催化机理具体如下:镁离子催化漂白粉氧化的机理较复杂,既有根据过渡态理论的活化络合物中间体形成(如图2和图3所示),又有游离基的参与。将图2和图3进行对比,加催化剂后,如图3所示,各活化络合物能量均有所增加,同时反应物和产物的总能量也有增加;其中,E1为反应物能量,E为加入催化剂使体系增加的能量,Ea为未加催化剂的活化能,Ea’为未加催化剂的逆反应活化能,Ea为加入催化剂后的活化能,A为催化剂,CnHm为有机污染物,Cl…O…CnHm为ClO-与CnHm的活化络合物(以此类推)。
因为漂白粉的有效成分是次氯酸钙,其游离基漂白理论认为,次氯酸钙与酸反应产生有漂白性次氯酸,而次氯酸在光照或催化剂作用下能分解产生氧自由基[O],进而与水反应形成同样活泼性很强的羟自由基[HO],反应式如下:
Ca(ClO)2+2H+=Ca2++2HClO
HClO→H++Cl-+[O]
[O]+H2O→[HO]
当有带正电荷的催化剂Mg2+存在时,根据正离子对酸根的反极化理论,所筛选的Mg2+催化剂极化能力比漂白粉中的Ca2+强,可在常温常压下促使次氯酸根的Cl-O键被松动的程度加大,形成稳定性更差的活化络合物,加快其分解,既降低了催化氧化反应的活化能(图3中由于反应历程的改变,决定催化氧化正反应速率的最大活化能是Ea2,比图2中决定无催化的氧化正反应速率的最大活化能Ea小),又可以促进氧自由基[O]和氧化电位高达2.80V羟自由基[HO]的生成,在羟自由基[HO]的强氧化作用及随之产生的各种活性自由基的链式反应中,使废水中的有机物得以氧化,从而加快了氧化速率,同时还打破了氧化剂与还原剂间的电荷平衡,使用COD降低值与氧化剂的耗氧量比值来表示的氧化指数提高到接近2,即少量漂白粉就能降解超量的COD,表现出氧化速率的加快和氧化效率的提高。
根据以上步骤给出如下几个实施例进行具体说明:
实施例1
一、将取自印染厂的印染废水和絮凝剂、助凝剂加入反应器中,控制反应液的pH为9,室温下搅拌30min,静置30min,分离出上层清液;其中,印染废水与絮凝剂Al2(SO4)3·18H2O的质量比为1000:0.4、絮凝剂Al2(SO4)3·18H2O与助凝剂聚丙烯酰胺(PAM)的质量比为400:1;
二、取步骤一的上层清液测定色度去除率,结果列入表1。
实施例2
实施例2与实施例1的不同之处为:絮凝剂Al2(SO4)3·18H2O与助凝剂聚丙烯酰胺(PAM)按质量比400:2加入反应器中。
实施例3
实施例3与实施例1的不同之处为:絮凝剂Al2(SO4)3·18H2O与助凝剂聚丙烯酰胺(PAM)按质量比400:3加入反应器中。
实施例4
实施例4与实施例1的不同之处为:印染废水和絮凝剂Al2(SO4)3·18H2O按质量比1000:0.5,絮凝剂Al2(SO4)3·18H2O与助凝剂聚丙烯酰胺(PAM)按质量比500:1加入反应器中。
实施例5
实施例5与实施例1的不同之处为:印染废水和絮凝剂Al2(SO4)3·18H2O按质量比1000:0.5,絮凝剂Al2(SO4)3·18H2O与助凝剂聚丙烯酰胺(PAM)按质量比500:2加入反应器中4。
实施例6
实施例6与实施例1的不同之处为:印染废水和絮凝剂Al2(SO4)3·18H2O按质量比1000:0.5,絮凝剂Al2(SO4)3·18H2O与助凝剂聚丙烯酰胺(PAM)按质量比500:3加入反应器中。
实施例7
实施例7与实施例1的不同之处为:印染废水与絮凝剂AlCl3按质量比1000:0.2,絮凝剂AlCl3与助凝剂聚丙烯酰胺(PAM)按质量比100:1加入反应器中。
表1印染废水混凝结果
Figure BDA0001407638520000071
实施例8
一、印染废水和絮凝剂Al2(SO4)3·18H2O按质量比1000:0.4,絮凝剂Al2(SO4)3·18H2O与助凝剂聚丙烯酰胺(PAM)按质量比400:2加入反应器中,控制pH为9,室温下搅拌30min,静置30min,分离出上层清液;
二、按混凝后清液与漂白粉质量比为1000:0.4加入漂白粉,按漂白粉与硫酸镁质量比为10:1加入硫酸镁,控制反应液的pH为6,室温下搅拌30min;
三、取步骤二的溶液测定色度去除率,结果列入表2。
实施例9
实施例9与实施例8的不同之处为:漂白粉与硫酸镁质量比为10:2,控制反应液的pH为7。
实施例10
实施例10与实施例8的不同之处为:漂白粉与硫酸镁质量比为10:4,控制反应液的pH为8。
实施例11
实施例11与实施例8的不同之处为:清液与漂白粉质量比为1000:1,漂白粉与硫酸镁质量比为100:4,控制反应液的pH为7。
实施例12
实施例12与实施例8的不同之处为:清液与漂白粉质量比为1000:1,漂白粉与硫酸镁质量比为100:8,控制反应液的pH为8。
实施例13
实施例13与实施例8的不同之处为:清液与漂白粉质量比为1000:1,漂白粉与硫酸镁质量比为100:16,控制反应液的pH为6。
实施例14
实施例14与实施例8的不同之处为:清液与漂白粉质量比为1000:1.6,漂白粉与硫酸镁质量比为40:1,控制反应液的pH为8。
实施例15
实施例15与实施例8的不同之处为:清液与漂白粉质量比为1000:1.6,漂白粉与硫酸镁质量比为40:2,控制反应液的pH为6。
实施例16
实施例16与实施例8的不同之处为:清液与漂白粉质量比为1000:1.6,控制反应液的pH为7。
实施例17
实施例17与实施例8的不同之处为:按漂白粉与氯化镁质量比为10:0.8。
实施例18(对照实施例1)
对比实施例1的不同之处为:不加硫酸镁催化剂,控制反应液的pH为6。
表2混凝后清液催化氧化结果
Figure BDA0001407638520000081
Figure BDA0001407638520000091
测定CODCr
选取下列四组水样测定CODCr,结果列入表3:
(1)未经处理的印染废水;
(2)絮凝后的印染废水清液;
(3)不加催化剂只加100mg/L漂白粉处理的印染废水混凝后清液;
(4)最佳条件即加入80mg/L硫酸镁,100mg/L漂白粉处理的pH为6的印染废水混凝后清液。
表3四组水样的CODCr测定结果
实验号 1(原印染废水) 2(絮凝后) 3(不加催化剂) 4(加催化剂)
COD<sub>Cr</sub>(mg/L) 592 333 93 70
脱色速率测定:
实施例18(对照实施例1),控制反应液的pH为6,室温下搅拌反应,每5min取反应液一份,4000r/min离心2min,取上层清液测定色度去除率,结果列入表4。
按实施例12加漂白粉与硫酸镁,控制反应液的pH为6,每5min取反应液一份,4000r/min离心2min,取上层清液测定色度去除率,结果列入表4。
表4pH=6时的催化氧化脱色速率
Figure BDA0001407638520000092
Figure BDA0001407638520000101
由表4可以看出,pH=6时加了催化剂A后,5min的脱色率已超过不加催化剂的30min效果,且加了催化剂A在15min脱色率即达到最高,而不加催化剂的脱色率需25min以上才达到最高,可见催化剂的催化氧化脱色全程速率提高了近一倍,前期(5min)催化氧化脱色速率提高5倍以上。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,其特征在于:包括以下步骤:
步骤S1:将工业废水和絮凝剂、助凝剂加入反应器中,控制反应液的pH为5-10,室温下搅拌15-60min,静置20-60min,分离出上层清液;
步骤S2:在分离出的清液中加入漂白粉与镁盐催化剂,控制反应液的pH为5-9,室温下搅拌10-60min,完成工业废水的混凝与催化氧化处理过程;
漂白粉与镁盐催化剂的质量比为1000:10-200;
所述的工业废水为印染废水;
所述的工业废水混凝后分离出的清液与漂白粉的质量比为1000:0.2-5;
所述镁盐催化剂为硫酸镁或氯化镁中的一种或者两种按照任意比例混合。
2.根据权利要求1所述的一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,其特征在于:所述的工业废水与絮凝剂的质量比为1000:0.1-3,絮凝剂与助凝剂的质量比为1000:1-50。
3.根据权利要求1所述的一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,其特征在于:所述的絮凝剂为Al2(SO4)3·18H2O和AlCl3中的一种或者两种按照任意比例的混合。
4.根据权利要求1所述的一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,其特征在于:所述助凝剂为聚丙烯酰胺。
5.根据权利要求1所述的一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法,其特征在于:所述步骤S1与步骤S2中的搅拌方式为机械搅拌和曝气搅拌中的一种或两种方式交替进行。
CN201710826524.XA 2017-09-14 2017-09-14 一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法 Active CN107500432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710826524.XA CN107500432B (zh) 2017-09-14 2017-09-14 一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710826524.XA CN107500432B (zh) 2017-09-14 2017-09-14 一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法

Publications (2)

Publication Number Publication Date
CN107500432A CN107500432A (zh) 2017-12-22
CN107500432B true CN107500432B (zh) 2021-02-09

Family

ID=60696550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710826524.XA Active CN107500432B (zh) 2017-09-14 2017-09-14 一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法

Country Status (1)

Country Link
CN (1) CN107500432B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3495420B2 (ja) * 1994-05-10 2004-02-09 三菱重工業株式会社 着色廃水の処理方法
US7927510B2 (en) * 2007-04-20 2011-04-19 Arch Chemicals, Inc. Calcium hypochlorite compositions comprising zinc salts and lime
CN101327984A (zh) * 2008-07-15 2008-12-24 南通立源水处理技术有限公司 多效除污染净水剂及其应用方法
CN102745786A (zh) * 2011-11-17 2012-10-24 王树宽 煤焦油生产中的污水处理剂
CN103755061B (zh) * 2013-12-30 2015-02-25 广西利达磷化工有限公司 一种磷酸、磷酸盐生产废水的综合利用方法
CN106396075A (zh) * 2016-10-27 2017-02-15 华中科技大学 一种利用次氯酸钠催化降解有机废水的方法
CN106517589A (zh) * 2016-12-07 2017-03-22 云南大地绿坤环保科技有限公司 一种亚氨基二乙腈废液的解毒及脱色方法

Also Published As

Publication number Publication date
CN107500432A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
CN102701496B (zh) 一种用于处理高浓度难降解有机废水的工艺
CN103991987B (zh) 一种预处理高磷废水去除总磷的工艺及其工艺系统
CN101698530B (zh) Fenton反应处理废水方法
CN109292933B (zh) 一种用于污水处理中具备氧化和絮凝复合功能的cod去除剂
CN106554126B (zh) 一种反渗透浓水深度达标处理方法及系统
CN111943447B (zh) 一种印染废水的处理工艺
CN102464440B (zh) 一种将物化生化混合污泥减量的方法
CN109368849A (zh) 一种畜禽养殖废水的深度脱色工艺
Rashid et al. COMBINATION OF OXIDATION AND COAGULATION PROCESSES FOR WASTEWATER DECONTAMINATION ON BATCH SCALE.
CN102107942B (zh) 一种化学机械研磨废液的处理方法
CN111018169B (zh) 一种氰氟复合污染废水深度处理方法
CN1611454A (zh) 光氧化絮凝处理有机污染物废水的方法
CN101148299A (zh) 玻璃纤维工业废水治理方法
CN107500432B (zh) 一种难降解工业废水的混凝和漂白粉催化氧化联合处理方法
CN109160674B (zh) 一种含乳化液废水的净化方法
CN109704510B (zh) 一种垃圾渗滤液生化出水深度处理工艺
CN216764640U (zh) 赤泥渗滤液生化处理系统
CN1636892A (zh) 一种组合工艺处理扑热息痛高浓度、高色度废水的方法
WO1994013591A1 (en) Process for treating waste water
CN108862870A (zh) 一种印染废水处理方法
KR20010068172A (ko) 전기 분해를 이용한 펜턴 산화 처리의 폐수 처리 장치 및공법
CN114426324A (zh) 一种复合絮凝剂和处理含苯并(a)芘废水的方法及装置
CN113582463A (zh) 一种高矿化度压裂返排液的直排处理方法
CN113321340A (zh) 高级氧化耦合去油剂处理含油油墨废水的方法
KR100541844B1 (ko) 복합 공정에 의한 염색폐수 처리방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant