CN107445595A - 利用微波烧结制备刚玉磨料的方法 - Google Patents

利用微波烧结制备刚玉磨料的方法 Download PDF

Info

Publication number
CN107445595A
CN107445595A CN201710568608.8A CN201710568608A CN107445595A CN 107445595 A CN107445595 A CN 107445595A CN 201710568608 A CN201710568608 A CN 201710568608A CN 107445595 A CN107445595 A CN 107445595A
Authority
CN
China
Prior art keywords
corundum abrasive
microwave sintering
abrasive
base substrate
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710568608.8A
Other languages
English (en)
Inventor
杨子
尹青亚
边华英
张梦真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Building Material Research And Design Institute Co Ltd
Original Assignee
Henan Building Material Research And Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Building Material Research And Design Institute Co Ltd filed Critical Henan Building Material Research And Design Institute Co Ltd
Priority to CN201710568608.8A priority Critical patent/CN107445595A/zh
Publication of CN107445595A publication Critical patent/CN107445595A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本发明公开了一种利用微波烧结制备刚玉磨料的方法,属磨料制备技术领域。按总重量计,其原料组成及重量百分比含量为:Al2O3 95~98%,SiO2 0.5~2.5%,MgO 0.5~1%,TiO2 0.2~1%,MnO2 0.2~1%,CuO 0.1~1%。该方法将上述配料进行混合、成型、破碎、筛分、分级、排胶等工艺,再将排胶后的坯体颗粒置于SiC坩埚中,以10~20℃/min升温至1300~1500℃保温5~30min进行微波烧结,得到刚玉磨料。该方法可大幅降低刚玉磨料的生产能耗,而坯体颗粒相互接触,颗粒之间空隙较小,可快速消除烧结体的温度梯度,大幅缩短烧成时间,提高刚玉磨料的烧成质量。

Description

利用微波烧结制备刚玉磨料的方法
技术领域
本发明涉及磨料制备技术领域,特别是涉及一种刚玉磨料的制备方法。
背景技术
磨料是在机械加工中用于磨削、研磨和抛光的材料,广泛应用在机械、轻工、化工、军工、电子、建筑、运输等领域,在现代工业的发展中起着非常重要的作用。磨料的种类繁多,根据其产出方式分为天然磨料和人造磨料两类,人造磨料的性能可通过控制组分、添加助剂等方法进行调控,因此应用范围较广。人造磨料大致可分为刚玉磨料、碳化硅磨料、金刚石磨料、立方氮化硼磨料等,刚玉磨料是其中的一大类,因其生产原料来源广、生产工艺成熟、硬度大、机械强度高、抗破碎性强、化学稳定性和热稳定性好、价格便宜等原因在磨料市场中占有较大份额。
目前刚玉磨料的生产工艺主要采用电熔法。电熔法采用在电弧炉中对氧化铝进行冶炼,利用电弧炉产生的高温使氧化铝熔融,再经过降温冷却、破碎、分级,最终生产出不同粒径及用途的刚玉磨料。刚玉磨料的主要化学成分为α-Al2O3,α-Al2O3正负离子的键力很强,是所有氧化铝中最稳定的物相,其在拥有优良力学性能的同时,在宏观特征上还表现为高熔点(达2050℃),使用电熔法生产刚玉磨料的熔融温度要高达2200℃,因此,使用该法生产刚玉磨料的能耗较高;电熔法又由于经过熔融工艺,得到的刚玉磨料的一次晶体较大,在磨削的过程中磨粒以晶间断裂为主要的破坏形式,因此,该法生产的刚玉磨料的磨削效率较低。
微波烧结是一种使用微波来对材料进行加热烧结的方法,其利用微波特殊波段与烧结材料结构的耦合产生热量,可实现材料内部的零梯度均匀加热,使材料本体加热至烧结温度而实现致密化,可有效改善材料的微观结构及产品的均匀性。由于微波可以被烧结材料直接吸收并通过介质损耗转化为热能,所以微波烧结法的能量利用率极高;当温度高于临界温度,某些材料的损耗因子随温度的升高而迅速增大,导致这些材料升温极快,因此,微波烧结法是一种升温速度快、加热效率高、能耗低、无污染的烧结方法,但该法对烧结物质有一定的选择性。
发明内容
本发明的目的是提供一种刚玉磨料的微波烧结制备方法,用以降低生产刚玉磨料所需的能耗,提高刚玉磨料的烧结质量。
本发明所采用的技术方案是:
一种刚玉磨料,按总重量计,其原料组成及重量百分比含量为: Al2O3 95~98%, SiO2 0.5~2.5%, MgO 0.5~1%, TiO2 0.2~1%, MnO2 0.2~1%, CuO 0.1~1%。
本发明刚玉磨料的微波烧结方法步骤为:按上述原料配比以湿法球磨法混合均匀并烘干,向混合料中加入聚乙烯醇( PVA )粘合剂进行造粒,在压力机上成型为坯体,将成型的坯体进行破碎、筛分、分级并于500-600℃进行排胶,将排胶后的坯体颗粒置于SiC坩埚中,再放入莫来石保温罩,然后在微波烧结炉中进行阶梯升温微波烧结,最后经过进一步筛分、分级制得刚玉磨料。
所述的成型压力为60~120MPa,保压时间为3~10min。
所述的筛分目数为40~120目,优选40-60目。
所述的SiC坩埚内壁有α-Al2O3涂层。
所述的微波烧结为以15~20℃/min进行升温,升温至1100℃再以10~15℃/min进行升温,升温至1300~1500℃进行保温,保温时间为5~30min。
所述聚乙烯醇的加入量为1g混合料加入1滴PVA溶液(质量百分浓度4%-5%)。
在本发明中影响刚玉磨料烧结质量的关键因素在于:使用微波烧结方法和控制刚玉磨料坯体大小。微波烧结法是一种高效的烧成方法,可有效减少刚玉磨料的烧成时间;而小的磨料坯体所含物料少,内部空隙等缺陷较少,组织结构相对均匀,使微波烧结用时更短,可防止刚玉磨料晶粒的异常长大,减少刚玉磨料内部缺陷。
与现有技术相比,本发明的有益效果是:
(1)采用微波烧结法制备刚玉磨料,可在较低的烧结温度和较短的烧成时间下,得到较致密的刚玉磨料,可大幅降低刚玉磨料的生产能耗。
(2)在微波烧结的过程中,由于烧结体是体加热,烧结体的温度要高于烧结室内空气的温度,因此,烧结体的温度梯度为由内向外。当采用坯体颗粒进行烧结,各个颗粒间相互接触,颗粒堆积造成的颗粒间空隙也较小,加热过程中,颗粒间的空隙温度可较快地达到颗粒温度,快速消除了烧结体的温度梯度,减小烧结体在烧结过程中的热量流失,可进一步缩短烧成时间,提高刚玉磨料的烧成质量。
(3)使用微波法烧结Al2O3,通常需要引入如SiC等的低温辅助加热材料。本发明直接采用SiC坩埚作为微波烧结刚玉磨料的盛具,在低温升温过程中直接起到辅助加热的作用,而SiC坩埚内壁的α-Al2O3涂层可防止高温烧结阶段SiC对磨料的黏附污染。
具体实施方式
为对本发明进行更好地说明,举实施例如下:
实施例1
以水为球磨介质,按总重量计,将重量百分比为Al2O3 95%、SiO2 2.5%、MgO 1%、TiO2 0.5%、MnO2 0.5%、CuO 0.5%进行球磨混合,球磨转速为400r/min,球磨时间为8h。将球磨混合物于110℃保温10h进行烘干,在烘干后的混合物中以1滴/g的量加入质量浓度为4%的PVA粘合剂进行造粒,然后在压片机上进行成型,成型压力为80MPa,保压时间为5min。将压制成型的坯体进行破碎、筛分和分级,取100~120目间的坯体颗粒放入高温炉于500℃保温30min进行排胶,将经过排胶的坯体颗粒置于内壁有α-Al2O3涂层的SiC坩埚,再放入莫来石保温罩,然后放入微波烧结炉中,以20℃/min进行升温,升温至1100℃再以15℃/min进行升温,升温至1300℃进行保温,保温时间为5min。将微波烧结后的颗粒进行进一步地筛分、分级制得刚玉磨料。所得刚玉磨料的单颗粒抗压强度为31.7N。
100~120目间的坯体颗粒,按等径球体立方最疏堆积,其颗粒间空隙最大直径为0.11mm,空隙率为47.64%;按等径球体立方最密堆积,其颗粒间空隙最大直径为0.03mm,空隙率为25.95%。
实施例2
以水为球磨介质,按总重量计,将重量百分比为Al2O396%、SiO22%、MgO1%、TiO20.4%、MnO20.4%、CuO0.2%进行球磨混合,球磨转速为400r/min,球磨时间为8h。将球磨混合物于110℃保温10h进行烘干,在烘干后的混合物中以1滴/g的量加入质量浓度为4%的PVA粘合剂进行造粒,然后在压片机上进行成型,成型压力为60MPa,保压时间为10min。将压制成型的坯体进行破碎、筛分和分级,取80~100目间的坯体颗粒放入高温炉于600℃保温30min进行排胶,将经过排胶的坯体颗粒置于内壁有α-Al2O3涂层的SiC坩埚,再放入莫来石保温罩,然后放入微波烧结炉中,以20℃/min进行升温,升温至1100℃再以15℃/min进行升温,升温至1400℃进行保温,保温时间为10min。将微波烧结后的颗粒进行进一步地筛分、分级制得刚玉磨料。所得刚玉磨料的单颗粒抗压强度为38.4N。80~100目间的坯体颗粒,按等径球体立方最疏堆积,其颗粒间空隙最大直径为0.13mm,空隙率为47.64%;按等径球体立方最密堆积,其颗粒间空隙最大直径为0.04mm,空隙率为25.95%。
实施例3
以水为球磨介质,按总重量计,将重量百分比为Al2O3 98%、SiO2 1%、MgO 0.5%、TiO2 0.2%、MnO2 0.2%、CuO 0.1%进行球磨混合,球磨转速为400r/min,球磨时间为8h。将球磨混合物于110℃保温10h进行烘干,在烘干后的混合物中以1滴/g的量加入质量浓度为4%的PVA粘合剂进行造粒,然后在压片机上进行成型,成型压力为120MPa,保压时间为3min。将压制成型的坯体进行破碎、筛分和分级,取40~60目间的坯体颗粒放入高温炉于600℃保温30min进行排胶,将经过排胶的坯体颗粒置于内壁有α-Al2O3涂层的SiC坩埚,再放入莫来石保温罩,然后放入微波烧结炉中,以15℃/min进行升温,升温至1100℃再以10℃/min进行升温,升温至1450℃进行保温,保温时间为30min。将微波烧结后的颗粒进行进一步地筛分、分级制得刚玉磨料。所得刚玉磨料的单颗粒抗压强度为49.3N。40~60目间的坯体颗粒,按等径球体立方最疏堆积,其颗粒间空隙最大直径为0.28mm,空隙率为47.64%;按等径球体立方最密堆积,其颗粒间空隙最大直径为0.08mm,空隙率为25.95%。
与电熔法相比,技术指标对比:电熔刚玉磨料的抗压强度低于20N,而实施例中刚玉磨料的抗压强度均在30N以上;电熔法生产白刚玉单位耗电为1650~1850kW·h/t,而使用微波烧结法生产刚玉磨料单位耗电低于150kW·h/t,可显著降低生产能耗。

Claims (4)

1.一种利用微波烧结制备刚玉磨料的方法,其特征在于:按总重量计,其原料组成及重量百分比含量为: Al2O3 95~98%, SiO2 0.5~2.5%, MgO 0.5~1%, TiO2 0.2~1%, MnO2 0.2~1%, CuO 0.1~1%;按上述原料配比,以湿法球磨法混合均匀并烘干,向混合料中加入聚乙烯醇粘合剂进行造粒,在压力机上成型为坯体,将成型的坯体进行破碎、40~120目筛分、分级并于500-600℃进行排胶,将排胶后的坯体颗粒置于SiC坩埚中,再放入莫来石保温罩,然后在微波烧结炉中进行阶梯升温微波烧结,最后经过进一步筛分、分级制得刚玉磨料;
所述阶梯升温微波烧结条件:以15~20℃/min进行升温,升温至1100℃再以10~15℃/min进行升温,升温至1300~1500℃进行保温,保温时间为5~30min。
2.根据权利要求1所述的利用微波烧结制备刚玉磨料的方法,其特征在于:在压力机上成型为坯体,成型压力为60~120MPa,保压时间为3~10min。
3.根据权利要求1所述的利用微波烧结制备刚玉磨料的方法,其特征在于:筛分目数为40-60目。
4.根据权利要求1-3其中之一所述的利用微波烧结制备刚玉磨料的方法,其特征在于:SiC坩埚内壁有α-Al2O3涂层。
CN201710568608.8A 2017-07-13 2017-07-13 利用微波烧结制备刚玉磨料的方法 Pending CN107445595A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710568608.8A CN107445595A (zh) 2017-07-13 2017-07-13 利用微波烧结制备刚玉磨料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710568608.8A CN107445595A (zh) 2017-07-13 2017-07-13 利用微波烧结制备刚玉磨料的方法

Publications (1)

Publication Number Publication Date
CN107445595A true CN107445595A (zh) 2017-12-08

Family

ID=60487937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710568608.8A Pending CN107445595A (zh) 2017-07-13 2017-07-13 利用微波烧结制备刚玉磨料的方法

Country Status (1)

Country Link
CN (1) CN107445595A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109227410A (zh) * 2018-09-27 2019-01-18 河南工业大学 一种cBN复合磨料及其制造方法
CN109227411A (zh) * 2018-09-27 2019-01-18 河南工业大学 一种环保树脂钹型砂轮
CN110202488A (zh) * 2019-05-10 2019-09-06 广东家美陶瓷有限公司 瓷质陶瓷颗粒水刀砂及其制备方法
CN110395973A (zh) * 2019-08-12 2019-11-01 江苏耐锐特磨料磨具股份有限公司 一种陶瓷磨料
CN113603472A (zh) * 2021-08-17 2021-11-05 杭州电子科技大学 一种基于LTCC技术的NiCuZn铁氧体制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833392A (zh) * 2014-01-03 2014-06-04 浙江自立氧化铝材料科技有限公司 一种烧结刚玉的制备方法
CN105000870A (zh) * 2015-06-26 2015-10-28 湖南仁海科技材料发展有限公司 一种刚玉复合陶瓷材料微波干燥方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833392A (zh) * 2014-01-03 2014-06-04 浙江自立氧化铝材料科技有限公司 一种烧结刚玉的制备方法
CN105000870A (zh) * 2015-06-26 2015-10-28 湖南仁海科技材料发展有限公司 一种刚玉复合陶瓷材料微波干燥方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
华勇等: "《磨料磨具导论》", 30 September 2004, 北京:中国标准出版社 *
李永存著: "《微波快速烧结微结构演化机理的在线实验研究》", 30 June 2016, 山西科学技术出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109227410A (zh) * 2018-09-27 2019-01-18 河南工业大学 一种cBN复合磨料及其制造方法
CN109227411A (zh) * 2018-09-27 2019-01-18 河南工业大学 一种环保树脂钹型砂轮
CN110202488A (zh) * 2019-05-10 2019-09-06 广东家美陶瓷有限公司 瓷质陶瓷颗粒水刀砂及其制备方法
CN110395973A (zh) * 2019-08-12 2019-11-01 江苏耐锐特磨料磨具股份有限公司 一种陶瓷磨料
CN113603472A (zh) * 2021-08-17 2021-11-05 杭州电子科技大学 一种基于LTCC技术的NiCuZn铁氧体制备方法
CN113603472B (zh) * 2021-08-17 2023-02-28 杭州电子科技大学 一种基于LTCC技术的NiCuZn铁氧体制备方法

Similar Documents

Publication Publication Date Title
CN107445595A (zh) 利用微波烧结制备刚玉磨料的方法
CN107935575B (zh) 高纯低蠕变电熔莫来石砖及其制备方法
CN106365651B (zh) 球形骨料增强耐火材料的制备方法
CN106904950A (zh) 一种低温烧结的95氧化铝陶瓷材料
CN100439289C (zh) 采用超高温竖窑生产烧结板状刚玉的工艺方法
CN108727009A (zh) 一种透光性强的高白度陶瓷制品及其制造工艺
CN103624696A (zh) 陶瓷结合剂、制备方法及陶瓷结合剂磨具的制造方法
CN103482665A (zh) 一种高纯球形α-Al2O3的制备方法
CN107793128A (zh) 低膨胀陶瓷坯料及其制备方法和应用
CN110202131A (zh) 一种金刚石制品的制备方法
CN106116579A (zh) 一种高强度金刚石基陶瓷复合材料
CN108395220A (zh) 一种氧化铝-氧化锆耐磨复相陶瓷材料的制备方法
CN104744051B (zh) 一种氮化硅坩埚的制作方法
CN105481347B (zh) 一种特种陶瓷材料及其制备方法
CN109627014A (zh) 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法
CN105859297B (zh) 一种碳化硅复合耐火材料及其制备方法
CN104446459B (zh) 用于钨钼烧结中频炉的氧化锆空心球隔热制品的制备方法
CN107021764A (zh) 高温硅线石砖及其生产方法
CN106830936A (zh) 一种低温高强度金刚石基微晶玻璃复合材料
CN106396696B (zh) 莫来石球形骨料增强耐火材料的制备方法
CN114538920B (zh) 一种高韧性高硬度锆镧铝复合磨介的制备方法
CN101007741A (zh) 一种匣钵及其生产方法
CN105418056A (zh) 一种铁尾矿耐磨砂基透水砖及其制作方法
JPH11269302A (ja) 樹脂製品の熱伝導性向上用充填剤及びその製造方法
CN105272288B (zh) 微波高温专用保温耐火材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171208

RJ01 Rejection of invention patent application after publication