CN107442179A - 一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法 - Google Patents

一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN107442179A
CN107442179A CN201710667556.XA CN201710667556A CN107442179A CN 107442179 A CN107442179 A CN 107442179A CN 201710667556 A CN201710667556 A CN 201710667556A CN 107442179 A CN107442179 A CN 107442179A
Authority
CN
China
Prior art keywords
chitosan
zno
magnetics
rectorite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710667556.XA
Other languages
English (en)
Other versions
CN107442179B (zh
Inventor
李世迁
周晓艳
陈盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN MELTS SPRINGS DTC Co.,Ltd.
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201710667556.XA priority Critical patent/CN107442179B/zh
Publication of CN107442179A publication Critical patent/CN107442179A/zh
Application granted granted Critical
Publication of CN107442179B publication Critical patent/CN107442179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法,其是将壳聚糖的醋酸水溶液加入到FeCl3•6H2O 和FeSO4•7H2O的混合溶液中,并加入NaOH溶液,使反应液呈弱碱性,而制得磁性壳聚糖复合材料;再在搅拌条件下逐滴加入Zn(NO3)2溶液及氨水,反应制成ZnO/磁性壳聚糖复合材料;最后将该复合材料再加入到累托石的悬浮液中,制得ZnO/磁性壳聚糖/累托石复合材料。本发明所得复合材料可有效吸附和光催化降解去除水中染料等有机污染物,适用于废水处理,且其反应条件温和,工艺简单,制备过程易控制,在常压下即可制备,具有良好的应用前景。

Description

一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法
技术领域
本发明属于磁性吸附光催化材料制备技术领域,具体涉及一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法。
背景技术
纳米ZnO作为一种新型的半导体材料,具有明显的表面效应和尺寸量子化效应,更被证实在某些实验条件下具有比TiO2更高的催化性能,近年来引起人们的广泛关注,而相较于TiO2较高的制备成本,纳米ZnO在污染物光催化去除方面也已显示出更良好的应用前景。壳聚糖是自然界中唯一的可再生碱性多糖,具有较好的成膜性、热稳定性和良好吸附性,故可用作催化剂载体。累托石是一种特殊的层状黏土矿物材料,其价格低廉。
基于半导体、磁性四氧化三铁、壳聚糖和累托石优良的性质,针对单一半导体光催化剂催化效率低、可见光利用效率低、负载及分离回收困难等特点,本发明通过对纳米ZnO进行改性,并采用溶胶-凝胶和沉淀法将半导体催化剂(ZnO)与磁性壳聚糖和累托石共同制备成纳米复合材料,既可提高ZnO应用的可见光范围,使其在可见光下具有较高的光催化活性,又可利用磁性壳聚糖良好的吸附性在满足特定理化性能要求的条件下将ZnO均匀牢固地负载于载体上,以实现半导体的有机固载化,增加催化剂与有机污染物的充分接触,提高其吸附性能及光催化作用的效率,推动其在实际废水处理中的应用。
发明内容
本发明的目的在于提供一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法,其不仅实现了纳米ZnO的负载改性,并以低廉易得的累托石和结构性能独特的磁性壳聚糖为载体,制备出ZnO/磁性壳聚糖/累托石纳米复合材料,该复合材料可吸附和光催化降解去除水中染料等有机污染物,在实际废水的处理中具有良好的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种ZnO/磁性壳聚糖/累托石纳米复合材料的制备方法,其包括以下步骤:
1)壳聚糖溶液的配制:称取2 g壳聚糖加入到体积浓度1%的醋酸水溶液中,常温搅拌3-4 h至完全溶解,即得到壳聚糖溶液;
2)磁性壳聚糖的制备:按Fe3+与Fe2+的摩尔比为1:1取FeCl3•6H2O和FeSO4•7H2O配成铁离子总质量浓度为15~18 %的铁盐溶液,在搅拌条件下加入2~3 mL表面活性剂OP-10,然后在剧烈搅拌下加入质量浓度为25%的浓氨水,以调整pH值至8~9,产生大量黑色沉淀后继续搅拌15 min,然后将水浴锅的温度升至60 ℃,并在此温度下陈化3 h后,用恒压滴液漏斗以3 mL·min-1的速率逐滴加入步骤1)配制好的壳聚糖溶液,滴加完毕后继续反应5~6 h;反应结束后磁分离,分别用蒸馏水、无水乙醇洗涤3次,经真空干燥即得到磁性壳聚糖;
3)ZnO/磁性壳聚糖复合材料的制备:称取0.2065 g磁性壳聚糖于130 mL蒸馏水中,超声分散30 min后转移至40 ℃恒温水浴锅中,在电动搅拌器的搅拌下逐滴加入60~80 mL浓度为0.5 mol/L的Zn(NO3)2溶液,并持续搅拌15 min,使Zn2+富集在磁性壳聚糖表面,再逐滴加入20 mL浓度为2mol/L的NaOH溶液,待滴加完毕后继续反应4~6 h,磁分离,再用水、无水乙醇各反复洗涤3次后,置于50~55 ℃进行真空干燥,得到ZnO/磁性壳聚糖复合材料;
4)ZnO/磁性壳聚糖/累托石复合材料的制备:将累托石加入到100 mL蒸馏水中制成累托石悬浮液,再加入ZnO/磁性壳聚糖复合材料及10 mL质量分数0.5%的NaOH水溶液,搅拌反应3~5h,在室温下超声分散30min,反应结束后磁分离,用蒸馏水洗至中性,然后用无水乙醇洗涤3次,之后于50~55 ℃下真空干燥,研磨均匀,得到ZnO/磁性壳聚糖/累托石复合材料;其中所用累托石与ZnO/磁性壳聚糖复合材料的质量比为3:0.5-3。
所得ZnO/磁性壳聚糖/累托石纳米复合材料能有效吸附和光催化降解去除水中有机污染物,可用于废水处理,并且在处理废水后具有很好的磁分离效果。
本发明中壳聚糖的加入起到保护磁性四氧化三铁粒子的作用,同时,当纳米ZnO颗粒分散到磁性壳聚糖水溶液中,由于物理和化学吸附作用,纳米ZnO颗粒渗入磁性壳聚糖高分子链中,使其结晶生长速度放慢,有充分时间生成更多晶核,避免形成不规则的团聚颗粒,而ZnO/磁性壳聚糖作为新的成核中心插入到具有二维空间结构的层状累托石的层间域,由于降低了反应体系的能量,有利于ZnO颗粒逐渐长大。
本发明与现有技术相比,具有以下优点和效果:
1)本发明制备了ZnO、四氧化三铁、壳聚糖、累托石的多元纳米复合光催化剂;该纳米复合材料结晶性好、纯度高,平均粒径为90~100 nm,同时,其在可见光下具有较高光催化活性,并具有良好磁分离效果和吸附能力,且其实现了对纳米ZnO的有机无机固载化,在一定程度上解决了纳米ZnO作为单一光催化剂分离回收困难和吸附性能低等问题。
2)本发明制备原料来源丰富,价格低廉;壳聚糖虽价格较贵,但添加量少,对总体成本影响不大,并且增加了磁分离性。
3)本发明制备工艺简单,反应条件温和,工艺参数易控制。
附图说明
图1为本发明所得复合材料的红外光谱图。
图2为实施例1~3所得复合材料在可见光下随时间对亚甲基蓝进行光降解脱色的情况图。
图3为不同材料在可见光下随时间对亚甲基蓝进行光降解脱色的对比情况图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1:
一种ZnO/磁性壳聚糖/累托石复合材料的制备方法,包括以下步骤:
1)壳聚糖溶液的配制:称取2 g壳聚糖加入到体积浓度1%的醋酸水溶液中,常温搅拌3h至完全溶解,即得到壳聚糖溶液;
2)磁性壳聚糖的制备:按Fe3+与Fe2+的摩尔比为1:1取FeCl3•6H2O和FeSO4•7H2O配成铁离子总质量浓度为15 %的铁盐溶液,在搅拌条件下加入2 mL表面活性剂OP-10,然后在剧烈搅拌下加入质量浓度为25 %的浓氨水,以调整pH值至8,产生大量黑色沉淀后继续搅拌15min,然后将水浴锅的温度升至60 ℃,并在此温度下陈化3 h后,用恒压滴液漏斗以3 mL·min-1的速率逐滴加入配制好的壳聚糖溶液,滴加完毕后继续反应5 h;反应结束后磁分离,分别用蒸馏水、无水乙醇洗涤3次,经真空干燥即得到磁性壳聚糖;
3)ZnO/磁性壳聚糖复合材料的制备:称取0.2065 g磁性壳聚糖于130 mL蒸馏水中,超声分散30 min后转移至40 ℃恒温水浴锅中,在电动搅拌器的搅拌下逐滴加入60 mL浓度为0.5 mol/L的Zn(NO3)2溶液,并持续搅拌15 min,使Zn2+富集在磁性壳聚糖表面,再逐滴加入20 mL浓度为2 mol/L的NaOH溶液,待滴加完毕后继续反应4 h,磁分离,再用水、无水乙醇各反复洗涤3次后,置于50℃进行真空干燥,得到ZnO/磁性壳聚糖复合材料;
4)ZnO/磁性壳聚糖/累托石复合材料的制备:称取3.0 g累托石加入到100 mL蒸馏水中制成累托石悬浮液,再加入3 g的ZnO/磁性壳聚糖复合材料及10 mL质量分数0.5%的NaOH水溶液,搅拌反应3 h,在室温下超声分散30 min,反应结束后磁分离,用蒸馏水洗至中性,然后用无水乙醇洗涤3次,之后于50℃下真空干燥,研磨均匀,得到ZnO/磁性壳聚糖:累托石质量比为1:1的ZnO/磁性壳聚糖/累托石复合材料。
实施例2:
一种ZnO/磁性壳聚糖/累托石复合材料的制备方法,包括以下步骤:
1)壳聚糖溶液的配制:称取2g壳聚糖加入到体积浓度1%的醋酸水溶液中,常温搅拌3h至完全溶解,即得到壳聚糖溶液;
2)磁性壳聚糖的制备:按Fe3+与Fe2+的摩尔比为1:1取FeCl3•6H2O和FeSO4•7H2O配成铁离子总质量浓度为16 %的铁盐溶液,在搅拌条件下加入2 mL表面活性剂OP-10,然后在剧烈搅拌下加入质量浓度为25 %的浓氨水,以调整pH值至8.5,产生大量黑色沉淀后继续搅拌15min,然后将水浴锅的温度升至60 ℃,并在此温度下陈化3 h后,用恒压滴液漏斗以3 mL·min-1的速率逐滴加入配制好的壳聚糖溶液,滴加完毕后继续反应5 h;反应结束后磁分离,分别用蒸馏水、无水乙醇洗涤3次,经真空干燥即得到磁性壳聚糖;
3)ZnO/磁性壳聚糖复合材料的制备:称取0.2065 g磁性壳聚糖于130 mL蒸馏水中,超声分散30 min后转移至40 ℃恒温水浴锅中,在电动搅拌器的搅拌下逐滴加入70 mL浓度为0.5 mol/L的Zn(NO3)2溶液,并持续搅拌15 min,使Zn2+富集在磁性壳聚糖表面,再逐滴加入20 mL浓度为2 mol/L的NaOH溶液,待滴加完毕后继续反应5 h,磁分离,再用水、无水乙醇各反复洗涤3次后,置于53 ℃进行真空干燥,得到ZnO/磁性壳聚糖复合材料;
4)ZnO/磁性壳聚糖/累托石复合材料的制备:称取3.0 g累托石加入到100 mL蒸馏水中制成累托石悬浮液,再加入1 g的ZnO/磁性壳聚糖复合材料及10 mL质量分数0.5%的NaOH水溶液,搅拌反应4 h,在室温下超声分散30 min,反应结束后磁分离,用蒸馏水洗至中性,然后用无水乙醇洗涤3次,之后于53 ℃下真空干燥,研磨均匀,得到ZnO/磁性壳聚糖:累托石质量比为1:3的ZnO/磁性壳聚糖/累托石复合材料。
实施例3:
一种ZnO/磁性壳聚糖/累托石复合材料的制备方法,包括以下步骤:
1)壳聚糖溶液的配制:称取2 g壳聚糖加入到体积浓度1%的醋酸水溶液中,常温搅拌4h至完全溶解,即得到壳聚糖溶液;
2)磁性壳聚糖的制备:按Fe3+与Fe2+的摩尔比为1:1取FeCl3•6H2O和FeSO4•7H2O配成铁离子总质量浓度为18 %的铁盐溶液,在搅拌条件下加入3 mL表面活性剂OP-10,然后在剧烈搅拌下加入质量浓度为25 %的浓氨水,以调整pH值至9,产生大量黑色沉淀后继续搅拌15min,然后将水浴锅的温度升至60 ℃,并在此温度下陈化3 h后,用恒压滴液漏斗以3 mL·min-1的速率逐滴加入配制好的壳聚糖溶液,滴加完毕后继续反应6 h;反应结束后磁分离,分别用蒸馏水、无水乙醇洗涤3次,经真空干燥即得到磁性壳聚糖;
3)ZnO/磁性壳聚糖复合材料的制备:称取0.2065 g磁性壳聚糖于130 mL蒸馏水中,超声分散30 min后转移至40 ℃恒温水浴锅中,在电动搅拌器的搅拌下逐滴加入80 mL浓度为0.5 mol/L的Zn(NO3)2溶液,并持续搅拌15 min,使Zn2+富集在磁性壳聚糖表面,再逐滴加入20 mL浓度为2mol/L的NaOH溶液,待滴加完毕后继续反应6 h,磁分离,再用水、无水乙醇各反复洗涤3次后,置于55 ℃进行真空干燥,得到ZnO/磁性壳聚糖复合材料;
4)ZnO/磁性壳聚糖/累托石复合材料的制备:称取3.0 g累托石加入到100 mL蒸馏水中制成累托石悬浮液,再加入0.5 g的ZnO/磁性壳聚糖复合材料及10 mL质量分数0.5%的NaOH水溶液,搅拌反应5 h,在室温下超声分散30 min,反应结束后磁分离,用蒸馏水洗至中性,然后用无水乙醇洗涤3次,之后于55 ℃下真空干燥,研磨均匀,得到ZnO/磁性壳聚糖:累托石质量比为1:6的ZnO/磁性壳聚糖/累托石复合材料。
1. 本发明所得复合材料的红外光谱表征图如图1所示。
从图1可以看出,本发明所得复合材料在3270 cm-1、3140 cm-1、2920 cm-1和1130cm-1处为O–H、N–H、甲基或次甲基的C–H和C–O伸缩振动吸收峰,在1560 cm-1处为氨基的变形振动吸收峰,在1420cm-1处有–C–CH3的变形振动吸收峰,在1280 cm-1附近为酰胺Ⅲ的特征吸收峰,是壳聚糖特征吸收峰;在496 cm-1、1020 cm-1和1050 cm-1处为累托石中Si-O-Si、Si-O和Al-O弯曲振动吸收峰。而从磁性壳聚糖的红外光谱图可以发现,在1280cm-1处的C–N吸收峰消失,可能是被1400 cm-1处的N–Fe3O4特征峰覆盖。从ZnO/磁性壳聚糖的红外谱图可以发现,845 cm-1处是ZnO的六方晶特征吸收峰增强。此外,由复合材料红外谱图中可以看出,在783 cm-1处出现一个新吸收峰,可能是O-Zn-O的伸缩振动峰增强。综上分析结果说明ZnO/磁性壳聚糖/累托石纳米复合材料已成功制备。
2. 分别采用实施例1~3所制备的ZnO/磁性壳聚糖/累托石纳米复合材料对亚甲基蓝进行可见光降解脱色实验(亚甲基蓝的初始浓度均为100 mg/L),实验结果如图2所示。
从图2可以看出,本发明所制备的ZnO/磁性壳聚糖/累托石纳米复合材料在可见光照下对亚甲基蓝的脱色效果随着光照时间增大而增大,当光照时间达到60 min时,所得复合材料对亚甲基蓝脱色率均达到了93%以上,实施例3达到了98%。
3. 将本实施例3所制备的ZnO/磁性壳聚糖/累托石纳米复合材料与现有文献中报道的ZnO/累托石纳米复合材料、ZnO/壳聚糖复合材料、壳聚糖/累托石复合材料和乳液法制备的磁性壳聚糖微球分别对亚甲基蓝进行可见光降解脱色的对比实验(亚甲基蓝的初始浓度均为100 mg/L),实验结果如图3所示。
从图3可以看出,本发明ZnO/磁性壳聚糖/累托石纳米复合材料与现有已报道的ZnO/累托石纳米复合材料、ZnO/壳聚糖复合材料、壳聚糖/累托石复合材料和磁性壳聚糖微球在可见光照下对亚甲基蓝脱色效果随光照时间增大而增大,当光照时间60 min时,本发明复合材料与ZnO/累托石纳米复合材料、ZnO/壳聚糖复合材料、壳聚糖/累托石复合材料和磁性壳聚糖微球对亚甲基蓝的脱色率分别为98%,65%,63%,58%,55%,即本发明所得复合材料对亚甲基蓝的脱色率分别比ZnO/累托石纳米复合材料、ZnO/壳聚糖复合材料、壳聚糖/累托石复合材料和磁性壳聚糖微球提高了33%、35%、40%、43%。
4. 将本发明实施例1~3所制备的ZnO/磁性壳聚糖/累托石纳米复合材料与现有已报道的ZnO/累托石纳米复合材料、ZnO/壳聚糖复合材料、壳聚糖/累托石复合材料和乳液法制备的磁性壳聚糖微球分别进行吸附光催化后的沉降对比试验,实验结果见表1。
表1 不同材料处理废水后在外加磁场下沉降效果的对比
从表1可见,本发明实施例1~3所制备ZnO/磁性壳聚糖/累托石纳米复合材料处理废水后的固液分离时间分别比ZnO/累托石纳米复合材料、ZnO/壳聚糖复合材料、壳聚糖/累托石复合材料和磁性壳聚糖微球缩短61.5%、69.7%、66.7%和47.3%。
由以上实验证明,本发明ZnO/磁性壳聚糖/累托石纳米复合材料兼具较好的吸附光催化性及磁分离效果。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆.应属本发明的涵盖范围。

Claims (3)

1.一种ZnO/磁性壳聚糖/累托石纳米复合材料的制备方法,其特征在于:包括以下步骤:
1)壳聚糖溶液的配制:称取2 g壳聚糖加入到体积浓度1%的醋酸水溶液中,常温搅拌3-4 h至完全溶解,即得到壳聚糖溶液;
2)磁性壳聚糖的制备:按Fe3+与Fe2+的摩尔比为1:1取FeCl3•6H2O和FeSO4•7H2O配成铁离子总质量浓度为15~18 %的铁盐溶液,在搅拌条件下加入2~3 mL表面活性剂OP-10,然后在剧烈搅拌下加入质量浓度为25%的浓氨水,以调整pH值至8~9,产生大量黑色沉淀后继续搅拌15 min,然后将温度升至60 ℃,并在此温度下陈化3 h后,用恒压滴液漏斗以3 mL·min-1的速率逐滴加入步骤1)配制好的壳聚糖溶液,滴加完毕后继续反应5~6 h;反应结束后磁分离,分别用蒸馏水、无水乙醇洗涤3次,经真空干燥即得到磁性壳聚糖;
3)ZnO/磁性壳聚糖复合材料的制备:称取0.2065 g磁性壳聚糖于130 mL蒸馏水中,超声分散30 min后转移至40 ℃恒温水浴锅中,在搅拌下逐滴加入60~80 mL浓度为0.5 mol/L的Zn(NO3)2溶液,并持续搅拌15 min,再逐滴加入20 mL浓度为2 mol/L的NaOH溶液,待滴加完毕后继续反应4~6 h,磁分离,再用水、无水乙醇各反复洗涤3次后,置于50~55℃进行真空干燥,得到ZnO/磁性壳聚糖复合材料;
4)ZnO/磁性壳聚糖/累托石复合材料的制备:将累托石加入到100 mL蒸馏水中制成累托石悬浮液,再加入所制备的ZnO/磁性壳聚糖复合材料及10 mL质量分数0.5%的NaOH水溶液,搅拌反应3~5 h,在室温下超声分散30 min,反应结束后磁分离,用蒸馏水洗至中性,然后用无水乙醇洗涤3次,之后于50~55 ℃下真空干燥,得到ZnO/磁性壳聚糖/累托石复合材料。
2.根据权利要求1所述ZnO/磁性壳聚糖/累托石纳米复合材料的制备方法,其特征在于:步骤4)中所用累托石与ZnO/磁性壳聚糖复合材料的质量比为3:0.5-3。
3.一种如权利要求1所述方法制得的ZnO/磁性壳聚糖/累托石纳米复合材料在废水处理中的应用。
CN201710667556.XA 2017-08-07 2017-08-07 一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法 Active CN107442179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710667556.XA CN107442179B (zh) 2017-08-07 2017-08-07 一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710667556.XA CN107442179B (zh) 2017-08-07 2017-08-07 一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107442179A true CN107442179A (zh) 2017-12-08
CN107442179B CN107442179B (zh) 2020-01-31

Family

ID=60490980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710667556.XA Active CN107442179B (zh) 2017-08-07 2017-08-07 一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107442179B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123412A1 (en) * 2017-12-22 2019-06-27 Universidad De Chile Preparing laminar zinc hydroxide organic-inorganic nanocomposites for use in removal and degradation of dyes from textile effluents
CN110314663A (zh) * 2018-08-21 2019-10-11 武汉佰玛生物科技有限公司 一种w/o乳化累托石基复合多孔微球的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134334A (zh) * 2010-12-29 2011-07-27 厦门大学 磁性壳聚糖微球的制备方法
CN102319590A (zh) * 2011-05-27 2012-01-18 湖北富邦科技股份有限公司 四氧化三铁/壳聚糖/TiO2纳米复合光催化材料的制备方法
CN102389790A (zh) * 2011-08-02 2012-03-28 武汉大学 纳米ZnO/累托石复合材料的制备方法
CN104399437A (zh) * 2014-11-24 2015-03-11 福建师范大学福清分校 一种ZnO/壳聚糖/高岭土纳米复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134334A (zh) * 2010-12-29 2011-07-27 厦门大学 磁性壳聚糖微球的制备方法
CN102319590A (zh) * 2011-05-27 2012-01-18 湖北富邦科技股份有限公司 四氧化三铁/壳聚糖/TiO2纳米复合光催化材料的制备方法
CN102389790A (zh) * 2011-08-02 2012-03-28 武汉大学 纳米ZnO/累托石复合材料的制备方法
CN104399437A (zh) * 2014-11-24 2015-03-11 福建师范大学福清分校 一种ZnO/壳聚糖/高岭土纳米复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S DHANAVEL ET AL.: "Photocatalytic activity of Chitosan/ZnO nanocomposites for degrading methylene blue", 《INTERMATIONAL JOURNAL OF CHEM TECH RESEARCH》 *
杨玉东: "《生物医学纳米磁性材料原理及应用》", 31 October 2005, 吉林人民出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123412A1 (en) * 2017-12-22 2019-06-27 Universidad De Chile Preparing laminar zinc hydroxide organic-inorganic nanocomposites for use in removal and degradation of dyes from textile effluents
CN110314663A (zh) * 2018-08-21 2019-10-11 武汉佰玛生物科技有限公司 一种w/o乳化累托石基复合多孔微球的制备方法

Also Published As

Publication number Publication date
CN107442179B (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
Li et al. Removal of lead (II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling
CN104383873B (zh) 利用低品位凹凸棒石黏土制备复合吸附剂的方法
CN103920472B (zh) 一种磁性壳聚糖复合微球吸附剂的制备方法
CN103599751B (zh) 巯基功能化磁性二氧化硅纳米材料的制备方法
CN103191699B (zh) 一种铁氧体/石墨烯复合吸附剂及其制备、使用方法
CN107262037B (zh) 一种海泡石羟基氧化铁活性炭复合吸附剂的制备与应用
CN106693920A (zh) 一种磁性纳米复合材料及其制备方法和应用
CN104759635B (zh) 一种负载型纳米零价铁复合材料的制备方法
CN102258978A (zh) 纳米Fe3O4包覆凹凸棒土磁性复合吸附剂的制备方法
CN109503858B (zh) 一种磁性三明治结构金属有机骨架材料及制备方法
CN104399437B (zh) 一种ZnO/壳聚糖/高岭土纳米复合材料及其制备方法
CN107321341B (zh) 一种硅藻土/(GR+TiO2)复合光催化剂的制备方法
CN103801267A (zh) 一种磁性壳聚糖复合微球新型抗生素吸附剂的制备方法
CN115197591A (zh) 一种可见光催化复合材料及其制备方法
CN106745317A (zh) 一步法制备多孔四氧化三铁磁性纳米微球的方法及其应用
CN109248711A (zh) 一种负载TiO2的PPS光催化膜的制备方法
CN111111631A (zh) 一种高效吸附阳离子染料的壳聚糖基磁性微球吸附剂制备方法
CN107442179A (zh) 一种ZnO/磁性壳聚糖/累托石纳米复合材料及其制备方法
CN108452813A (zh) 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法
CN104549146A (zh) 氧化铝修饰的多壁碳纳米管纳米复合材料及其制备方法和应用
Tu et al. Ultrafast and efficient removal of aqueous Cr (VI) using iron oxide nanoparticles supported on Bermuda grass-based activated carbon
CN113387394A (zh) 基于生物基碳酸钙的层状双金属氢氧化物材料制备方法
CN110624507A (zh) 一种4a分子筛复合材料的制备方法及吸附性能
CN107282026A (zh) 链状纳米磁性材料、制备方法及其应用
CN101927158A (zh) 纳米ZnO/γ-Al2O3复合光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201230

Address after: 350314 Yuanhong investment zone, Fuzhou City, Fujian Province

Patentee after: FUJIAN MELTS SPRINGS DTC Co.,Ltd.

Address before: 350300 No.1 campus new village, Longjiang street, Fuqing City, Fuzhou City, Fujian Province

Patentee before: FUQING BRANCH OF FUJIAN NORMAL University