CN107438513A - 通过间歇曝光的增材制造方法 - Google Patents

通过间歇曝光的增材制造方法 Download PDF

Info

Publication number
CN107438513A
CN107438513A CN201680008982.6A CN201680008982A CN107438513A CN 107438513 A CN107438513 A CN 107438513A CN 201680008982 A CN201680008982 A CN 201680008982A CN 107438513 A CN107438513 A CN 107438513A
Authority
CN
China
Prior art keywords
component
polymerizable liquid
carrier
structured surface
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680008982.6A
Other languages
English (en)
Other versions
CN107438513B (zh
Inventor
D.摩尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbon Co Ltd
Original Assignee
Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbon Co Ltd filed Critical Carbon Co Ltd
Publication of CN107438513A publication Critical patent/CN107438513A/zh
Application granted granted Critical
Publication of CN107438513B publication Critical patent/CN107438513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种形成三维物体的方法,通过以下进行:提供载体和具有构造表面的光学透明的构件,所述载体和所述构造表面限定它们之间的构造区;用可聚合液体填充所述构造区,用光透过所述光学透明的构件间歇地照射所述构造区,以从所述可聚合液体形成固体聚合物,和连续或间歇地推进所述载体远离所述构造表面,以从所述固体聚合物形成所述三维物体。在一些实施方案中,进行所述填充、照射和/或推进步骤,同时还:(i)连续维持可聚合液体的死区与所述构造表面接触,和(ii)连续维持所述死区和所述固体聚合物之间的聚合区梯度并维持其相互接触,所述聚合区梯度包含呈部分固化形式的所述可聚合液体。

Description

通过间歇曝光的增材制造方法
相关申请
本申请要求2015年2月5日提交的美国临时专利申请号62/112,290的权益,其公开内容通过引用以其整体结合到本文中。
发明领域
本发明涉及用于从液体材料制造固体三维物体的方法和装置。
发明背景
在传统的添加剂或三维制造技术中,一个三维物体的构造以逐步(step-wise)或逐层(layer-by-layer)的方式进行。特别是,层形成在可见光或UV光照射的作用下,通过光固化树脂的固化来进行。两种技术是已知的:一种是其中在生长物体的顶部表面形成新层;而另一种是其中在生长物体的底部表面形成新层。
如果新层在生长物体的顶部表面形成,那么在每个照射步骤后,正在构造的物体被降低到树脂“池”中,一层新的树脂被涂布在顶部,且进行一个新的照射步骤。这样的技术的一个早期的例子在Hull,美国专利号5,236,637 (图3)中给出。这样的“自上而下(topdown)”的技术的一个缺点是需要将生长物体浸没在(可能很深的)液体树脂池中并重建精确的液体树脂覆盖层。
如果新层在生长物体的底部形成,那么在每个照射步骤后,正在构造的物体必须从制造孔中的底板分离出来。这样的技术的一个早期的例子在Hull,美国专利号5,236,637(图4)中给出。虽然这样的“自下而上”技术保持了不需要其中物体被浸没的深孔的可能性,代之以将物体从一个相对浅的孔或池中抬升出来,但这样的“自下而上”制造技术在商业实施上的一个问题是由于底板和固化层之间的物理和化学相互作用,当从底板分离固化层时必须极其小心,并采用附加的机械元件。例如,在美国专利号7,438,846中,弹性分离层被用来实现固化材料在底部结构平面的“无损”分离。其它的方法,例如由Deadwood, SouthDakota, USA的B9Creations销售的B9CreatorTM 3-维打印机,使用一个滑动构造板(sliding build plate)。见例如,M. Joyce,美国专利申请号2013/0292862和Y. Chen等,美国专利申请号2013/0295212 (二者均在2013年11月7日);也见Y. Pan等, J. Manufacturing Sci.and Eng.134, 051011-1 (2012年10月)。这样的方法引入了一个可使装置复杂化、使方法放慢,和/或潜在地使最终产品变形的机械步骤。
在美国专利号7,892,474中以一定篇幅提出了关于“自上而下”技术的生产三维物体的连续过程,但这篇参考文献没有解释如何可使它们在“自下而上”系统中,以对要生产的物品无损的方式实施。因此,有对三维制造的替代方法和装置的需求,这样的方法和装置可消除在“自下而上”的制造中对机械分离步骤的需要。
发明概述
本文公开了通过增材制造来生产三维物体的方法、系统和装置(包括相关的控制方法、系统和装置)。在优选(但不必限制)的实施方案中,所述方法是连续地进行的。在优选(但不必限制)的实施方案中,三维物体从液体界面生产。因此,为方便而非限制的目的,在本文中它们有时被称为“连续液体相间打印”或“连续液体界面制造” (“CLIP”) (这两者可互换使用)。参见例如J. Tumbleston等人, Continuous liquid interface production of 3D objects, Science 347, 1349-1352 (2015年3月16日在线出版)。示意图在本文的图1中给出。
本发明提供一种形成三维物体的方法,其包括:
提供载体和具有构造表面的光学透明的构件,所述载体和所述构造表面限定它们之间的构造区;
用可聚合液体填充所述构造区,
用光透过所述光学透明的构件连续或间歇地照射所述构造区,以由所述可聚合液体形成固体聚合物,和
连续或间歇地(例如,与所述照射步骤顺序或同时地)推进所述载体远离所述构造表面,以由所述固体聚合物形成所述三维物体。
在一些实施方案中,照明是按顺序,且优选以较高的强度(例如,以“频闪(strobe)”方式)进行的,如下面进一步描述的。
在一些实施方案中,制造以两个或三个顺序模式,从基底区,通过任选的过渡区,到主体区进行,如下面进一步描述的。
在一些实施方案中,载体相对于构造表面垂直往复运动,以提高或加速用可聚合液体再填充构造区。
优选地,进行填充、照射和/或推进步骤,还同时:(i)连续维持可聚合液体的死区与所述构造表面接触,和(ii)连续维持所述死区和所述固体聚合物之间的聚合区的梯度并维持其相互接触,所述聚合区梯度包含呈部分固化形式的所述可聚合液体。死区和聚合区梯度可通过形成一些或全部要制造的物体来维持,例如(并在一些实施方案中)至少5、10、20或30秒的时间,而在一些实施方案中,维持至少1或2分钟的时间。
用于执行本发明的装置一般包含:
(a) 支撑物;
(b) 可操作地与所述支撑物关联的载体,在所述载体上形成所述三维物体;
(c) 具有构造表面的光学透明的构件,所述构造表面和所述载体限定它们之间的构造区;
(d) 可操作地与所述构造表面关联并被配置为向所述构造区供应液体聚合物以供固化或聚合的液体聚合物供应;
(e) 配置为透过所述光学透明的构件照射所述构造区以由所述可聚合液体形成固体聚合物的辐射源;
(f) 任选地,至少一个可操作地与所述透明构件或者所述载体关联的驱动器;
(g) 可操作地与所述载体和/或任选所述至少一个驱动器和所述辐射源关联的控制器,用于推进所述载体远离所述构造表面,以由所述固体聚合物形成所述三维物体,
控制器优选地被进一步配置为使所述载体相对于所述构造表面振荡或往复运动,以提高或加速所述可聚合液体在所述构造区的再填充。
在一些实施方案中,可聚合液体包含以下组分的混合物:(i) 光可聚合液体第一组分,和(ii) 不同于第一组分的第二可固化组分。在该情况下,所述方法可进一步包括,与形成三维物体同时或在形成三维物体之后,凝固和/或固化在三维物体中的第二可固化组分(例如,通过作为“中间体”物体从载体移除三维物体,和加热和/或微波照射所述物体)。
在一些实施方案中,第二组分包含溶解或悬浮于第一组分中的可聚合液体。
在一些实施方案中,第二组分包含:(i) 悬浮于第一组分中的可聚合固体;(ii) 溶解于第一组分中的可聚合固体;或(iii) 溶解于第一组分中的聚合物。
在一些实施方案中,三维中间体是可折叠的或可压缩的。
在一些实施方案中,三维物体在进一步凝固和/或固化后,包含由所述第一组分和所述第二组分形成的聚合物共混物、互穿聚合物网络、半-互穿聚合物网络或连续互穿聚合物网络。
在一些实施方案中,可聚合液体包含:从1或10%重量至40、90或99%重量的所述第一组分;和从1、10或60%重量至90或99%重量的所述第二组分。
在一些实施方案中,进一步的凝固和/或固化步骤(d)与所述照射步骤(c)同时进行,并且(i) 所述凝固和/或固化步骤通过沉淀进行;或(ii) 所述照射步骤由所述第一组分的聚合产生热,其量足以热固化或聚合所述第二组分。
在一些实施方案中,进一步的凝固和/或固化步骤在所述照射步骤(c)之后进行,并且通过以下进行:(i) 加热所述第二可固化组分;(ii) 用波长不同于所述照射步骤(c)的光波长的光照射所述第二可固化组分;(iii) 使所述第二可聚合组分与水接触;和/或(iv)使所述第二可聚合组分与催化剂接触。
在一些实施方案中,所述第二组分包含聚氨酯、聚脲或其共聚物的前体,有机硅树脂,环氧树脂,氰酸酯树脂,或天然橡胶;并且所述固化步骤通过加热和/或微波照射进行。
在一些实施方案中,所述第二组分包含聚氨酯、聚脲或其共聚物的前体,和所述凝固和/或固化步骤通过使所述第二组分与水接触进行。
在一些实施方案中,进一步的凝固和/或固化步骤在所述照射步骤后进行;和所述凝固和/或固化步骤在其中所述固体聚合物支架降解和形成对所述第二组分的聚合所必需的成分的条件下进行。
在一些实施方案中,所述第二组分包含聚氨酯、聚脲或其共聚物的前体;有机硅树脂、开环易位聚合树脂或点击化学树脂、氰酸酯树脂,和所述凝固和/或固化步骤通过使所述第二组分与聚合催化剂接触进行。
在一些实施方案中,所述可聚合液体包含第一组分(部分A)和至少一种另外的组分(部分B),所述第一组分包含单体和/或预聚物,其可通过暴露于光化辐射或光而聚合;所述第二组分在与以下接触时可固化:热、水、水蒸汽、与所述第一组分聚合时的波长不同波长的光、催化剂、来自自可聚合液体的溶剂蒸发、对微波照射的暴露和其组合。
在使用双组分可聚合液体的一些实施方案中,所述三维物体包含互穿聚合物网络(IPN),所述互穿聚合物网络包含溶胶-凝胶组合物、疏水-亲水IPN、酚醛树脂、聚酰亚胺、导电聚合物、基于天然产物的IPN、连续IPN、聚烯烃或其组合。
本发明的非限制性实例和具体实施方案在本文的附图和下文阐述的说明书中更详细地解释。本文引用的所有美国专利参考文献的公开内容通过参考以其全文结合到本文中。
附图简述
图1是本发明方法的一个实施方案的示意图。
图2是本发明装置的一个实施方案的透视图。
图3是说明用于进行本发明的控制系统和方法的第一流程图。
图4是说明用于进行本发明的控制系统和方法的第二流程图。
图5是说明用于进行本发明的控制系统和方法的第三流程图。
图6是指明相对于构造表面或板的载体的位置的本发明方法的图示说明,其中载体的推进和构造区的照射两者是连续地进行的。载体的推进在垂直轴上说明,而时间在水平轴上说明。
图7是指明相对于构造表面或板的载体位置的本发明另一个方法的图示说明,其中载体的推进和构造区的照射两者是逐步进行的,但是维持死区和聚合的梯度。载体的推进再次在垂直轴上说明,而时间在水平轴上说明。
图8是指明相对于构造表面或板的载体的位置的本发明另一个方法的图示说明,其中载体的推进和构造区的照射两者是逐步进行的,死区和聚合的梯度被维持,并且往复运动步骤在照射步骤之间导入,以促进可聚合液体流入构造区。载体的推进再次在垂直轴上说明,而时间在水平轴上说明。
图9是图23的往复运动步骤的详细说明,显示在向上行程期间发生的加速期(即,向上行程的逐渐开始)和向下行程期间发生的减速期(即,向下行程的逐渐结束)。
图10示意性地示出在通过本发明的方法制造三维物体的过程中,载体(z)随时间(t)经过第一基底(或“粘附”)区、第二过渡区和第三主体区的运动。
图11A示意性地示出在通过连续推进和连续曝光制造三维物体的过程中,载体(z)随时间(t)的运动。
图11B说明以类似于图11A的方式制造三维物体,除了光照现在采用间歇(或“频闪”)模式。
图12A示意性地示出在通过间歇(或“逐步”)推进和间歇曝光来制造三维物体的过程中,载体(z)随时间(t)的运动。
图12B说明以类似于图12A的方式制造三维物体,除了光照现在采用缩短的间歇(或“频闪”)模式。
图13A示意性地示出在通过振荡推进和间歇曝光来制造三维物体的过程中,载体(z)随时间(t)的运动。
图13B说明以类似于图13A的方式制造三维物体,除了光照现在采用缩短的间歇(或“频闪”)模式。
图14A示意性地示出制造过程的“频闪”模式的一个节段,其中载体的静态部分的持续时间已被缩短至接近“频闪”曝光的持续时间。
图14B是类似于图14A的制造过程的频闪模式的一个节段的示意图,除了载体现在在频闪照明期间缓慢向上移动。
示例性实施方案的详细描述
本发明现在在下文参考附图更全面地进行描述,其中本发明的实施方案被示出。然而,本发明可以许多不同形式体现且不应视为限制于本文提出的实施方案;而是提供这些实施方案,以使本公开内容将是完全和彻底的,并将本发明的范围充分地传达至本领域技术人员。
相同的数字始终指相同的元件。在图中,为清楚起见,某些线、层、组件、要素或特征的厚度可能被夸大。在使用时,虚线说明任选的特征或操作,除非另外指明。
本文所用的术语仅仅是为了描述具体实施方案的目的且不打算限制本发明。如本文所用的,单数形式“一”、“一个”和“该”意欲还包括复数形式,除非在上下文中另外清楚地指明。还应该理解,术语“包含”或“含有”,当用于本说明书时,指所述特征、整数、步骤、操作、要素、组件和/或基团或其组合的存在,但不排除一个或多个其它的特征、整数、步骤、操作、要素、组件和/或基团或其组合的存在或添加。
如本文所用的,术语“和/或”包括有关的所列项目的任何和所有可能的组合或一个或多个,以及当在备选中(“或”)解释时不存在组合。
除非另外限定,本文所用的所有术语(包括技术和科学术语)具有本发明所属领域普通技术人员通常理解的相同意义。还应该理解,术语,例如在常用词典中定义的那些,应被解释为具有与它们在说明书和权利要求书的上下文中的意义一致的意义,而不应以理想化的或过于正式的意义来解释,除非在本文清楚地如此定义。众所周知的功能或结构为了简洁和/或清楚而可能未详细地描述。
应该理解,当提及一个元件与另一个元件的关系为“在……上”、“附接”于、“连接”于、“偶联”于、“接触”等时,它可以是直接在该另一个元件上,附接于、连接于该另一个元件,与该另一个元件偶联和/或接触,或者也可存在插入元件。相反,当提及一个元件与另一个元件的关系为例如“直接在其上”、“直接附接”于、“直接连接”于、“直接偶联”于或“直接接触”时,则不存在插入元件。本领域技术人员也应该意识到,提及被“相邻”布置的结构或特征时,另一个特征可具有重叠或在相邻特征下面的部分。
空间上的相对术语,例如“下方”、“之下”、“下部”、“之上”、“上部”等,为了容易描述,可被用于在此描述一个元件或特征与另一个元件或特征的关系,如在图中所示。应该理解,空间上的相对术语除了在图中所示的定位外,还意欲涵盖在装置使用或操作中的不同定位。例如,如果图中的装置是倒转的,描述为在其它元件或特征“下方”或“下面”的元件则被定位在其它元件或部件“之上”。因此示例性术语“下方”可涵盖之上和之下两种定位。装置可被另外定位(旋转90度或在其它定位),并且相应地描述本文所用的空间上的相对描述符。类似地,在此使用术语“向上”、“向下”、“垂直”、“水平”等仅仅是为了解释的目的,除非另外特别地指明。
应该理解,虽然术语第一、第二等可在此用来描述各种元件、组件、区域、层和/或部分,这些元件、组件、区域、层和/或部分不应被这些术语限制。相反,这些术语仅用来区分一个元件、组件、区域、层和/或部分与另一个元件、组件、区域、层和/或部分。因此,在此讨论的第一元件、组件、区域、层或部分可被称为第二元件、组件、区域、层或部分,而不背离本发明的教导。操作(或步骤)的顺序不限于在权利要求书或图中提出的次序,除非另外特别地指明。
1. 可聚合液体/部分A组分
任何合适的可聚合液体可用来使本发明能够实现。在一些实施方案中,除了第一组分(或“部分A”) (例如本章节描述的)之外,可聚合液体包含第二组分(或“部分B”) (例如下文“双重硬化”章节描述的)。液体(在此有时也称为“液体树脂”、“油墨”或简称为“树脂”)可包括单体,特别是可光聚合和/或自由基聚合单体,和合适的引发剂例如自由基引发剂,及其组合。实例包括,但不限于丙烯酸类、甲基丙烯酸类、丙烯酰胺、苯乙烯类、烯烃、卤代烯烃、环烯、马来酸酐、链烯、链炔、一氧化碳、官能化寡聚物、多官能小位点单体、官能化PEG等,包括其组合。液体树脂、单体和引发剂的实例包括但不限于在美国专利号8,232,043;8,119,214;7,935,476;7,767,728;7,649,029;WO 2012129968 A1;CN 102715751 A;JP2012210408 A中阐述的那些。
酸催化的可聚合液体。虽然在如上所注明的一些实施方案中,可聚合液体包含自由基可聚合液体(在此情况下,抑制剂可以是如下文描述的氧),在其它的实施方案中,可聚合液体包含酸催化的、或阳离子聚合的可聚合液体。在这样的实施方案中,可聚合液体包含单体,所述单体含有适合于酸催化作用的基团,例如环氧基、乙烯醚基团等。因此合适的单体包括烯烃例如甲氧基乙烯、4-甲氧基苯乙烯、苯乙烯、2-甲基丙-1-烯、1,3-丁二烯等;杂环单体(包括内酯、内酰胺,和环胺)例如环氧乙烷、硫杂环丁烷、四氢呋喃、噁唑啉、1,3-二氧杂环庚烷、氧杂环丁烷-2-酮等,及其组合。合适的(通常为离子的或非-离子的)光产酸剂(PAG)被包括在酸催化的可聚合液体中,其实例包括,但不限于鎓盐、锍和碘鎓盐等,例如二苯基碘六氟磷酸盐、二苯基碘六氟砷酸盐、二苯基碘六氟锑酸盐、二苯基对-甲氧基苯基三氟甲磺酸盐、二苯基对-亚苄基三氟甲磺酸盐、二苯基对-异丁基苯基三氟甲磺酸盐、二苯基对-叔丁基苯基三氟甲磺酸盐、三苯基锍六氟磷酸盐、三苯基锍六氟砷酸盐、三苯基锍六氟锑酸盐、三苯基锍三氟甲磺酸盐、二丁基萘基锍三氟甲磺酸盐等,包括其混合物。见例如,美国专利号7,824,839;7,550,246;7,534,844;6,692,891;5,374,500;和5,017,461;也见Photoacid Generator Selection Guide for the electronics industry and energy curable coatings(用于电子工业和能量固化涂料的光产酸剂选择指南)(BASF 2010)。
水凝胶。在一些实施方案中,合适的树脂包括光固化水凝胶,像聚(乙二醇) (PEG)和明胶。PEG水凝胶已被用来递送各种生物制品,包括生长因子;然而,面对由链生长聚合交联的PEG水凝胶的一个巨大挑战是对不可逆的蛋白质损伤的可能性。从光聚合PEG二丙烯酸酯水凝胶最大释放生物制品的条件,可在光聚合允许持续递送之前,通过在单体树脂溶液中包含亲和力结合肽序列而得到增强。明胶是一种频繁用于食品、化妆品、药物和摄影行业的生物聚合物。其通过胶原的热变性或化学和物理降解来获得。现有3种明胶,包括在动物、鱼和人类中发现的那些。来自冷水鱼的皮肤上的明胶被认为对用于药物学应用是安全的。UV或可见光可被用来适当交联改性的明胶。交联明胶的方法包括来自染料例如玫瑰红(Rose Bengal)的固化衍生物。
光固化有机硅树脂。合适的树脂包括光固化有机硅树脂。UV固化有机硅橡胶,例如SilioprenTM UV固化有机硅橡胶可用作LOCTITETM固化有机硅粘合密封剂。应用包括光学仪器、医疗和外科设备、外部照明和外壳、电气连接器/传感器、光纤和垫圈。
可生物降解的树脂。可生物降解的树脂对于递送药物的可植入装置或对于临时性能应用,像可生物降解的螺丝钉和支架是尤其重要的(美国专利号7,919,162;6,932,930)。可生物降解的乳酸和乙醇酸共聚物(PLGA)可溶于PEG二甲基丙烯酸酯,得到一种适合于使用的透明树脂。聚己内酯和PLGA低聚物可用丙烯酸类或甲基丙烯酸类基团官能化,以使得它们成为适合使用的有效树脂。
光固化聚氨酯。一种特别有用的树脂是光固化聚氨酯。可配制包含以下物质的可光聚合聚氨酯组合物:(1)基于脂族二异氰酸酯、聚(六亚甲基间苯二甲酸乙二醇酯)和任选的1,4-丁二醇的聚氨酯;(2)多官能丙烯酸酯;(3)光引发剂;和(4)抗氧化剂,以便它提供一种坚硬、耐磨、耐沾污的材料(美国专利号4,337,130)。光固化热塑性聚氨酯弹性体结合光敏二乙炔二醇作为扩链剂。
高性能树脂。在一些实施方案中,使用高性能树脂。这样的高性能树脂有时可能需要采用加热,以熔化和/或减少其粘度,如上所注明并在下文进一步讨论。这样的树脂的实例包括,但不限于用于有时称为酯、酯-酰亚胺,和酯-酰胺低聚物的液晶聚合物的那些材料的树脂,如在美国专利号7,507,784;6,939,940中描述的。由于这样的树脂有时用作高温热固性树脂,在本发明中它们还包含合适的光引发剂例如二苯甲酮、蒽醌和芴酮(fluoroenone)引发剂(包括其衍生物),以在照射时引发交联,如在下文进一步讨论的。
另外的树脂实例。用于牙科应用的特别有用的树脂包括EnvisionTEC的ClearGuide、EnvisionTEC的E-Denstone Material。用于助听器行业的特别有用的树脂包括EnvisionTEC的e-Shell 300系列树脂。特别有用的树脂包括与硫化橡胶一起直接用于模塑/铸造应用的EnvisionTEC的HTM140IV高温模具材料。一种用于制造坚韧和坚硬零件的特别有用的材料包括EnvisionTEC的RC31树脂。一种用于熔模铸造应用的特别有用的树脂包括EnvisionTEC的Easy Cast EC500。
另外的树脂成分。液体树脂或可聚合材料可具有悬浮或分散于其中的固体颗粒。可使用任何合适的固体颗粒,这取决于要制造的最终产品。颗粒可以是金属的,有机的/聚合物的,无机的,或其组合物或混合物。颗粒可以是非导电的、半-导电的或导电的(包括金属的和非-金属的或聚合物导体);和颗粒可以是磁性、铁磁性、顺磁性或非磁性的。颗粒可具有任何合适的形状,包括球形、椭圆形、圆柱形等。颗粒可包含如下所述的活性剂或可检测化合物,但这些也可被溶解在液体树脂中来提供,如也在下文中讨论的那样。例如,可使用磁性或顺磁性颗粒或纳米颗粒。树脂或可聚合材料可含有分散剂,例如离子表面活性剂、非-离子表面活性剂、嵌段共聚物等。
液体树脂可具有溶于其中的另外的成分,包括颜料、染料、活性化合物或药用化合物、可检测的化合物(例如,荧光、磷光、放射性化合物)等,也取决于要制造的产品的特定目的。此类另外的成分的实例包括,但不限于蛋白质、肽、核酸(DNA、RNA)例如siRNA、糖、小的有机化合物(药物和药物类化合物)等,包括其组合。
聚合抑制剂。用于本发明的抑制剂或聚合抑制剂可以液体或气体的形式存在。在一些实施方案中,气体抑制剂是优选的。特定的抑制剂将取决于要聚合的单体和聚合反应。对于自由基聚合单体,抑制剂可便利地是氧,其可以气体例如空气,富含氧的气体(任选地,但在一些实施方案中,优选含有另外的惰性气体,以减少其可燃性),或在一些实施方案中,以纯氧气体的形式提供。在备选的实施方案中,例如其中单体通过光产酸剂引发剂聚合,抑制剂可以是碱例如氨,痕量胺(如甲胺、乙胺、二和三烷基胺例如二甲胺、二乙胺、三甲胺、三乙胺等),或二氧化碳,包括其混合物或组合。
携带活细胞的可聚合液体。在一些实施方案中,可聚合液体可携带作为其中的“颗粒”的活细胞。这样的可聚合液体通常是水性的,并可以被氧化,并且可被认为是“乳液”,其中活细胞是离散相。合适的活细胞可以是植物细胞(例如,单子叶植物、双子叶植物)、动物细胞(例如,哺乳动物、鸟、两栖动物、爬行动物细胞)、微生物细胞(例如,原核生物、真核生物、原生动物等)等。细胞可以是从任何类型的组织分化的细胞或对应于任何类型的组织的细胞(例如,血、软骨、骨、肌肉、内分泌腺、外分泌腺、上皮、内皮等),或可以是未分化的细胞例如干细胞或祖细胞。在这样的实施方案中,可聚合液体可以是形成水凝胶的液体,包括但不限于在美国专利号7,651,683;7,651,682; 7,556,490;6,602,975;5,836,313等中描述的那些液体。
2. 装置
本发明的装置的一个非限制性实施方案在图2中显示。其包含辐射源11例如提供电磁辐射12的数字光处理器(DLP),电磁辐射通过反射镜13照亮构造室,构造室由壁14和形成构造室底部的刚性构造板15限定,构造室充满液体树脂16。该室底部15由包含如在下文进一步讨论的刚性半透性构件的刚性构造板构造。正在构造的物体17的顶部附接于载体18。载体在垂直方向上由平移台19驱动,但可使用如下文所讨论的备选结构。
可包括液体树脂储液器、管道、泵液位传感器和/或阀门以补充构造室中的液体树脂池(为简明起见未显示),但在一些实施方案中,可采用简单的重力进料。根据已知的技术,可包括用于载体或平移台的驱动器/致动器,连同相关的线路(同样为简明起见未显示)。同样根据已知的技术,驱动器/致动器、辐射源、和在一些实施方案中,泵和液位传感器都可用合适的控制器可操作地连接在一起。
用来执行本发明的构造板15一般包含(通常为刚性或固体的、静止的,和/或固定的)半透性(或透气性)构件或由其组成,所述构件单独或与一个或多个另外的支持基底(例如,夹具和使原本柔性的半透性材料紧固的伸张构件)组合。刚性半透性构件可由在相关波长处是光学上透明的(或对辐射源透明,无论是否它在视觉上如被人的眼睛所感知是透明的,即,光学上透明的窗口可在一些实施方案中,是视觉上不透明的)任何合适的材料制得,包括但不限于多孔或微孔玻璃,和用于生产刚性透气性隐形眼镜的刚性透气性聚合物。见例如,Norman G. Gaylord, 美国专利号RE31,406;也见美国专利号7,862,176;7,344,731;7,097,302;5,349,394;5,310,571;5,162,469;5,141,665;5,070,170;4,923,906;和4,845,089。在一些实施方案中,这样的材料的特征为玻璃态和/或无定形聚合物和/或基本上交联的,它们基本上是不可溶胀的。优选地,刚性半透性构件由当与要聚合的液体树脂或材料接触时不溶胀(即,为“不可溶胀的”)的材料形成。用于刚性半透性构件的合适材料包括刚性无定形含氟聚合物,例如在美国专利号5,308,685和5,051,115中描述的那些。例如,这样的含氟聚合物与有机硅比较是特别有用的,后者在与要聚合的有机液体树脂油墨联合使用时将有可能溶胀。对于一些液体树脂油墨,例如具有低溶胀倾向的更基于水性的单体系统和/或一些聚合树脂油墨系统,基于有机硅的窗口材料可能是合适的。有机液体树脂油墨的溶解性或渗透性可通过许多已知的参数包括增加窗口材料的交联密度或增加液体树脂油墨的分子量而显着地减少。在一些实施方案中,构造板可从薄膜或片材形成,所述薄膜或片材在从本发明的装置分离时是柔性的,但它在安装在装置(例如,用伸张环)时被卡紧和拉伸,以致它在装置中呈现为刚性的。特定的材料包括TEFLON AF®含氟聚合物,可从DuPont经市售获得。另外的材料包括例如在美国专利号8,268,446;8,263,129;8,158,728;和7,435,495中描述的全氟聚醚聚合物。
应该意识到,基本上所有固体材料,和大多数以上描述的那些材料,具有一些固有的“柔性”,即使它们可被认为是“刚性的”,取决于诸如其形状和厚度的因素和环境因素例如它们经受的压力和温度。此外,关于构造板的术语“静止的”或“固定的”意指过程中没有发生机械中断,或过程中未提供机械中断的机械装置或结构(如在逐层方法或装置中),即使提供了用于构造板的增量调整的机械装置(例如,不导致或造成聚合区梯度崩溃的调整)。
半透性构件通常地包含顶部表面部分、底部表面部分,和边缘表面部分。构造表面是在顶部表面部分上;而供料表面可以是在顶部表面部分,底部表面部分,和/或边缘表面部分的一个、两个,或所有三个上。在图2所示的实施方案中,供料表面是在底部表面部分上,但可用常规技能实施备选构造,其中供料表面设置在边缘,和/或在顶部表面部分(接近于但与构造表面分开或隔离)。
在一些实施方案中,半透性构件具有从0.01、0.1或1毫米至10或100毫米,或更大的厚度(取决于要制造的项目的尺寸,无论它是否是层合的或与另外的支撑板例如玻璃等接触,如在下文进一步讨论的。
半透性构件对聚合抑制剂的渗透性将取决于诸如大气和/或抑制剂的压力、抑制剂的选择、制造的速率或速度等条件。一般来说,当抑制剂是氧时,半透性构件对氧的渗透性可以是从10或20巴至高达1000或2000巴,或更高。例如,使用纯氧,或在150 PSI的压力下的高富氧气氛的具有10巴渗透性的半透性构件可与当从大气压下的环境气氛供应氧时具有500巴渗透性的半透性构件表现基本上相同。
因此,半透性构件可包含柔性聚合物膜(具有任何合适的厚度,例如,从0.001、0.01、0.05、0.1或1毫米至1、5、10或100毫米,或更大),而构造板还可包含伸张构件(例如,周边夹具和操作相关的应变构件或拉伸构件,如在“鼓头”中;多种周边夹具等,包括其组合),伸张构件连接至聚合物膜并固定和紧固该膜(例如,至少足以使膜在物体推进时不会粘附于物体并回弹地或弹性地从此回弹)。所述薄膜具有顶部表面和底部表面,而构造表面在顶部表面,而供料表面优选地在底部表面。在其它的实施方案中,半透性构件包含:(i)聚合物膜层(具有任何合适的厚度,例如,从0.001、0.01、0.1或1毫米至5、10或100毫米,或更大),具有设置接触所述可聚合液体的顶部表面和底部表面,和(ii) 刚性、透气性、光学透明的支撑构件(具有任何合适的厚度,例如,从0.01、0.1或1毫米至10、100或200毫米,或更大),接触所述膜层底部表面。支撑构件具有接触该膜层底部表面的顶部表面,和支撑构件具有可用作用于聚合抑制剂的供料表面的底部表面。可使用为可半渗透(即,可渗透聚合抑制剂)的任何合适的材料。例如,聚合物膜或聚合物膜层可例如,是含氟聚合物膜,例如无定形热塑性含氟聚合物,像TEFLON AF 1600TM或TEFLON AF 2400TM 含氟聚合物膜,或全氟聚醚(PFPE),特别是交联PFPE膜,或交联有机硅聚合物膜。支撑构件包含有机硅或交联有机硅聚合物构件例如聚二甲基硅氧烷构件、刚性透气性聚合物构件,或多孔或微孔玻璃构件。膜可直接层合或夹紧在刚性支撑构件上而无粘连(例如,使用PFPE和PDMS材料),或者可利用与PDMS层的上表面反应的硅烷偶合剂,以粘附于第一聚合物膜层。UV-可固化的、丙烯酸酯-官能化有机硅也可用作UV-可固化PFPE和刚性PDMS支撑层之间的连接层。
当配置用于放置在设备中时,载体限定在构造表面上、在构造表面的总面积内的“构造区”。由于本发明不需要侧向“抛投(throw)” (例如,在X和/或Y方向上)以打破连续层之间的粘附,如先前在Joyce和Chen装置中注明的,构造区在构造表面内的面积可以最大化(或相反,不专用于构造区的构造表面的面积可被最小化)。因此在一些实施方案中,构造区的总表面积可占据构造表面的总表面积的至少50、60、70、80或90%。
如在图2中所示,各种组件被安装在支撑物或框架组件20上。虽然支撑物或框架组件的具体设计不是关键的,并可以采取多种构造,在说明性实施方案中,它包含辐射源11固定地或紧固地附接的基座21,平移台操作连接的垂直构件22,和壁14可拆卸或固定地附接的水平台23 (或所述壁置于其上),和刚性固定的(永久地或者可拆卸地)构造板,以形成如上所述的构造室。
如上所注明的,构造板可由刚性半透性构件的单个单式和整体部件组成,或可包含另外的材料。例如,多孔或微孔玻璃可层合或固定于刚性半透性材料。或者,作为上面部分的半透性构件可被固定于具有在其中形成的清除通道的透明下部构件,用于携带聚合抑制剂至半透性构件的进料气体(它通过半透性构件传送到构造表面,以促进未聚合液体材料的释放层的形成,如上下文所说明的)。这样的清除通道可以完全或部分地通过基板延伸:例如,清除通道可部分地延伸进入基板,但然后在构造表面的直接下层区域结束,以避免引入变形。具体的几何形状将取决于用于进入半透性构件的抑制剂的供料表面是否位于构造表面的同侧或对侧,在其边缘部分上,或其几种的组合。
可使用任何合适的辐射源(或辐射源的组合),这取决于所用的具体树脂,包括电子束和电离辐射源。在优选的实施方案中,辐射源是光化辐射源,例如一个或多个光源,且特别是一个或多个紫外线光源。可使用任何合适的光源,例如白炽灯、荧光灯、磷光或冷光灯、激光、发光二极管等,包括其阵列。光源优选地包括与控制器操作连接的图案形成元件,如上所说明的。在一些实施方案中,光源或图案形成元件包含数字(或可变形的)微镜装置(DMD),带有数字光处理器(DLP)、空间调制器(SLM),或微电子机械系统(MEMS)镜阵列、掩模(mask) (又名标线片(reticle))、侧面影象,或其组合。见,美国专利号7,902,526。优选地,光源包含空间光调制阵列例如液晶光阀阵列或微镜阵列或DMD (例如,带有操作连接的数字光处理器,通常进而在一个合适的控制器的控制下),配置为执行可聚合液体的曝光或照射,而无需掩模,例如,通过无掩模光刻法进行。见例如,美国专利号6,312,134;6,248,509;6,238,852;和5,691,541。
在一些实施方案中,如在下文进一步讨论的,可有X和/或Y方向的运动,同时伴有Z方向的运动,因此X和/或Y方向的运动在可聚合液体的聚合期间发生(这与在Y. Chen等,或M. Joyce (同上)中描述的运动相反,那是先前和随后的聚合步骤之间的运动,用于补充可聚合液体的目的)。在本发明中,可进行这样的运动,其目的是例如减少在构造表面的某一特定区域中的“烧入(burn in)”或污染。
由于本发明的一些实施方案的优点是,半透性构件上的构造表面(即,构造板或窗口)的尺寸可由于缺乏如在上面说明的Joyce或Chen装置的大量侧向“抛投”的需要而减少,在本发明的方法、系统和装置中,载体和物体的侧向运动(包括X和/或Y方向的运动或其组合) (如果这样的侧向运动存在)优选地不超过、或少于构造区的宽度(在侧向运动的方向)的80、70、60、50、40、30、20或甚至10%。
虽然在一些实施方案中,载体被安装在升降机上以向上推进并离开静止的构造板,对于其它的实施方案,可以使用相反的排列:即,载体可以是固定的,而构造板降低,由此推动载体与其离开。许多不同机械构造能达到相同结果对本领域技术人员而言将是显而易见的。
取决于制备载体的材料的选择,和制备物品的聚合物或树脂的选择,物品对载体的粘附有时可能不足以将物品保留在载体上直到最终物品或“构造物”的完成。例如,铝载体可具有比聚(氯乙烯) (或“PVC”)载体更低的粘附。因此一种解决方案是使用在表面包含PVC的载体,以使要制造的物品在该表面上聚合。如果这使粘附性提高太多以致不能便利地从载体分离最终部件,那么多种技术的任何一种可被用来进一步将物品固定到一个较少粘性的载体上,包括但不限于应用胶带,例如"用于基底油漆#2025的高附着力Greener遮蔽胶带(Greener Masking Tape for Basic Painting #2025 High adhesion)",以在制造期间将物品进一步固定到载体上。
3. 控制器和过程控制
本发明的方法和装置可包括过程步骤和装置特征以实现过程控制,包括反馈和前馈控制,以例如提高方法的速度和/或可靠性。
用于执行本发明的控制器可作为硬件电路、软件,或其组合实施。在一个实施方案中,控制器是运行软件的通用计算机,通过合适的接口硬件和/或软件与监视器、驱动器、泵及其它组件操作联通。用于控制如本文描述的三维打印或制造方法和装置的合适软件包括,但不限于,ReplicatorG开源3d打印程序、来自3D系统的3DPrintTM控制器软件、Slic3r、Skeinforge、KISSlicer、Repetier-Host、PrintRun、Cura等,包括其组合。
在工艺过程期间(例如,在所述填充、照射和推进步骤的一个、一些或全部期间),直接或间接监测(连续或间歇地)的工艺参数包括但不限于照射强度、载体温度、在构造区的可聚合液体、生长产品的温度、构造板的温度、压力、推进速度、压力、力(例如,通过载体和要制造的产品施加于构造板上)、应变(例如,通过要制造的生长产品施加于载体上)、释放层的厚度等。
可用于反馈和/或前馈控制系统的已知参数包括但不限于可聚合液体的预期消耗(例如,得自已知的要制造物品的几何形状或体积)、要从可聚合液体形成的聚合物的降解温度等。
响应于被监测的参数,和/或已知的参数(例如,在任何或所有上文说明的过程步骤期间)的直接或间接控制(连续地或步进地)的过程条件包括但不限于可聚合液体的供应速率、温度、压力、载体的推进速率或速度,照射强度、照射持续时间(如对于每一“片”)等。
例如,在构造区的可聚合液体的温度,或构造板的温度,可直接或间接地用适宜的热电偶、非接触式温度传感器(例如,红外温度传感器),或其它合适的温度传感器监测,以测定温度是否超过聚合产品的降解温度。如果是这样的话,可以通过控制器调整工艺参数,以降低构造区和/或构造板的温度。这样调整的合适的工艺参数可包括:用冷却器降低温度,降低载体推进的速率,降低照射强度,减少辐照曝光的持续时间等。
此外,照射源(例如,紫外线光源例如汞灯)的强度可用光电探测器监测,以检测来自照射源的强度的减少(例如,通过其使用过程中的常规降解)。如果检测到,可通过控制器调整工艺参数以适应强度的损失。这样的调整的合适工艺参数可包括:用加热器增加温度,降低载体推进的速率,增加光源的功率等。
作为另一个实例,控制温度和/或压力以提高制造时间可用加热器和冷却器(单独地,或彼此组合并且分别响应于控制器),和/或用压力供应(例如,泵、压力容器、阀门及其组合)和/或压力释放机械装置例如可控阀(单独地,或彼此组合并且分别响应于控制器)实现。
在一些实施方案中,在一些或全部最终产品的整个制造过程中,控制器被配置为维持本文描述的聚合区梯度(见例如,图1)。具体配置(例如,推进的时间、速率或速度、辐照强度、温度等)将取决于多个因素,例如具体可聚合液体和要制造产品的性质。维持聚合区梯度的配置可凭经验,通过输入一组预先确定的工艺参数或指令进行,或通过一系列的测试运行或“试验和错误”确定;配置可通过预先确定的指令提供;配置可通过合适的监测和反馈(如上所讨论的),其组合,或以任何其它的合适的方式实现。
在一些实施方案中,如上所述的方法和装置可由在具有计算机和上述装置之间的合适接口硬件的通用计算机中运行的软件程序控制。许多备选装置是可市售获得的。组件的一个组合的非限制性实例在图3-5中示出,其中“微控制器”是Parallax Propeller,步进电机驱动器是Sparkfun EasyDriver,LED驱动器是Luxeon单LED驱动器,USB串行接口是Parallax USB串行接口转换器,和DLP系统是Texas Instruments LightCrafter系统。
4. 通用方法
如上所说明的,本发明提供一种形成三维物体的方法,其包括以下步骤:(a) 提供载体和构造板,所述构造板包含半透性构件,所述半透性构件包含构造表面和从所述构造表面分开的供料表面,所述构造表面和所述载体限定它们之间的构造区,而所述供料表面与聚合抑制剂流体接触;然后(同时和/或顺序) (b) 用可聚合液体填充所述构造区,所述可聚合液体接触所述构造区段,(c) 通过所述构造板照射所述构造区,以在所述构造区产生固体聚合区,其中液体膜释放层由在所述固体聚合区和所述构造表面之间形成的所述可聚合液体构成,液体膜的聚合被所述聚合抑制剂抑制;和(d) 推进所述载体与粘附于其上的所述聚合区离开所述静止的构造板上的所述构造表面,以创建所述聚合区和所述顶部区之间的后续构造区。一般来说,所述方法包括(e) 连续的和/或重复的步骤(b)-(d),以产生粘附于先前的聚合区的后续聚合区,直至彼此粘附的聚合区域连续或重复的沉积,形成所述三维物体。
由于不需要释放层的机械释放,或不需要构造表面的机械运动以补充氧,所述方法可以连续的方式进行,尽管应该意识到,上述的各个步骤可以按顺序、同时,或以其组合进行。确实,步骤的速率可随时间而变化,这取决于例如制造中的区域的密度和/或复杂度等因素。
同样,由于从窗口或从释放层的机械释放一般需要载体从构造板被推进一段比对下一个照射步骤所需的距离更大的距离,这使得窗口可被重涂,然后载体返回到靠近构造板(例如,“进两步退一步”操作),在一些实施方案中,本发明允许排除这个“后退(back-up)”步骤并允许载体单向,或以单一方向推进,而不干扰窗口重涂的运动,或预形成的弹性释放层的“突然运动(snapping)”。然而,在本发明的其它实施方案中,采用往复运动不是为了达到释放的目的,而是为了更快速地填充或将可聚合液体泵送到构造区的目的。
在一些实施方案中,对于每个步骤或增量而言,推进步骤按均匀增量顺序进行(例如,从0.1或1微米至高达10或100微米,或更大)。在一些实施方案中,对于每个步骤或增量而言,推进步骤以可变的增量(例如,每个增量的范围从0.1或1微米至高达10或100微米,或更大)按顺序进行。增量的大小,以及推进的速率,将部分取决于多个因素,例如温度、压力、要生产的物品的结构(例如,大小、密度、复杂程度、构型等)。
在本发明的其它实施方案中,推进步骤以一致的或可变的速率连续地进行。
在一些实施方案中,推进速率(是否顺序或连续地进行)是从约0.1、1或10微米每秒至最多约100、1,000或10,000微米每秒,也取决于诸如温度、压力、要生产的物品的结构,辐照强度等因素。
如在下文进一步描述的,在一些实施方案中,填充步骤通过在压力下迫使所述可聚合液体进入所述构造区来进行。在这样一种情况下,推进一个或多个步骤可以至少0.1、1、10、50、100、500或1000微米每秒,或更大的速率或累积或平均速率进行。一般来说,与在缺乏所述压力下重复所述推进步骤的最大速率比较,所述压力可能足以增加所述推进步骤的速率诸如到至少2、4、6、8或10倍。其中压力通过环绕装置例如在上述的压力容器中提供,并可使用10、20、30或40磅每平方英寸(PSI)至高达200、300、400或500 PSI或更大压力的加压气氛(例如,空气、富氧空气、多种气体的共混物、纯氧等)中执行该过程。对于制造较大型不规则物体,由于大的高压容器的成本,与较慢的制造时间比较,较高的压力可能是不太优选的。在这样一个实施方案中,供料表面和可聚合液体二者可在液体中与相同的压缩气体(例如,包含20-95%体积的氧的气体,氧用作聚合抑制剂)接触。
另一方面,当制造较小的项目时,或者制造可从压力容器移出或退出的杆或纤维,由于它通过其中的端口或孔来生产,那么压力容器的大小相对于要制造的产品的大小可保持较小,并且可(如果需要)更容易采用较高的压力。
如上所说明的,在一些实施方案中,照射步骤用图案化照射进行。图案化的照射可以是固定图案,或者可以是由如上所讨论的图案生成器(例如,DLP)创建的可变图案,这取决于要制造的具体项目。
当图案化的照射是可变图案,而非随着时间保持不变的图案时,那么每个照射步骤可以是任何合适的时间或持续时间,这取决于诸如照射强度,聚合材料中染料的存在或缺失,生长速率等因素。因此在一些实施方案中,每个照射步骤的持续时间可以是从0.001、0.01、0.1、1或10微秒至长达1、10或100分钟,或更久。在一些实施方案中,各个照射步骤之间的时间间隔优选尽可能短暂,例如,从0.001、0.01、0.1或1微秒至最多0.1、1或10秒。
虽然死区和聚合区梯度之间没有严格的边界(在两者接触的那些位置中),在一些实施方案中,聚合区梯度的厚度是至少与死区的厚度一样大。因此,在一些实施方案中,死区具有从0.01、0.1、1、2或10微米至高达100、200或400微米,或更大的厚度,和/或所述聚合区梯度和所述死区一起具有从1或2微米至高达400、600或1000微米,或更大的厚度。因此聚合区梯度可以是厚的或薄的,这取决于在那时的特定工艺条件。当聚合区梯度是薄的时,它也可被描述为在生长三维物体底部上的活性表面,单体可与其反应并连续与之形成不断增长的聚合物链。在一些实施方案中,聚合区梯度或活性表面维持(同时聚合步骤继续)至少5、10、15、20或30秒至长达5、10、15或20分钟或更长的时间,或直至三维产品完成。
所述方法还可包括以下步骤:中断所述聚合区梯度,经过足以在所述三维物体中形成切割线的时间(例如,在预定的计划切割的所需位置,或在所述物体的其中防止切割或减少切割不是关键的位置),然后恢复所述聚合区梯度(如通过暂停,和恢复推进步骤,增加然后降低照射强度,及其组合。
在一些实施方案中,构造表面是平坦的;在其它的实施方案中,构造表面是不规则的,例如凸形或凹形弯曲的,或具有在其中形成的壁或沟槽。在任何一种情况下,构造表面可以是光滑的或有纹理的。
弯曲的和/或不规则的构造板或构造表面可用于纤维或杆的形成,以提供不同材料给要制造的单式物体(即,不同的可聚合液体通过在构造表面上形成的通道或沟槽提供给相同构造表面,各自与分开的液体供应相关等。
用于可聚合液体的载体送料通道。虽然可聚合液体可从液体管道和贮库系统直接提供给构造板,在一些实施方案中,载体包括其中的一个或多个送料通道。载体送料通道与可聚合液体供应,例如贮库和相关的泵经流体连通。不同载体送料通道可彼此同时地与相同供应和操作流体连通,或不同载体送料通道可以是彼此独立可控的(例如,通过为每条通道提供泵和/或阀)。独立可控的送料通道可与含有相同可聚合液体的贮库流体连通,或可与含有不同的可聚合液体的贮库流体连通。在一些实施方案中,通过使用阀门组件,不同的可聚合液体可交替地通过相同的进料通道供料,如果需要的话。
5. 可聚合液体的往复运动给料
在本发明的实施方案中,载体相对于构造表面垂直往复运动,以用可聚合液体提高或加速构造区的再填充。
在一些实施方案中,垂直往复运动步骤,其包含向上行程和向下行程,以向上行程的行进距离大于向下行程的行进距离进行,从而同时部分地或全面地执行推进步骤(即,驱动载体在Z方向上远离构造板)。
在一些实施方案中,向上行程的速度逐渐加速(即,提供向上行程的逐渐开始和/或逐渐加速,经历向上行程总时间的至少20、30、40或50%的时段,直至向上行程结束,或代表向下行程开始的方向改变。换句话说,向上行程渐渐或逐渐地开始,或起动。
在一些实施方案中,向下行程的速度逐渐减速(即,提供向下行程的逐渐的终止和/或逐渐的减速,经历向下行程总时间的至少20、30、40或50%的时段。换句话说,向下行程渐渐或逐渐地结束,或终止。
虽然在一些实施方案中,存在向上行程的突然的结束,或突然减速,和向下行程的突然的开始或减速(例如,从向上行程到向下行程的行进的矢量或方向的快速改变),应该意识到,逐渐过渡也可在这里引入(例如,通过引入向上行程和向下行程之间的行进的“停滞”或暂停)。还应该意识到,虽然每个往复运动步骤可由单次向上行程和向下行程组成,往复运动步骤可包含多个(2、3、4或5或更多个)连接组的往复运动,其频率和/或振幅可以是相同的或不同的。
在一些实施方案中,垂直往复运动步骤进行从0.01或0.1秒至最多1或10秒的总时间(例如,向上行程和向下行程的每个周期)。
在一些实施方案中,行进的向上行程距离是从0.02或0.2毫米(或20或200微米)至1或10毫米(或1000至10,000微米)。向下行程的行进距离可以等同于,或少于向上行程的行进距离,其中随着在三维物体逐渐形成,向下行程行进的较短距离适合于实现载体远离构造表面的推进。当往复运动步骤包含多个连接的往复运动时,在该组的所有向上行程的行进总距离优选地大于该组中的所有向下行程的行进总距离,以随着在三维物体逐渐形成,实现载体远离构造表面的推进。
优选地,垂直往复运动步骤,且特别是其向上行程,不引起构造区的气泡或气袋形成,但代之以在整个往复运动步骤中,构造区仍充满可聚合液体,且聚合区或区域梯度在整个往复运动步骤中保持与“死区”和与要制造的生长物体的接触。如将要意识到的,与构造区无往复运动步骤时可再填充的速度比较,往复运动的目的是加速或促进构造区的再填充,特别是其中较大的构造区将用可聚合液体再填充时。
在一些实施方案中,推进步骤以1、2、5或10个单次推进每分钟至最多300、600,或1000个单次推进每分钟的速率间歇地进行,每次之后是暂停,期间进行照射步骤。应该意识到,一个或多个往复运动步骤(例如,向上行程加向下行程)可在每个推进步骤中进行。换句话说,往复运动步骤可嵌套(nested)在推进步骤中。
在一些实施方案中,单次推进经历从10或50微米至100或200微米的每次推进(任选地包括每个垂直往复运动步骤的行进总距离,例如,向上行程距离的总和减去向下行程距离)的平均行进距离来进行。
执行本发明的装置(其中在此所述的往复运动步骤基本上如上所述实施),具有与载体连接的驱动器,和/或具有与透明构件操作连接的另外的驱动器,和具有与其之一或两者操作连接的控制器并被配置为使载体和透明构件如上所述相对于彼此往复运动。
6. 通过增加光强度增加制造速度
一般来说,已经观察到,制造速度可随着增加的光强度而增加。在一些实施方案中,光被集中或"聚焦"在构造区以增加制造速度。这可使用光学装置例如物镜完成。
制造速度一般可与光照强度成正比。例如,以每小时毫米计的构造速度可通过每平方厘米毫瓦(milliWatts)的光强度乘以乘数计算。乘数可取决于多种因素,包括以下讨论的。可采用一系列的乘数,从低到高。在该范围的低端,乘数可以是约10、15、20或30。在该乘数范围的高端,乘数可以是约150、300、400或更大。
一般来说,预期上述关系为从1、5或10毫瓦每平方厘米至最多20或50毫瓦每平方厘米的光强度。
可选择光的某些光学特征以有利于增加制造速度。举例来说,可使用带有汞灯光源的带通滤波器,以提供在半峰全宽(FWHM)处测量的365 ± 10 nm光。通过进一步的实例,可使用带有LED光源的带通滤波器以提供在FWHM处测量的375 ± 15 nm光。
如上所说明的,一般来说,用于这样的过程的可聚合液体是含有作为抑制剂的氧的自由基可聚合液体,或酸催化的或含有作为抑制剂的碱的可阳离子聚合的液体。一些特定的可聚合液体当然将比其它可聚合液体更快或更有效地固化,因此更适合更高的速度,但这可能至少部分地被进一步增加光强度而抵消。
在较高的光强度和速度时,由于抑制剂被消耗,“死区”可能变得较薄。如果失去死区,则过程将中断。在这样的情况下,抑制剂的供应可通过任何合适的方式,包括提供富集和/或加压的抑制剂气氛,更多孔的半透性构件,更强或更有效的抑制剂(特别是在使用碱时)等增加。
一般来说,较低粘性的可聚合液体更适合于较高的速度,特别是用于制造具有大的和/或致密横截面的物品(虽然这可能至少部分地通过增加光强度而抵消)。可聚合液体具有在50或100厘泊至高达600、800或1000厘泊或更大的范围内的粘度(如于室温和大气压下用合适的装置例如HYDRAMOTION REACTAVISCTM粘度计(从Hydramotion Ltd, 1 YorkRoad Business Park, Malton, York YO17 6YA英国购得)测定的)。在一些实施方案中,在必要时,可聚合液体的粘性可有利地通过加热如上所述的可聚合液体来减少。
在一些实施方案中,例如具有大的和/或致密横截面的物品的制造,制造速度可通过引入往复运动以“泵送”如上所述的可聚合液体,和/或通过也如上所述的载体输送可聚合液体的使用,和/或也如上所述加热和/或加压可聚合液体来提高。
7. 叠盖(Tiling)
对于较大的构造面积,使用一个以上的光引擎以保持分辨率和光强度可能是可取的。每个光引擎可被配置为将图像(例如,像素数组)投射到构造区中,以致多个"叠盖的(tiled)"的图像被投射到构造区中。如本文所用的,术语"光引擎"可意指包括光源、DLP装置例如数字微镜装置和光学装置例如物镜的装配。"光引擎"也可包括电子器材例如与一个或多个其它的组件操作连接的控制器。
在一些实施方案中,使用具有重叠图像的配置,其中一些重叠区域采用"混合"或"平滑"的形式,如通常在例如美国专利号7,292,207、8,102,332、8,427,391、8,446,431和美国专利申请公布号2013/0269882、2013/0278840和2013/0321475中讨论的,其公开内容通过引用以其全文结合到本文中。
叠盖的图像可允许用于较大的构造区域,而不损失光强度,因此可利于更快的构造速度用于更大的物体。应该理解,可使用两个以上的光引擎组件(和相应的叠盖图像)。本发明的各种实施方案使用至少4、8、16、32、64、128或更多的叠盖图像。
8. 多个区的制造
如上所说明的,本发明的实施方案可通过多个区或区段的操作来形成三维物体。这样的方法一般包括:
(a) 提供载体和具有构造表面的光学透明的构件,载体和构造表面限定其间的构造区,其中载体相邻布置并在开始位置处与构造表面间隔;然后
(b) 通过以下步骤形成三维物体的粘附区段:
(i) 用可聚合液体填充构造区,
(ii) 用透过光学透明构件的光(例如,通过单次曝光)照射构造区,同时
(iii) 维持载体静止或以第一累积推进速率推进载体远离构造表面,从而从可聚合液体形成粘附于载体的物体的固体聚合物粘附区段;然后
(c) 任选但优选地通过以下步骤形成三维物体的过渡区段:
(i) 用可聚合液体填充构造区,
(ii) 用透过光学透明构件的光连续或间歇地照射构造区,和
(iii) 以第二累积推进速率连续或间歇地推进(例如,顺序或与照射步骤同时)载体远离构造表面,从而由可聚合液体形成粘附区段和构造表面之间的物体的过渡区段;
其中第二累积推进速率大于第一累积推进速率;然后
(d) 通过以下步骤形成三维物体的主体区段:
(i) 用可聚合液体填充构造区,
(ii) 用透过光学透明的光连续或间歇地照射构造区,和
(iii) 以第三累积推进速率连续或间歇地推进(例如,顺序或与照射步骤同时)载体远离构造表面,从而在过渡区段和构造表面之间从可聚合液体形成物体的主体区段;
其中第三累积推进速率大于第一和/或第二累积推进速率。
注意,起始位置可以是在一定位置范围(例如,多达5或10毫米或更大的范围)中的任何位置,而当载体在该位置范围内的任何位置时,照射步骤(b) (ii)以足以将固体聚合物粘附至载体的强度进行。这有利地减少三维物体不能粘附于载体的可能性,不能粘附由于载体和/或构造表面的均匀性变化、在载体布置在相邻于构造表面的驱动系统的固有变化等导致。
9. 用间歇(或频闪”)照明制造
如上所说明的,在一些实施方案中,本发明可用间歇周期或突发的照明进行。在一个实施方案中,这样的方法包括:
提供载体和具有构造表面的光学透明的构件,所述载体和构造表面限定它们之间的构造区;
用可聚合液体填充构造区,
用透过光学透明构件的光间歇地照射构造区,以从可聚合液体形成固体聚合物,
连续地推进载体远离构造表面,以从固体聚合物形成三维物体。
这样一种操作方式的另一个实施方案包括:
提供载体和具有构造表面的光学透明的构件,载体和构造表面限定它们之间的构造区;
用可聚合液体填充构造区,
用透过光学透明构件的光间歇地照射构造区,以从可聚合液体形成固体聚合物,
连续或间歇地推进(例如,顺序或与照射步骤同时)载体远离构造表面,以从固体聚合物形成三维物体。
在一些实施方案中,间歇地照射包括活跃和非活跃照明的交替周期,其中活跃照明期的平均持续时间少于非活跃照明期的平均持续时间(例如,为不超过其50、60或80%)。
在其它的实施方案中,间歇地照射包括活跃和非活跃照明的交替周期,其中活跃照明期的平均持续时间等同于或大于非活跃照明期的平均持续时间(例如,为其至少100、120、160或180%)。
这样的操作模式的实例在下文进一步给出。这些特征可与在此所述的任何其它的特征和操作步骤或参数组合。
10. 双重硬化可聚合液体:部分B
如上所述,在本发明的一些实施方案中,可聚合液体包含第一光可聚合组分(在本文中有时称为“部分A”)和通过另一种机制或以与第一组分不同的方式固化的第二组分(在文本中有时称为“部分B”) (通常通过进一步反应、聚合或链增长)。其许多实施方案可进行。在下文中注意,在描述具体的丙烯酸酯例如甲基丙烯酸酯时,也可使用其它丙烯酸酯。
部分A化学。如上所述,在本发明的一些实施方案中,树脂将具有第一组分,称为“部分A”。部分A包含可通过暴露于光化辐射或光而聚合的单体和/或预聚物的混合物,或由其组成。该树脂可具有2或更高的官能度(但是当聚合物不以其单体形式溶解时,也可使用具有1的官能度的树脂)。部分A的目的是“锁住”形成的物体的形状,或产生用于一种或多种其它组分(例如部分B)的支架。重要的是,部分A以在初始固化后维持形成的物体的形状所需的最小量或高于该最小量存在。在一些实施方案中,该量对应于小于10、20或30%重量的总树脂(可聚合液体)组成。
在一些实施方案中,部分A可反应形成交联聚合物网络或固体均聚物。
适合于部分A组分、单体或预聚物的合适的活性末端基团的实例包括但不限于:丙烯酸酯、甲基丙烯酸酯、α-烯烃、N-乙烯基、丙烯酰胺、甲基丙烯酰胺、苯乙烯类、环氧化物、硫醇、1,3-二烯、乙烯基卤化物、丙烯腈、乙烯基酯、马来酰亚胺和乙烯基醚。
部分A的固化的一个方面在于其提供支架,其中第二活性树脂组分,称为“部分B”,可在第二步骤期间固化(其可与部分A的固化同时或在其之后发生)。该第二反应优选在没有显著使在部分A的固化期间限定的原始形状变形的情况下发生。可选的方法将以所需方式导致原始形状的变形。
在具体的实施方案中,当用于本文描述的方法和装置时,部分A的固化在打印期间在一定区域内连续受到氧或胺或其它活性物质的抑制,以在固化部分和抑制剂-渗透的薄膜或窗之间形成液体界面(例如,通过连续液体相间/界面打印进行)。
部分B化学。部分B可包含单体和/或预聚物的混合物,由其组成或基本上由其组成,所述单体和/或预聚物具有在部分A固化反应后参与第二固化反应的活性末端基团。在一些实施方案中,部分B可同时加入部分A,因此其在暴露于光化辐射期间存在,或者部分B可在后续步骤中灌输至在3D打印过程期间制备的物体。用于固化部分B的方法的实例包括但不限于,使物体或支架接触热、水或水蒸汽、与部分A固化时的波长不同波长的光、催化剂(有或没有另外加热)、来自可聚合液体的溶剂蒸发(例如,使用热、真空或其组合)、微波照射等,包括其组合。
适合于部分B组分、单体或预聚物的合适的活性末端基团对的实例包括但不限于:环氧/胺、环氧/羟基、环氧丙烷/胺、环氧丙烷/醇、异氰酸酯*/羟基、异氰酸酯*/胺、异氰酸酯/羧酸、酸酐/胺、胺/羧酸、胺/酯、羟基/羧酸、羟基/酰基氯、胺/酰基氯、乙烯基/Si-H (氢硅烷化)、Si-Cl /羟基、Si-Cl/胺、羟基/醛、胺/醛、羟基甲基或烷氧基甲基酰胺/醇、氨基塑料、炔/叠氮(亦称为“点击化学”的一个实施方案,以及另外的反应包括硫醇烯(thiolene)、Michael加成、Diels-Alder反应、亲核取代反应等)、烯/硫(聚丁二烯硫化)、烯/过氧化物、烯/硫醇、炔/硫醇、羟基/卤化物、异氰酸酯*/水(聚氨酯泡沫)、Si-OH/羟基、Si-OH/水、Si-OH/Si-H (锡催化的有机硅)、Si-OH/Si-OH (锡催化的有机硅)、全氟乙烯基(偶联形成全氟环丁烷)等,其中*异氰酸酯包括受保护的异氰酸酯(例如肟))、用于Diels-Alder反应、烯烃易位聚合、使用Ziegler-Natta催化剂的烯烃聚合、开环聚合(包括开环烯烃易位聚合、内酰胺、内酯、硅氧烷、环氧化物、环醚、亚胺、环缩醛等)的二烯/亲双烯体,等等。
适合于部分B的其它活性化学为本领域技术人员可识别的。可用于形成“ConcisePolymeric Materials Encyclopedia”和“Encyclopedia of Polymer Science andTechnology”中描述的聚合物的部分B组分通过引用结合到本文中。
有机过氧化物。在一些实施方案中,有机过氧化物可包括在可聚合液体或树脂中,例如以在加热和/或微波照射固化期间促进可能未反应的双键的反应。这样的有机过氧化物可以任何合适的量包括在树脂或可聚合液体中,例如从0.001或0.01或0.1%重量直至1、2或3%重量。合适的有机过氧化物的实例包括但不限于,2,5-双(叔丁基过氧)-2,5-二甲基己烷(例如LUPEROX 101TM)、过氧化二月桂酰(例如LUPEROX LPTM)、过氧化苯甲酰(例如LUPEROX A98TM)和双(叔丁基二氧基异丙基)苯(例如VulCUP RTM)等,包括其组合。这样的有机过氧化物可获自各种来源,包括但不限于Arkema (420 rue d’Estienne d’Orves,92705 Colombes Cedex, France)。
弹性体。可用于实施本发明的特别有用的实施方案是用于形成弹性体。仅使用液体UV-可固化前体难以获得坚韧、高伸长率的弹性体。然而,存在许多热固化材料(聚氨酯、有机硅、天然橡胶),其在固化后产生坚韧、高伸长率的弹性体。这些热可固化弹性体本身通常与大多数3D打印技术不相容。
在本发明的实施方案中,少量(例如少于20%重量)的低粘性UV可固化材料(部分A)与热可固化前体混合,以形成(优选坚韧的)弹性体(例如,聚氨酯、聚脲或其共聚物(例如,聚(氨基甲酸乙酯-脲)),和有机硅) (部分B)。使用本文所述的3D打印和在可聚合液体中用于弹性体前体的支架,UV可固化组分用于将物体固化成需要的形状。该物体然后可在打印后加热,从而活化第二组分,产生包含弹性体的物体。
形成的物体的粘合。在一些实施方案中,可能有用的是,使用部分A的固化来限定多个物体的形状,对齐这些呈具体构造的物体,使得在这些物体之间存在气密密封,然后启动部分B的第二固化。以此方式,在生产期间可实现各部分之间的强粘合。特别有用的实例可为运动鞋组件的形成和粘合。
作为部分B的颗粒的融合。在一些实施方案中,“部分B”可仅由预形成的聚合物的小颗粒组成。在部分A的固化后,可将物体在高于部分B的玻璃转化温度下加热以融合内嵌的聚合物颗粒。
作为部分B的溶剂的蒸发。在一些实施方案中,“部分B”可由在溶剂中溶解的预形成的聚合物组成。在部分A固化成需要的物体后,该物体进行允许蒸发部分B的溶剂,从而固化部分B的过程(例如加热+真空)。
热可固化末端基团。在一些实施方案中,在部分A的固化后,部分A的活性化学可经热裂解以产生新的活性物质。新形成的活性物质可进一步在第二固化中与部分B反应。实例性的系统描述于Velankar, Pezos和Cooper, Journal of Applied Polymer Science, 62, 1361-1376 (1996)。此处,在UV-固化后,形成的物体中的丙烯酸酯/甲基丙烯酸酯基团经热裂解以产生二异氰酸酯预聚物,其进一步与共混的增链剂反应,以在原始固化材料或支架内产生高分子量聚氨酯/聚脲。这样的系统通常是双重硬化系统,其使用嵌段或活性的嵌段预聚物,如下文更详细论述的。可注意,后一工作表明上述的热裂解实际上是增链剂(通常是二胺)用位阻脲的置换反应,得到最终的聚氨酯/聚脲,没有产生异氰酸酯中间体。
混合各组分的方法。在一些实施方案中,可以连续的方式将各组分混合,然后引入至打印机构造板。这可使用多筒注射器和混合喷嘴进行。例如,部分A可包含UV-可固化二(甲基)丙烯酸酯树脂或由其组成,部分B可包含二异氰酸酯预聚物和多元醇混合物,或由其组成。多元醇可在一个筒中与部分A混合在一起,并保持未反应。第二注射器筒包含部分B的二异氰酸酯。以此方式,可贮存材料,无需担心“部分B”过早固化。此外,当树脂以此方式被引入打印机时,在所有组分的混合和部分A的固化之间定义恒定的时间。
可用于进行本发明的“双重固化”可聚合液体(或“树脂”)和方法的另外的实例包括但不限于,J. Rolland等人, Method of Producing polyurethane Three-Dimensional Objects from Materials having Multiple Mechanisms of Hardening, PCT公开号WO2015/200179 (2015年12月30日出版); J. Rolland等人, Methods of Producing Three- Dimensional Objects from Materials Having Multiple Mechanisms of Hardening, PCT公开号WO 2015/200173 (2015年12月30日出版); J. Rolland等人, Three- Dimensional Objects Produced from Materials Having Multiple Mechanisms of Hardening, PCT公开号WO/2015/200189 (2015年12月30日出版); J. Rolland等人,polyurethane Resins Having Multiple Mechanisms of Hardening for Use in Producing Three-Dimensional Objects (2015年12月30日出版); 和
J. Rolland等人, Method of Producing Three-Dimensional Objects from Materials having Multiple Mechanisms of Hardening, US专利申请号14/977,822(2015年12月22日提交); J. Rolland等人, Method of Producing polyurethane Three- Dimensional Objects from Materials having Multiple Mechanisms of Hardening, US专利申请号14/977,876 (2015年12月22日提交), J. Rolland等人, Three- Dimensional Objects Produced from Materials having Multiple Mechanisms of Hardening, US专利申请号14/977,938 (2015年12月22日提交)和J. Rolland等人,polyurethane Resins having Multiple Mechanisms of Hardening for Use in Producing Three-Dimensional Objects, US专利申请号14/977,974 (2015年12月22日提交)中描述的那些,
其所有的公开内容通过引用以其整体结合到本文中。
11. 制造产品
由本发明的方法和工艺生产的三维产品可以是终产品、成品或基本上的成品,或可以是预期经受进一步生产步骤例如表面处理、激光切割、电火花加工等的中间产品。中间产品包括可以相同或不同装置进行进一步的增材制造的产品。例如,缺陷或切割线可通过中断然后重建聚合区梯度被故意引入到正在进行的“构造物”中,以结束最终产品的一个区域,或仅仅是因为最终产品或“构造物”的特定区域比其它的更少脆性。
许多不同产品可通过本发明的方法和装置制得,包括大规模的模型或原型、小的定制产品、小型或超小型的产品或装置等。实例包括但不限于医学装置和可植入的医学装置例如支架、药物传递贮库、功能结构、微针阵列、纤维和杆,例如波导、微机械装置、微流体装置等。
因此在一些实施方案中,产品可具有从0.1或1毫米至高达10或100毫米,或更高的高度,和/或从0.1或1毫米至高达10或100毫米,或更宽的最大宽度。在其它的实施方案中,产品可具有从10或100纳米至高达10或100微米,或更高的高度,和/或从10或100纳米至高达10或100微米,或更宽的最大宽度。这些仅仅是实例:最大尺寸和宽度取决于具体装置的架构和光源的分辨率并可根据实施方案的特定目的或要制造的物品调整。
在一些实施方案中,产品的高宽比是至少2:1、10:1, 50:1或100:1,或更大,或为1:1、10:1、50:1或100:1,或更大的宽高比。
在一些实施方案中,产品具有在其中形成的至少一个,或多个孔或通道,如在下文进一步讨论的。
在此所述的过程可生产具有多个不同特性的产品。因此在一些实施方案中,产品是刚性的;在其它的实施方案中,产品是柔性的或回弹性的。在一些实施方案中,产品是固体;在其它的实施方案中,产品是凝胶例如水凝胶。在一些实施方案中,产品具有形状记忆力(即,在变形后基本上回复到先前的形状,只要它们不变形到结构破坏的点)。在一些实施方案中,产品是单式的(即,由单一可聚合液体形成);在一些实施方案中,产品是复合的(即,由两种或更多种不同的可聚合液体形成)。具体特性将由因素诸如所用的可聚合液体的选择来确定。
在一些实施方案中,制得的产品或物品具有至少一个突出的特征(或“突出物”),例如两个支撑体之间的桥接元件,或从一个基本上垂直的支撑物主体突出的悬臂元件。由于本发明工艺的一些实施方案的单向性、连续性,当每层被聚合至基本上完成和在下一个图案被曝光之前存在充分的时间间隔时,在各层之间形成缺陷或切割线的问题基本上被减少。因此,在一些实施方案中,所述方法在减少或消除用于此类突出物的支撑物结构的数目方面是特别有利的,所述突出物与物品同时被制造。
12. 另外和备选的方法和装置
可用于进行本发明的另外的实例装置、可聚合液体(或“树脂”)和方法包括但不限于,J. DeSimone等人, Three-Dimensional Printing Using Tiled Light Engines, PCT公开号WO/2015/195909 (2015年12月23日出版); J. DeSimone等人, Three-Dimensional Printing Method Using Increased Light Intensity and Apparatus Therefore, PCT公开号WO/2015/195920 (2015年12月23日出版), A. Ermoshkin等人, Three- Dimensional Printing with Reciprocal Feeding of Polymerizable Liquid, PCT公开号WO/2015/195924 (2015年12月23日出版); J. Rolland等人, Method of Producing polyurethane Three-Dimensional Objects from Materials having Multiple Mechanisms of Hardening, PCT公开号WO 2015/200179 (2015年12月30日出版); J.Rolland等人, Methods of Producing Three-Dimensional Objects from Materials Having Multiple Mechanisms of Hardening, PCT公开号WO 2015/200173 (2015年12月30日出版); J. Rolland等人, Three-Dimensional Objects Produced from Materials Having Multiple Mechanisms of Hardening, PCT公开号WO/2015/200189 (2015年12月30日出版); J. Rolland等人, polyurethane Resins Having Multiple Mechanisms of Hardening for Use in Producing Three-Dimensional Objects (2015年12月30日出版); 和J. DeSimone等人, Methods and Apparatus for Continuous Liquid Interface Production with Rotation, PCT公开号WO/2016/007495中描述的那些,其公开内容通过引用以其整体结合到本文中。
在本发明的备选实施方案中,可用描述于Hull, US专利号5,236,637图4中的方法和装置进行所述方法,其中可聚合液体漂浮在不可混溶的液体层上方(在其中称为“非浸润”)。此处,不可混溶的液体层用作构造表面。如果如此实施,不可混溶的液体(其可以是水性或非水性的)优选:(i) 具有大于可聚合液体的密度,(ii) 与可聚合液体不可混溶,和(iii) 对可聚合液体是可浸润的。成分例如表面活性剂、湿润剂、粘性增强剂、颜料和颗粒可任选包括在可聚合液体或不可混溶的液体的任一或两者中。
虽然本发明优选如在上文详细的,通过连续的液相间聚合进行,但在一些实施方案中,可采用用于自下而上三维制造的备选方法和装置,包括逐层制造。这样的方法和装置的实例包括但不限于在授权于John的美国专利号7,438,846和授权于El-Siblani的美国专利号8,110,135中,和在Joyce的美国专利申请公布号2013/0292862和Chen 等人的2013/0295212中描述的那些。这些专利和申请的公开内容通过引用以其全文结合到本文中。
本发明在以下非限制性实施例中更详细地说明。
实施例1
用间歇照射和推进连续制造
本发明的过程在图6中说明,其中垂直轴说明载体的运动远离构造表面。在该实施方案中,垂直运动或推进步骤(其可通过驱动载体或者构造表面,优选载体来完成)是连续和单向的,而照射步骤连续地进行。要制造的物品的聚合从聚合梯度发生,因此在物品内“逐层”缺陷线的产生最小化。
本发明的备选实施方案在图7中说明。在该实施方案中,推进步骤以逐步方式进行,在载体和构造表面彼此远离的主动推进之间引入暂停。此外,在这种情况下,在推进步骤中的暂停期间,照射步骤间歇地进行。发明人发现,只要在照射和/或推进中的暂停期间,将聚合的抑制剂以足以维持死区和相邻的聚合梯度的量提供到死区,则聚合的梯度被维持,并在制造的物品内形成层会最小化或得以避免。换句话说,聚合是连续的,即使照射和推进步骤不连续。足够的抑制剂可通过多种技术的任何一种供应,包括但不限于:利用足以渗透抑制剂,富含抑制剂(例如,从富含抑制剂和/或加压气氛输送抑制剂)等的透明构件。一般来说,三维物体的制造越快(即,推进的累积速率越快),维持死区和相邻的聚合梯度所需要的抑制剂就越多。
实施例2
在推进期间用往复运动连续制造,以促进构造区被可聚合液体填充
本发明的一个更进一步的实施方案在图8中说明。如在以上实施例1图7中,该实施方案,推进步骤以逐步方式进行,在载体和构造表面彼此远离的主动推进之间引入暂停。也如在以上实施例1中,照射步骤再次在推进步骤中的暂停期间间歇地进行。然而,在这个实施例中,在推进和照射的暂停期间维持死区和聚合的梯度的能力受益于在照射的暂停期间的垂直往复运动。
发明人发现,垂直往复运动(驱动载体和构造表面离开,然后向彼此返回),特别是在照射的暂停期间,明显地通过将可聚合液体引入构造区,用于促进构造区被可聚合液体填充。当照射较大的区域或制造较大的部件时,这是有利的,而填充构造区的中心部分对原本快速的制造可能有速率限制。
在垂直方向或Z轴的往复运动可以任何合适的速度,在两个方向上进行(而在两个方向中,速度不需要相同),但当往复运动离开时,优选速度不足以在构造区引起气泡的形成。
虽然在图23中显示了在照射的每次暂停期间往复运动的单次循环,应该意识到,多个循环(其可以是彼此相同或不同的)可在每次暂停期间引入。
如在以上实施例1中,只要在往复运动期间,将聚合的抑制剂以足以维持死区和相邻的聚合梯度的量施用于死区,则聚合梯度被维持,在制造的物品内形成层会最小化或得以避免,且聚合/制造保持连续,即使照射和推进步骤不连续。
实施例3
在往复运动向上行程期间加速和在往复运动向下行程期间减速,以提高部件质量
发明人观察到存在向上行程和相应的向下行程的限速,如果超速则引起要制造的部件或物体的质量的劣化(可能由于由树脂流动的横向剪切力引起的聚合梯度内软区域的退化)。为减少这些剪切力和/或提高要制造的部件的质量,发明人在向上行程和向下行程内引入可变的速率,逐渐加速发生在向上行程期间,而逐渐减速发生在向下行程期间,如在图9中示意说明的。
实施例4
在多个区中制造
图10示意性地显示在通过如上所述的方法,通过第一基底(或“粘附”)区、任选的第二过渡区、和第三主体区,在制造三维物体的过程中,载体(z)随时间(t)的运动。因此,形成三维物体的整个全部过程被分成3个(或2个)直接连续的区段或区。所述区优选在3个区之间以连续的顺序进行,而没有暂停的实质性延迟(如,大于5或10秒),优选以致聚合梯度在所述区之间没有被中断。
第一基底(或“粘附”)区包括以比用于后续过渡和/或主体区更高的剂量(更长的持续时间和/或较大的强度)的初始光或照射曝光。这是在过程的开始,通过确保树脂牢固地聚合于载体,避免载体与构造表面不完全对齐的问题,和/或载体定位从构造表面变化的问题。注意任选的往复运动步骤(用于初始分配或泵送可聚合液体到构造区中或进入构造区)在载体定位于其初始(起始)位置之前显示。注意释放层(未示出)例如可溶性释放层仍可包括在载体和初始聚合材料之间,如果需要的话。一般来说,三维物体的小的或次要部分在该基底区期间生产(例如,少于1、2或5%体积)。类似地,一般来说,该基底区的持续时间是基底区、任选的过渡区和主体区的持续时间总数的小的或次要部分(例如,少于1、2或5%)。
紧接着过程的第一基底区之后,有一个任选的(但优选的)过渡区。在该实施方案中,与如上所述的在基底区使用的比较,照明的持续时间更少和/或强度更低,且振荡步骤的位移较小。过渡区可(在示例性的实施方案中)通过从2或5,至高达50或更多振荡步骤及其相应的照明来进行。一般来说,三维物体的中间部分(大于基底区期间形成的部分,但小于在主体区期间形成的部分)在过渡区期间生产(例如,从1、2或5%至10、20或40%体积)。类似地,该过渡区的持续时间一般来说大于基底区的持续时间,但少于主体区的持续时间(例如,基底区、过渡区和主体区的持续时间总数的从1、2或5%至10、20或40%的持续时间(例如,少于1、2或5%)。
紧接着过程的过渡区之后(或,如果不包括过渡区,紧接着过程的基底区之后),存在主体区,在此期间,三维物体的其余部分形成。在示例性实施方案中,主体区用比基底区(并且,如果存在,优选以比过渡区的剂量更低的剂量)更低的剂量照明来进行,和往复运动步骤(任选地,但在一些实施方案中优选地)以比基底区更小的位移(并且,如果存在,任选地,但优选以比过渡区更低的位移)来进行。一般来说,三维物体的主要部分,通常大于60、80或90%体积,在过渡区中生产。类似地,该主体区的持续时间,一般来说,大于基底区和/或过渡区的持续时间(例如,基底区、过渡区和主体区的持续时间总数的至少60、80或90%的持续时间)。
注意,在这个实施例中,多个区结合振荡的制造方式来举例说明,但在此所述的多个区制造技术也可用在以下实施例进一步说明的其它制造模式实施(其中按包括过渡区来说明,但也是任选的)。
实施例5
用间歇(或“频闪”)照明制造
操作的“频闪”方式的目的是减少光或辐射源打开或激活的时间量(例如,不超过完成三维物体制造所需总时间的80、70、60、50、40或30%),并增加其强度(与当推进以相同的速度累积速率进行而没有这样的减少时间的主动照明或辐射时所需的强度比较),以致光或辐照的总剂量以另外的方式保持基本上相同。这允许更多的时间用于树脂流入构造区,而没有试图同时固化它。频闪(stobe)模式技术可以应用于本文以上所述的任何现有的一般操作模式,包括如在下文进一步讨论的连续、步进和振荡模式。
图11A示意性地示出一个连续模式的实施方案。在该常规的连续模式中,图像被投影,而载体开始向上移动。图像在一定间隔改变,以代表要生产的、对应于构造平台高度的三维物体的横截面。构造平台的运动速度可以因一些原因而有所不同。如所举例说明的,通常有基底区,其中主要目标是将物体粘附于构造平台,具有适合于要生产的整个物体速度的主体区,和从基底区的速度和/或剂量逐渐过渡到主体区的速度和/或剂量的过渡区。注意到仍要进行固化,以使在构造区中的可聚合液体聚合的梯度(其防止逐层形成缺陷线)优选得以保持,并且如上所讨论的,载体(或生长物体)保持与可聚合液体的流体接触。
图11B示意性地说明频闪连续模式的一个实施方案。在连续的频闪中,光强度增加,但图像以短的闪光或断续的区段被投射。增加的强度允许树脂更快地固化,以致在固化期间的流量是最小的。各次闪光之间的时间使树脂流动,而同时不发生固化。这可减少试图固化移动树脂引起的问题,例如点蚀(pitting)。
此外,以频闪方式实现的光源的占空比(duty cycle)降低可允许使用增加的间歇性功率。例如:如果用于常规连续模式的强度是5mW/cm2,则强度可以增加一倍至10mW/cm2,而图像投影的时间可减少至所述时间的一半,或强度可以增加到5倍至25mW/cm2,和时间可以减少至先前的开灯时间的1/5。
图12A示意性地说明步进方式的一个实施方案:在常规的步进方式中,图像被投射,同时构造平台是静止的(或移动缓慢,与照明之间的更快速的运动比较)。当一个高度增量被充分曝光时,图像被关闭,而构造平台通过一些增量向上移动。这种运动可处于一种速度,或该速度可例如通过从慢速(当未固化树脂的厚度是薄的时)向更快(当未固化树脂的厚度较厚时)加速而变化。一旦构造平台是在新的位置,则下一个横截面的图像被投影以充分曝光下一个高度增量。
图12B示意性地说明频闪步进方式的一个实施方案:在频闪步进方式中,光强度增加,而图像被投影的时间量减少。这允许更多的时间用于树脂流动,因此打印的整体速度可降低或运动的速度可减少。例如:如果对于常规步进方式的强度是5mW/cm2和构造平台以100um/1秒的增量移动,且图像被投影1秒钟,则强度可增加一倍至10mW/cm2,图像投影的时间可减少至0.5秒,和运动的速度可减慢至50um/秒,或平台移动的时间可以减少至0.5秒。增加的强度可以多至5倍或更大,以允许分配给图像投影的时间减少至1/5或更少。
图13A示意性地说明振荡模式的一个实施方案:在振荡模式中,图像被再次投影,同时构造平台是静止的(或与照明之间的更快速运动比较,移动缓慢)。当一个高度增量被固化时,图像被关闭,而构造平台向上移动,将额外的树脂引入构造区,然后向下移动回到前一个固化高度上方的下一个高度增量。这种运动可处于一种速度,或速度可例如通过从慢速(当未固化树脂的厚度是薄的时)向更快(当未固化树脂的厚度较厚时)加速而变化。一旦构造平台是在新的位置,则下一个横截面的图像被投影以固化下一个高度增量。
图13B说明频闪振荡模式的一个实施方案。在频闪振荡模式中,光强度增加,而图像被投影的时间量减少。这允许更多的时间用于树脂流动,因此打印的整体速度可降低或运动的速度可减少。例如:如果对于常规振荡模式的强度是5mW/cm2和构造平台向上移动1mm,并在1秒钟回到以前的高度以上100um的增量,且图像被投影1秒钟,则强度可增加一倍至10mW/cm2,图像投影的时间可减少至0.5秒,且运动的速度可减少一半,或平台移动的时间可以减少至0.5秒。增加的强度可以多至5倍或更大,以允许分配给图像投影的时间减少至1/5或更少。图13B的区段“A”在下文进一步讨论。
图14A说明在另一个频闪振荡模式的实施方案中操作的制造方法的区段。在这个实施方案中,区段的持续时间(在此期间载体是静止的)缩短到接近频闪照明的持续时间,以致振荡区段的持续时间可(如果需要)被延长,而不改变累积推进速率和制造速度。
图14B说明类似于图14A的频闪振荡模式的另一个实施方案的区段,除了载体现在在照明区段期间推进外(相对缓慢,与振荡区段的向上行程比较)。
实施例6
工艺参数在制造中的变化
在实施例13-14的方法中,在主体区期间的操作条件在整个区间显示为恒定的。然而,各种参数可在主体区的过程中被改变或修改,如在下文进一步讨论的。
在生产期间改变参数的一个主要理由将是三维物体的横截面几何形状的变化;即,相同三维物体的较小(较易填满)和较大(较难填满)的区段或部分。对于较易填满的区段(例如,1-5mm直径的等同物),向上运动的速度可以是快的(高达50-1000m/hr)和/或泵高度可以是最小的(例如,小至100-300um)。对于较大横截面的区段(例如,5-500mm直径的等同物),向上运动的速度可以是较低的(例如,1-50 mm/hr)和/或泵高度可以是较大的(例如,500-5000um)。具体参数当然将取决于诸如照明强度、特定的可聚合液体(包括其成分例如染料和填充剂浓度)、采用的具体构造表面等因素而变化。
在一些实施方案中,总的光剂量(由时间和强度确定)可随着要照射的横截面"体积"增加而减小。所述另一种方法,小的光点可能需要比较大的光面积更高的每单位剂量。不希望受任何特定理论的束缚,这可能涉及到可聚合液体的化学动力学。这种影响可使得发明人增加用于较小横截面直径等同物的总体光剂量。
在一些实施方案中,可改变不同的步骤或泵之间的每个高度增量的厚度。这可能是增加速度同时降低分辨率的要求(即,相对于需要更高精度或需要更精确或窄的公差的物体部分,制造需要较小的精度或允许更多的变化的部分)。例如,人们可从100um增量变化至200um或400um增量并将用于增加的厚度的所有固化组合到一个时间段内。这个时间段可比用于等同物较小增量的合并时间更短、相同或更长。
在一些实施方案中,递送的光剂量(时间和/或强度)可在特定的横截面(物体的垂直区域)或甚至在相同的横截面或垂直区内的不同区域中变化。这可能要改变特定的几何形状的刚度或密度。这可例如通过改变在不同高度增量的剂量,或改变每个高度增量照明的不同区域的灰度百分比来实现。
前文说明了本发明,并不应解释为对其限制。本发明受以下权利要求以及包括在其中的权利要求等价物的限定。

Claims (31)

1.一种形成三维物体的方法,其包括:
提供载体和具有构造表面的光学透明的构件,所述载体和所述构造表面限定它们之间的构造区;
用可聚合液体填充所述构造区,
用光透过所述光学透明的构件间歇地照射所述构造区,以从所述可聚合液体形成固体聚合物,
连续地推进所述载体远离所述构造表面,以从所述固体聚合物形成所述三维物体。
2.权利要求1的方法,其中所述间歇地照射包括活跃和非活跃照明的交替周期,其中活跃照明的周期的平均持续时间小于非活跃照明的周期的平均持续时间。
3. 权利要求1或2的方法,其中进行所述填充、照射和/或推进步骤,同时还:
(i) 连续维持可聚合液体的死区与所述构造表面接触,和
(ii) 连续维持所述死区和所述固体聚合物之间的聚合区梯度并维持其相互接触,所述聚合区梯度包含呈部分固化形式的所述可聚合液体。
4.一种形成三维物体的方法,其包括:
提供载体和具有构造表面的光学透明的构件,所述载体和所述构造表面限定它们之间的构造区;
用可聚合液体填充所述构造区,
用光透过所述光学透明的构件间歇地照射所述构造区,以从所述可聚合液体形成固体聚合物,
连续或间歇地推进(例如,与所述照射步骤顺序或同时)所述载体远离所述构造表面,以从所述固体聚合物形成所述三维物体,
其中所述间歇地照射包括活跃和非活跃照明的交替周期,其中活跃照明的周期的平均持续时间小于非活跃照明的周期的平均持续时间。
5.权利要求5的方法,其中所述填充步骤还包括所述载体相对于所述构造表面垂直往复运动,以提高或加速用所述可聚合液体再填充所述构造区。
6. 权利要求4或5的方法,其中进行所述填充、照射和/或推进步骤,同时还:
(i) 连续维持可聚合液体的死区与所述构造表面接触,和
(ii) 连续维持所述死区和所述固体聚合物之间的聚合区梯度并维持其相互接触,所述聚合区梯度包含呈部分固化形式的所述可聚合液体。
7.任一项前述权利要求的方法,其中所述构造表面在横向(例如X和Y)维度上固定和静止。
8.任一项前述权利要求的方法,其中所述推进以至少0.1、1、10、100或1000微米/秒的累积速率(例如,经过所有区)进行。
9.任一项前述权利要求的方法,其中所述光学透明的构件包含半透性构件,和所述连续维持死区通过以足以维持所述死区和所述聚合梯度的量,经所述光学透明的构件供给聚合抑制剂来进行。
10.任一项前述权利要求的方法,其中所述光学透明的构件由半透性聚合物(例如,含氟聚合物)构成。
11.任一项前述权利要求的方法,其中所述聚合区梯度和所述死区一共具有1-1000微米的厚度。
12.任一项前述权利要求的方法,其中所述聚合区梯度维持至少5、10、20或30秒,或至少1或2分钟的时间。
13.任一项前述权利要求的方法,其还包括加热所述可聚合液体以减少其在所述构造区中的粘度的步骤。
14.任一项前述权利要求的方法,其中所述照射步骤通过无掩模光刻法进行。
15. 任一项前述权利要求的方法,其中:
所述可聚合液体包含自由基可聚合液体和所述抑制剂包含氧;或
所述可聚合液体包含酸催化的或可阳离子聚合的液体,且所述抑制剂包含碱。
16.任一项前述权利要求的方法,其中:
所述可聚合液体包含以下组分的混合物:(i)光可聚合液体第一组分,和(ii)不同于所述第一组分的第二可固化组分,
所述方法还包括:
与所述三维物体的形成同时,或在所述三维物体的形成之后,凝固和/或固化所述三维物体中的所述第二可固化组分。
17.权利要求16的方法,其中所述第二组分包含溶解或悬浮于所述第一组分中的可聚合液体。
18.权利要求16的方法,其中所述第二组分包含:
(i) 悬浮于所述第一组分中的可聚合固体;
(ii) 溶解于所述第一组分中的可聚合固体;或
(iii) 溶解于所述第一组分中的聚合物。
19.权利要求16的方法,其中所述三维中间体是可折叠的或可压缩的。
20.权利要求16的方法,其中所述三维物体包含由所述第一组分和所述第二组分形成的聚合物共混物、互穿聚合物网络、半-互穿聚合物网络或连续互穿聚合物网络。
21. 权利要求16的方法,其中所述可聚合液体包含:
从1或10%重量至40、90或99%重量的所述第一组分;和
从1、10或60%重量至90或99%重量的所述第二组分。
22. 权利要求16的方法,其中所述凝固和/或固化步骤(d)与所述照射步骤(c)同时进行,并且通过以下进行:
(i)所述凝固和/或固化步骤通过沉淀进行;或
(ii)所述照射步骤由所述第一组分的聚合产生热,其量足以热固化或聚合所述第二组分。
23.权利要求16的方法,其中所述凝固和/或固化步骤(d)在所述照射步骤(c)之后进行,并且通过以下进行:
(i) 加热所述第二可固化组分;
(ii) 用波长不同于所述照射步骤(c)的光波长的光照射所述第二可固化组分;
(iii) 使所述第二可聚合组分与水接触;和/或
(iv)使所述第二可聚合组分与催化剂接触。
24.权利要求16的方法,其中:所述第二组分包含聚氨酯、聚脲或其共聚物的前体;有机硅树脂、环氧树脂、氰酸酯树脂或天然橡胶;并且所述固化步骤通过加热和/或微波照射进行。
25. 权利要求16的方法,其中:
所述第二组分包含聚氨酯、聚脲或其共聚物的前体,和
所述凝固和/或固化步骤通过使所述第二组分与水接触进行。
26. 权利要求16的方法,其中:
所述凝固和/或固化步骤(d)在所述照射步骤后进行;和
所述凝固和/或固化步骤(d)在其中所述固体聚合物支架降解和形成对所述第二组分的聚合所必需的成分的条件下进行。
27. 权利要求16的方法,其中:
所述第二组分包含聚氨酯、聚脲或其共聚物的前体,有机硅树脂,开环易位聚合树脂,或点击化学树脂,氰酸酯树脂,和
所述凝固和/或固化步骤通过使所述第二组分与聚合催化剂接触进行。
28.权利要求16的方法,其中所述可聚合液体包含第一组分(部分A)和至少一种另外的组分(部分B),
所述第一组分包含单体和/或预聚物,其可通过暴露于光化辐射或光而聚合;
所述第二组分在与以下接触时可固化:热、水、水蒸汽、与所述第一组分聚合时的波长不同波长的光、催化剂、来自可聚合液体的溶剂蒸发、对微波照射的暴露和其组合。
29.权利要求28的方法,所述第一组分单体和/或预聚物包含活性末端基团,其选自丙烯酸酯、甲基丙烯酸酯、α-烯烃、N-乙烯基、丙烯酰胺、甲基丙烯酰胺、苯乙烯、环氧化物、硫醇、1,3-二烯、乙烯基卤化物、丙烯腈、乙烯基酯、马来酰亚胺和乙烯基醚。
30.权利要求28的方法,所述另外的组分包含单体和/或预聚物,其包含选自以下的活性末端基团:环氧/胺、环氧/羟基、环氧丙烷/胺、环氧丙烷/醇、异氰酸酯/羟基、异氰酸酯/胺、异氰酸酯/羧酸、氰酸酯、酸酐/胺、胺/羧酸、胺/酯、羟基/羧酸、羟基/酰基氯、胺/酰基氯、乙烯基/Si-H、Si-Cl/羟基、Si-Cl/胺、羟基/醛、胺/醛、羟基甲基或烷氧基甲基酰胺/醇、氨基塑料、炔/叠氮、点击化学活性基团、烯/硫、烯/硫醇、炔/硫醇、羟基/卤化物、异氰酸酯/水、Si-OH/羟基、Si-OH/水、Si-OH/Si-H、Si-OH/Si-OH、全氟乙烯基、二烯/亲二烯体、烯烃易位聚合基团、用于Ziegler-Natta催化的烯烃聚合基团、和开环聚合基团和其混合物。
31.权利要求16的方法,其中所述三维物体包含互穿聚合物网络(IPN),所述互穿聚合物网络包含溶胶-凝胶组合物、疏水-亲水IPN、酚醛树脂、聚酰亚胺、导电聚合物、基于天然产物的IPN、连续IPN、聚烯烃或其组合。
CN201680008982.6A 2015-02-05 2016-02-03 通过间歇曝光的增材制造方法 Active CN107438513B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562112290P 2015-02-05 2015-02-05
US62/112290 2015-02-05
PCT/US2016/016332 WO2016126796A2 (en) 2015-02-05 2016-02-03 Method of additive manufacturing by intermittent exposure

Publications (2)

Publication Number Publication Date
CN107438513A true CN107438513A (zh) 2017-12-05
CN107438513B CN107438513B (zh) 2020-12-29

Family

ID=55436156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680008982.6A Active CN107438513B (zh) 2015-02-05 2016-02-03 通过间歇曝光的增材制造方法

Country Status (12)

Country Link
US (2) US10792855B2 (zh)
EP (1) EP3253559B1 (zh)
JP (1) JP6731930B2 (zh)
KR (1) KR20170115070A (zh)
CN (1) CN107438513B (zh)
AU (1) AU2016215409B2 (zh)
BR (1) BR112017016780A2 (zh)
CA (1) CA2974982A1 (zh)
HK (1) HK1248185A1 (zh)
MX (1) MX2017010111A (zh)
SG (1) SG11201705781SA (zh)
WO (1) WO2016126796A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109213233A (zh) * 2018-03-21 2019-01-15 中国航空制造技术研究院 一种电子束熔丝增材制造中的温度场调控方法及其设备
CN109648851A (zh) * 2019-01-19 2019-04-19 郑州迈客美客电子科技有限公司 兼顾光强一致性和分辨精度的阵列式面光源的获取方法、阵列式面光源、及光固化装置
CN110982246A (zh) * 2018-10-08 2020-04-10 致达应材股份有限公司 一种3d打印用材料及其制备方法
CN112055643A (zh) * 2018-03-16 2020-12-08 维纳米技术公司 三维陶瓷图案的喷墨印刷
CN112313069A (zh) * 2018-07-02 2021-02-02 依视路国际公司 用于在增材制造工艺中确定三维产品的优先级和位置的方法
CN114641144A (zh) * 2022-03-24 2022-06-17 浙江大学 一种光控增材制造电子电路的方法
CN115038572A (zh) * 2020-01-29 2022-09-09 惠普发展公司,有限责任合伙企业 使用含碳酰胺的化合物的三维打印
US11732149B2 (en) 2018-10-08 2023-08-22 Vista Applied Materials, Inc. Formulation composition for 3D additive manufacturing and processing method of the same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203318A1 (en) 2013-02-12 2017-08-09 CARBON3D, Inc. Continuous liquid interphase printing
US9498920B2 (en) 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US11260208B2 (en) 2018-06-08 2022-03-01 Acclarent, Inc. Dilation catheter with removable bulb tip
US9360757B2 (en) 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
CN107073813B (zh) * 2014-06-20 2019-07-05 卡本有限公司 使用可聚合液体的往复送料的三维打印
MX2016016630A (es) 2014-06-23 2017-06-06 Carbon Inc Metodos para producir objetos tridimensionales de poliuretano a partir de materiales que tienen multiples mecanismos de endurecimiento.
ITUB20154169A1 (it) 2015-10-02 2017-04-02 Thelyn S R L Metodo e apparato di foto-indurimento a substrato auto-lubrificante per la formazione di oggetti tridimensionali.
US10500786B2 (en) 2016-06-22 2019-12-10 Carbon, Inc. Dual cure resins containing microwave absorbing materials and methods of using the same
EP3290185A1 (en) * 2016-08-31 2018-03-07 Airbus Operations GmbH Method and apparatus for joining components
US10625470B2 (en) * 2016-09-28 2020-04-21 Ada Foundation 3D printing of composition-controlled copolymers
US11629202B2 (en) 2017-01-05 2023-04-18 Carbon, Inc. Dual cure stereolithography resins containing thermoplastic particles
WO2018165090A1 (en) * 2017-03-09 2018-09-13 Carbon, Inc. Tough, high temperature polymers produced by stereolithography
WO2018176145A1 (en) * 2017-03-28 2018-10-04 The University Of Western Ontario Method and system for 3d printing of electrically conductive polymer structures
AU2018320942A1 (en) * 2017-08-23 2020-03-12 Evapco, Inc. Additive manufacturing by selective liquid cooling
US10688737B2 (en) 2017-09-14 2020-06-23 General Electric Company Method for forming fiber-reinforced polymer components
WO2019193961A1 (ja) * 2018-04-02 2019-10-10 コニカミノルタ株式会社 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
AU2019204143A1 (en) 2018-06-15 2020-01-16 Howmedica Osteonics Corp. Stackable build plates for additive manufacturing powder handling
JP7350836B2 (ja) 2018-07-18 2023-09-26 アルケマ フランス 重合性イオン種をベースとする硬化性組成物を用いて調製された物品
US11203156B2 (en) 2018-08-20 2021-12-21 NEXA3D Inc. Methods and systems for photo-curing photo-sensitive material for printing and other applications
WO2020097299A2 (en) 2018-11-09 2020-05-14 NEXA3D Inc. Three-dimensional printing system
JP2022525761A (ja) 2019-03-18 2022-05-19 ネクサ3ディー インコーポレイテッド 付加物製造方法及びシステム
US10967573B2 (en) 2019-04-02 2021-04-06 NEXA3D Inc. Tank assembly and components thereof for a 3D printing system
WO2020263480A1 (en) * 2019-06-28 2020-12-30 Carbon, Inc. Dual cure additive manufacturing resins for the production of objects with mixed tensile properties
JP7442659B2 (ja) 2020-02-04 2024-03-04 キャボット コーポレイション 液状積層造形用組成物
US11712849B2 (en) * 2020-07-06 2023-08-01 Nissan North America, Inc. 3-D printer
US11413819B2 (en) 2020-09-03 2022-08-16 NEXA3D Inc. Multi-material membrane for vat polymerization printer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050253308A1 (en) * 2002-05-07 2005-11-17 3D System, Inc. Flash curing in selective deposition modeling
CN102325644A (zh) * 2008-12-22 2012-01-18 荷兰应用科学研究会(Tno) 用于3d物体的分层生产的方法及设备
CN103521768A (zh) * 2013-10-15 2014-01-22 北京航空航天大学 一种采用纳米材料增强的选择性激光烧结成形复合材料的制造方法
WO2014108364A1 (en) * 2013-01-10 2014-07-17 Luxexcel Holding B.V. Method of printing an optical element
WO2014126830A2 (en) * 2013-02-12 2014-08-21 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication
CN104228067A (zh) * 2014-07-23 2014-12-24 中国科学院重庆绿色智能技术研究院 一种溶液固化快速成型制造方法

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7702518A (nl) * 1977-03-09 1978-09-12 Akzo Nv Werkwijze voor het bekleden van een substraat met een stralingshardbare bekledingskompositie.
US5236637A (en) 1984-08-08 1993-08-17 3D Systems, Inc. Method of and apparatus for production of three dimensional objects by stereolithography
JPH0224127A (ja) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd 光学的造形法
JPH0224121A (ja) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd 光学的造形法
JPH0757532B2 (ja) 1988-10-19 1995-06-21 松下電工株式会社 三次元形状の形成方法
DE4004620C1 (en) 1990-02-15 1991-09-05 Du Pont De Nemours (Deutschland) Gmbh, 6380 Bad Homburg, De Photo-structured layer of three=dimensional object prodn. - by using fusible plastisol or organosol contg. unsatd. monomer, photoinitiator and thermally reactive cpd.
US5122441A (en) 1990-10-29 1992-06-16 E. I. Du Pont De Nemours And Company Method for fabricating an integral three-dimensional object from layers of a photoformable composition
US5474719A (en) * 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
EP0525578A1 (en) 1991-08-02 1993-02-03 E.I. Du Pont De Nemours And Company Photopolymer composition for the production of three-dimensional objects
DE69315003T2 (de) 1992-07-17 1998-03-12 Ethicon Inc Strahlenhärtbare Urethan-Acrylatprepolymere und vernetzte Polymere
US5679719A (en) 1993-03-24 1997-10-21 Loctite Corporation Method of preparing fiber/resin composites
DE59407524D1 (de) 1993-08-26 1999-02-04 Ciba Geigy Ag Flüssige strahlungshärtbare Zusammensetzung, insbesondere für die Stereolithographie
IL112140A (en) 1994-12-25 1997-07-13 Cubital Ltd Method of forming three dimensional objects
US5707780A (en) 1995-06-07 1998-01-13 E. I. Du Pont De Nemours And Company Photohardenable epoxy composition
US6658314B1 (en) 1999-10-06 2003-12-02 Objet Geometries Ltd. System and method for three dimensional model printing
DE19961926A1 (de) 1999-12-22 2001-07-05 Basf Coatings Ag Thermisch mit aktinischer Strahlung härtbare Stoffgemische und ihre Verwendung
US7300619B2 (en) 2000-03-13 2007-11-27 Objet Geometries Ltd. Compositions and methods for use in three dimensional model printing
DE10015408A1 (de) 2000-03-28 2001-10-11 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Herstellung von Bauteilen aus lichtaushärtbaren Werkstoffen
US6309797B1 (en) 2000-04-26 2001-10-30 Spectra Group Limited, Inc. Selectively colorable polymerizable compositions
TW557298B (en) * 2000-08-14 2003-10-11 Ciba Sc Holding Ag A compound, a photopolymerizible composition, a process for producing coatings and a method for causing a photoinitiator to accumulate at the surface of coatings
US6544465B1 (en) 2000-08-18 2003-04-08 Micron Technology, Inc. Method for forming three dimensional structures from liquid with improved surface finish
JP4382978B2 (ja) 2000-12-04 2009-12-16 学校法人神奈川大学 光硬化性・熱硬化性樹脂組成物
DE10115505B4 (de) 2001-03-29 2007-03-08 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare wäßrige Dispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10119817A1 (de) 2001-04-23 2002-10-24 Envision Technologies Gmbh Vorrichtung und Verfahren für die zerstörungsfreie Trennung ausgehärteter Materialschichten von einer planen Bauebene
ATE527099T1 (de) 2004-03-22 2011-10-15 Huntsman Adv Mat Switzerland Photohärtbare zusammensetzungen
DE102004022606A1 (de) 2004-05-07 2005-12-15 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit verbesserter Trennung ausgehärteter Materialschichten von einer Bauebene
EP2402127B1 (en) 2004-10-19 2018-07-18 Rolls-Royce Corporation Method associated with anisotropic shrink in sintered ceramic items
US7709544B2 (en) 2005-10-25 2010-05-04 Massachusetts Institute Of Technology Microstructure synthesis by flow lithography and polymerization
US20080103226A1 (en) 2006-10-31 2008-05-01 Dsm Ip Assets B.V. Photo-curable resin composition
US7892474B2 (en) * 2006-11-15 2011-02-22 Envisiontec Gmbh Continuous generative process for producing a three-dimensional object
US8128393B2 (en) 2006-12-04 2012-03-06 Liquidia Technologies, Inc. Methods and materials for fabricating laminate nanomolds and nanoparticles therefrom
US8870871B2 (en) 2007-01-17 2014-10-28 University Of Massachusetts Lowell Biodegradable bone plates and bonding systems
JP5606308B2 (ja) 2007-04-03 2014-10-15 ビーエーエスエフ ソシエタス・ヨーロピア 光活性窒素塩基
EP2052693B2 (en) 2007-10-26 2021-02-17 Envisiontec GmbH Process and freeform fabrication system for producing a three-dimensional object
US8372330B2 (en) 2009-10-19 2013-02-12 Global Filtration Systems Resin solidification substrate and assembly
IT1397457B1 (it) 2010-01-12 2013-01-10 Dws Srl Piastra di modellazione per una macchina stereolitografica, macchina stereolitografica impiegante tale piastra di modellazione e utensile per la pulizia di tale piastra di modellazione.
IT1403482B1 (it) * 2011-01-18 2013-10-17 Dws Srl Metodo per la produzione di un oggetto tridimensionale e macchina stereolitografica impiegante tale metodo
WO2012106256A1 (en) 2011-01-31 2012-08-09 Global Filtration Systems Method and apparatus for making three-dimensional objects from multiple solidifiable materials
US9120270B2 (en) 2012-04-27 2015-09-01 University Of Southern California Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer
US9636873B2 (en) 2012-05-03 2017-05-02 B9Creations, LLC Solid image apparatus with improved part separation from the image plate
EP2757118A1 (en) 2013-01-17 2014-07-23 Allnex Belgium, S.A. Radiation curable aqueous compositions with reversible drying.
US9498920B2 (en) * 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
EP3203318A1 (en) * 2013-02-12 2017-08-09 CARBON3D, Inc. Continuous liquid interphase printing
ITGE20130027A1 (it) * 2013-03-04 2014-09-05 Smart3D Net Di Dotta Andrea E Gie Andrea Snc Metodo e dispositivo per la produzione di oggetti attraverso stereolitografia
US9360757B2 (en) * 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
CN103571211A (zh) 2013-10-13 2014-02-12 甘春丽 双重固化组合物
US9096722B2 (en) 2013-10-18 2015-08-04 Hrl Laboratories, Llc Method for curing structures using a dual photoinitiator system and a structure made using the same
JP6433651B2 (ja) 2013-11-21 2018-12-05 スリーエム イノベイティブ プロパティズ カンパニー 接着剤、接着剤付部材及び部材間の接続方法
US9738013B1 (en) 2013-12-19 2017-08-22 Hrl Laboratories, Llc Multi-chemistry microlattice structures and methods of manufacturing the same
US10073424B2 (en) 2014-05-13 2018-09-11 Autodesk, Inc. Intelligent 3D printing through optimization of 3D print parameters
US9782934B2 (en) 2014-05-13 2017-10-10 Autodesk, Inc. 3D print adhesion reduction during cure process
US10569465B2 (en) 2014-06-20 2020-02-25 Carbon, Inc. Three-dimensional printing using tiled light engines
MX2016016630A (es) 2014-06-23 2017-06-06 Carbon Inc Metodos para producir objetos tridimensionales de poliuretano a partir de materiales que tienen multiples mecanismos de endurecimiento.
US10589512B2 (en) 2014-07-10 2020-03-17 Carbon, Inc. Methods and apparatus for continuous liquid interface production with rotation
US9574039B1 (en) 2014-07-22 2017-02-21 Full Spectrum Laser Additive use in photopolymer resin for 3D printing to enhance the appearance of printed parts
WO2016172788A1 (en) 2015-04-30 2016-11-03 Fortier, Raymond Improved stereolithography system
US9708440B2 (en) 2015-06-18 2017-07-18 Novoset, Llc High temperature three dimensional printing compositions
US10384439B2 (en) 2015-11-06 2019-08-20 Stratasys, Inc. Continuous liquid interface production system with viscosity pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050253308A1 (en) * 2002-05-07 2005-11-17 3D System, Inc. Flash curing in selective deposition modeling
CN102325644A (zh) * 2008-12-22 2012-01-18 荷兰应用科学研究会(Tno) 用于3d物体的分层生产的方法及设备
WO2014108364A1 (en) * 2013-01-10 2014-07-17 Luxexcel Holding B.V. Method of printing an optical element
WO2014126830A2 (en) * 2013-02-12 2014-08-21 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication
CN103521768A (zh) * 2013-10-15 2014-01-22 北京航空航天大学 一种采用纳米材料增强的选择性激光烧结成形复合材料的制造方法
CN104228067A (zh) * 2014-07-23 2014-12-24 中国科学院重庆绿色智能技术研究院 一种溶液固化快速成型制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曾毅 等: "《装甲防护材料技术》", 31 January 2014, 国防工业出版社 *
李子东 等: "《现代胶粘技术手册》", 31 January 2002, 新时代出版社 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055643A (zh) * 2018-03-16 2020-12-08 维纳米技术公司 三维陶瓷图案的喷墨印刷
CN109213233B (zh) * 2018-03-21 2021-06-29 中国航空制造技术研究院 一种电子束熔丝增材制造中的温度场调控方法及其设备
CN109213233A (zh) * 2018-03-21 2019-01-15 中国航空制造技术研究院 一种电子束熔丝增材制造中的温度场调控方法及其设备
CN112313069B (zh) * 2018-07-02 2023-08-11 依视路国际公司 用于在增材制造工艺中确定三维产品的优先级和位置的方法
CN112313069A (zh) * 2018-07-02 2021-02-02 依视路国际公司 用于在增材制造工艺中确定三维产品的优先级和位置的方法
TWI691529B (zh) * 2018-10-08 2020-04-21 致達應材股份有限公司 3d積層製造用之混合式配方組合物與其製程方法
US10822464B2 (en) 2018-10-08 2020-11-03 Vista Applied Materials, Inc. Formulation composition for 3D additive manufacturing and processing method of the same
CN110982246A (zh) * 2018-10-08 2020-04-10 致达应材股份有限公司 一种3d打印用材料及其制备方法
CN110982246B (zh) * 2018-10-08 2022-09-27 致达应材股份有限公司 一种3d打印用材料及其制备方法
US11732149B2 (en) 2018-10-08 2023-08-22 Vista Applied Materials, Inc. Formulation composition for 3D additive manufacturing and processing method of the same
CN109648851A (zh) * 2019-01-19 2019-04-19 郑州迈客美客电子科技有限公司 兼顾光强一致性和分辨精度的阵列式面光源的获取方法、阵列式面光源、及光固化装置
CN115038572A (zh) * 2020-01-29 2022-09-09 惠普发展公司,有限责任合伙企业 使用含碳酰胺的化合物的三维打印
CN114641144A (zh) * 2022-03-24 2022-06-17 浙江大学 一种光控增材制造电子电路的方法

Also Published As

Publication number Publication date
SG11201705781SA (en) 2017-08-30
MX2017010111A (es) 2017-11-23
US10974445B2 (en) 2021-04-13
JP2018504300A (ja) 2018-02-15
JP6731930B2 (ja) 2020-07-29
US20200361139A1 (en) 2020-11-19
BR112017016780A2 (pt) 2018-04-17
US20180009162A1 (en) 2018-01-11
WO2016126796A3 (en) 2016-10-06
AU2016215409B2 (en) 2020-10-01
CA2974982A1 (en) 2016-08-11
EP3253559B1 (en) 2020-12-09
WO2016126796A2 (en) 2016-08-11
US10792855B2 (en) 2020-10-06
HK1248185A1 (zh) 2018-10-12
KR20170115070A (ko) 2017-10-16
EP3253559A2 (en) 2017-12-13
AU2016215409A1 (en) 2017-08-03
CN107438513B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
CN107438513A (zh) 通过间歇曝光的增材制造方法
US10737438B2 (en) Method of additive manufacturing by fabrication through multiple zones
US10828826B2 (en) Fabrication of three dimensional objects with multiple operating modes
US20180015662A1 (en) Fabrication of three dimensional objects with variable slice thickness
EP3352972B1 (en) Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods and devices
US20180029292A1 (en) Continuous liquid interface production with sequential patterned exposure
CN107073813B (zh) 使用可聚合液体的往复送料的三维打印
US10792856B2 (en) Three-dimensional printing with flexible build plates
US10843402B2 (en) Three-dimensional printing with reduced pressure build plate unit
WO2016149151A1 (en) Three-dimensional printing with concurrent delivery of different polymerizable liquids
CN109153173A (zh) 用于通过建造板脱气来减少气泡的三维打印方法和设备
WO2016145050A1 (en) Microfluidic devices having flexible features and methods of making the same
US11993015B2 (en) Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant